MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ianor Structured version   Visualization version   GIF version

Theorem 3ianor 1106
Description: Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) Shorten with xchnxbir 333. (Revised by Wolf Lammen, 8-Apr-2022.)
Assertion
Ref Expression
3ianor (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒))

Proof of Theorem 3ianor
StepHypRef Expression
1 ianor 983 . . 3 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
21orbi1i 913 . 2 ((¬ (𝜑𝜓) ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒))
3 ianor 983 . . 3 (¬ ((𝜑𝜓) ∧ 𝜒) ↔ (¬ (𝜑𝜓) ∨ ¬ 𝜒))
4 df-3an 1088 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
53, 4xchnxbir 333 . 2 (¬ (𝜑𝜓𝜒) ↔ (¬ (𝜑𝜓) ∨ ¬ 𝜒))
6 df-3or 1087 . 2 ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒))
72, 5, 63bitr4i 303 1 (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3o 1085  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088
This theorem is referenced by:  3anor  1107  tppreqb  4786  otthne  5466  fr3nr  7771  bropopvvv  8094  prinfzo0  13720  elfznelfzo  13793  ssnn0fi  14008  hashtpg  14508  hash3tpde  14516  swrdnd0  14680  pfxnd0  14711  lcmfunsnlem2lem2  16663  prm23ge5  16840  2irrexpq  26697  lpni  30466  xrdifh  32762  dvasin  37733  dflim5  43320  limcicciooub  45633  2zrngnring  48200
  Copyright terms: Public domain W3C validator