| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ianor | Structured version Visualization version GIF version | ||
| Description: Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) Shorten with xchnxbir 333. (Revised by Wolf Lammen, 8-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3ianor | ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor 983 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 2 | 1 | orbi1i 913 | . 2 ⊢ ((¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) |
| 3 | ianor 983 | . . 3 ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒)) | |
| 4 | df-3an 1088 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 5 | 3, 4 | xchnxbir 333 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒)) |
| 6 | df-3or 1087 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) | |
| 7 | 2, 5, 6 | 3bitr4i 303 | 1 ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: 3anor 1107 tppreqb 4769 otthne 5446 fr3nr 7748 bropopvvv 8069 prinfzo0 13659 elfznelfzo 13733 ssnn0fi 13950 hashtpg 14450 hash3tpde 14458 swrdnd0 14622 pfxnd0 14653 lcmfunsnlem2lem2 16609 prm23ge5 16786 2irrexpq 26640 lpni 30409 xrdifh 32703 dvasin 37698 dflim5 43318 limcicciooub 45635 2zrngnring 48243 |
| Copyright terms: Public domain | W3C validator |