Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ianor | Structured version Visualization version GIF version |
Description: Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Revised by Wolf Lammen, 8-Apr-2022.) |
Ref | Expression |
---|---|
3ianor | ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 978 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
2 | 1 | orbi1i 910 | . 2 ⊢ ((¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) |
3 | ianor 978 | . . 3 ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒)) | |
4 | df-3an 1087 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
5 | 3, 4 | xchnxbir 332 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒)) |
6 | df-3or 1086 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) | |
7 | 2, 5, 6 | 3bitr4i 302 | 1 ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∨ w3o 1084 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 |
This theorem is referenced by: 3anor 1106 tppreqb 4735 fr3nr 7600 bropopvvv 7901 prinfzo0 13354 elfznelfzo 13420 ssnn0fi 13633 hashtpg 14127 swrdnd0 14298 pfxnd0 14329 lcmfunsnlem2lem2 16272 prm23ge5 16444 2irrexpq 25790 lpni 28743 xrdifh 31003 poxp3 33723 dvasin 35788 limcicciooub 43068 2zrngnring 45398 |
Copyright terms: Public domain | W3C validator |