![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
Ref | Expression |
---|---|
con1bii.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
con1bii | ⊢ (¬ 𝜓 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | con1bii.1 | . . 3 ⊢ (¬ 𝜑 ↔ 𝜓) | |
3 | 1, 2 | xchbinx 334 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) |
4 | 3 | bicomi 223 | 1 ⊢ (¬ 𝜓 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xor 1014 3anor 1109 3oran 1110 2nexaln 1833 2exanali 1864 nnel 3057 spc2d 3593 npss 4111 dfnul3OLD 4329 snprc 4722 dffv2 6987 kmlem3 10147 axpowndlem3 10594 nnunb 12468 rpnnen2lem12 16168 dsmmacl 21296 ntreq0 22581 noetasuplem4 27239 noetainflem4 27243 largei 31520 ballotlem2 33487 dffr5 34724 brsset 34861 brtxpsd 34866 dfrecs2 34922 dfint3 34924 con1bii2 36213 notbinot1 36947 elpadd0 38680 pm10.252 43120 pm10.253 43121 ralfal 43855 |
Copyright terms: Public domain | W3C validator |