| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
| Ref | Expression |
|---|---|
| con1bii.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| con1bii | ⊢ (¬ 𝜓 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | con1bii.1 | . . 3 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜓 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor 1016 3anor 1107 3oran 1108 2nexaln 1831 2exanali 1861 nnel 3043 spc2d 3553 npss 4062 snprc 4671 dffv2 6925 kmlem3 10053 axpowndlem3 10499 nnunb 12386 rpnnen2lem12 16138 dsmmacl 21682 ntreq0 22995 noetasuplem4 27678 noetainflem4 27682 largei 32251 ballotlem2 34525 dffr5 35821 brsset 35954 brtxpsd 35959 dfrecs2 36017 dfint3 36019 con1bii2 37399 notbinot1 38142 elpadd0 39931 pm10.252 44481 pm10.253 44482 ralfal 45285 |
| Copyright terms: Public domain | W3C validator |