Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ianor Structured version   Visualization version   GIF version

Theorem 3ianor 1104
 Description: Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Revised by Wolf Lammen, 8-Apr-2022.)
Assertion
Ref Expression
3ianor (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒))

Proof of Theorem 3ianor
StepHypRef Expression
1 ianor 979 . . 3 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
21orbi1i 911 . 2 ((¬ (𝜑𝜓) ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒))
3 ianor 979 . . 3 (¬ ((𝜑𝜓) ∧ 𝜒) ↔ (¬ (𝜑𝜓) ∨ ¬ 𝜒))
4 df-3an 1086 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
53, 4xchnxbir 336 . 2 (¬ (𝜑𝜓𝜒) ↔ (¬ (𝜑𝜓) ∨ ¬ 𝜒))
6 df-3or 1085 . 2 ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒))
72, 5, 63bitr4i 306 1 (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∨ w3o 1083   ∧ w3a 1084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086 This theorem is referenced by:  3anor  1105  tppreqb  4711  fr3nr  7469  bropopvvv  7760  prinfzo0  13059  elfznelfzo  13125  ssnn0fi  13336  hashtpg  13827  swrdnd0  13998  pfxnd0  14029  lcmfunsnlem2lem2  15960  prm23ge5  16129  2irrexpq  25300  lpni  28242  xrdifh  30490  dvasin  35023  limcicciooub  42098  2zrngnring  44395
 Copyright terms: Public domain W3C validator