| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
| Ref | Expression |
|---|---|
| con1bii.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| con1bii | ⊢ (¬ 𝜓 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | con1bii.1 | . . 3 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜓 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor 1016 3anor 1107 3oran 1108 2nexaln 1830 2exanali 1860 nnel 3039 spc2d 3568 npss 4076 snprc 4681 dffv2 6956 kmlem3 10106 axpowndlem3 10552 nnunb 12438 rpnnen2lem12 16193 dsmmacl 21650 ntreq0 22964 noetasuplem4 27648 noetainflem4 27652 largei 32196 ballotlem2 34480 dffr5 35741 brsset 35877 brtxpsd 35882 dfrecs2 35938 dfint3 35940 con1bii2 37320 notbinot1 38073 elpadd0 39803 pm10.252 44350 pm10.253 44351 ralfal 45155 |
| Copyright terms: Public domain | W3C validator |