| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
| Ref | Expression |
|---|---|
| con1bii.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| con1bii | ⊢ (¬ 𝜓 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | con1bii.1 | . . 3 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜓 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor 1016 3anor 1107 3oran 1108 2nexaln 1830 2exanali 1860 nnel 3039 spc2d 3559 npss 4066 snprc 4671 dffv2 6922 kmlem3 10066 axpowndlem3 10512 nnunb 12398 rpnnen2lem12 16152 dsmmacl 21666 ntreq0 22980 noetasuplem4 27664 noetainflem4 27668 largei 32229 ballotlem2 34456 dffr5 35726 brsset 35862 brtxpsd 35867 dfrecs2 35923 dfint3 35925 con1bii2 37305 notbinot1 38058 elpadd0 39788 pm10.252 44334 pm10.253 44335 ralfal 45139 |
| Copyright terms: Public domain | W3C validator |