MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con1bii Structured version   Visualization version   GIF version

Theorem con1bii 356
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.)
Hypothesis
Ref Expression
con1bii.1 𝜑𝜓)
Assertion
Ref Expression
con1bii 𝜓𝜑)

Proof of Theorem con1bii
StepHypRef Expression
1 notnotb 315 . . 3 (𝜑 ↔ ¬ ¬ 𝜑)
2 con1bii.1 . . 3 𝜑𝜓)
31, 2xchbinx 334 . 2 (𝜑 ↔ ¬ 𝜓)
43bicomi 224 1 𝜓𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  xor  1016  3anor  1107  3oran  1108  2nexaln  1830  2exanali  1860  nnel  3039  spc2d  3559  npss  4066  snprc  4671  dffv2  6922  kmlem3  10066  axpowndlem3  10512  nnunb  12398  rpnnen2lem12  16152  dsmmacl  21666  ntreq0  22980  noetasuplem4  27664  noetainflem4  27668  largei  32229  ballotlem2  34456  dffr5  35726  brsset  35862  brtxpsd  35867  dfrecs2  35923  dfint3  35925  con1bii2  37305  notbinot1  38058  elpadd0  39788  pm10.252  44334  pm10.253  44335  ralfal  45139
  Copyright terms: Public domain W3C validator