| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ianor | Structured version Visualization version GIF version | ||
| Description: Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) Shorten with xchnxbir 333. (Revised by Wolf Lammen, 8-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3ianor | ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor 983 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 2 | 1 | orbi1i 913 | . 2 ⊢ ((¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) |
| 3 | ianor 983 | . . 3 ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒)) | |
| 4 | df-3an 1088 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 5 | 3, 4 | xchnxbir 333 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒)) |
| 6 | df-3or 1087 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒)) | |
| 7 | 2, 5, 6 | 3bitr4i 303 | 1 ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: 3anor 1107 tppreqb 4786 otthne 5466 fr3nr 7771 bropopvvv 8094 prinfzo0 13720 elfznelfzo 13793 ssnn0fi 14008 hashtpg 14508 hash3tpde 14516 swrdnd0 14680 pfxnd0 14711 lcmfunsnlem2lem2 16663 prm23ge5 16840 2irrexpq 26697 lpni 30466 xrdifh 32762 dvasin 37733 dflim5 43320 limcicciooub 45633 2zrngnring 48200 |
| Copyright terms: Public domain | W3C validator |