MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ianor Structured version   Visualization version   GIF version

Theorem 3ianor 1108
Description: Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Revised by Wolf Lammen, 8-Apr-2022.)
Assertion
Ref Expression
3ianor (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒))

Proof of Theorem 3ianor
StepHypRef Expression
1 ianor 981 . . 3 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
21orbi1i 913 . 2 ((¬ (𝜑𝜓) ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒))
3 ianor 981 . . 3 (¬ ((𝜑𝜓) ∧ 𝜒) ↔ (¬ (𝜑𝜓) ∨ ¬ 𝜒))
4 df-3an 1090 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
53, 4xchnxbir 333 . 2 (¬ (𝜑𝜓𝜒) ↔ (¬ (𝜑𝜓) ∨ ¬ 𝜒))
6 df-3or 1089 . 2 ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ 𝜒))
72, 5, 63bitr4i 303 1 (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397  wo 846  w3o 1087  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090
This theorem is referenced by:  3anor  1109  tppreqb  4769  otthne  5447  fr3nr  7710  bropopvvv  8026  prinfzo0  13620  elfznelfzo  13686  ssnn0fi  13899  hashtpg  14393  swrdnd0  14554  pfxnd0  14585  lcmfunsnlem2lem2  16523  prm23ge5  16695  2irrexpq  26108  lpni  29471  xrdifh  31737  dvasin  36212  dflim5  41711  limcicciooub  43968  2zrngnring  46340
  Copyright terms: Public domain W3C validator