| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
| Ref | Expression |
|---|---|
| con1bii.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| con1bii | ⊢ (¬ 𝜓 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | con1bii.1 | . . 3 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜓 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor 1016 3anor 1107 3oran 1108 2nexaln 1831 2exanali 1861 nnel 3042 spc2d 3557 npss 4063 snprc 4670 dffv2 6917 kmlem3 10044 axpowndlem3 10490 nnunb 12377 rpnnen2lem12 16134 dsmmacl 21679 ntreq0 22993 noetasuplem4 27676 noetainflem4 27680 largei 32245 ballotlem2 34500 dffr5 35796 brsset 35929 brtxpsd 35934 dfrecs2 35990 dfint3 35992 con1bii2 37372 notbinot1 38125 elpadd0 39854 pm10.252 44400 pm10.253 44401 ralfal 45204 |
| Copyright terms: Public domain | W3C validator |