![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ianor | Structured version Visualization version GIF version |
Description: Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Revised by Wolf Lammen, 8-Apr-2022.) |
Ref | Expression |
---|---|
3ianor | ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 981 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
2 | 1 | orbi1i 913 | . 2 ⊢ ((¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) |
3 | ianor 981 | . . 3 ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒)) | |
4 | df-3an 1090 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
5 | 3, 4 | xchnxbir 333 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒)) |
6 | df-3or 1089 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) | |
7 | 2, 5, 6 | 3bitr4i 303 | 1 ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∨ w3o 1087 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 |
This theorem is referenced by: 3anor 1109 tppreqb 4809 otthne 5487 fr3nr 7759 bropopvvv 8076 prinfzo0 13671 elfznelfzo 13737 ssnn0fi 13950 hashtpg 14446 swrdnd0 14607 pfxnd0 14638 lcmfunsnlem2lem2 16576 prm23ge5 16748 2irrexpq 26239 lpni 29764 xrdifh 32022 dvasin 36620 dflim5 42127 limcicciooub 44401 2zrngnring 46898 |
Copyright terms: Public domain | W3C validator |