| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
| Ref | Expression |
|---|---|
| con1bii.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| con1bii | ⊢ (¬ 𝜓 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | con1bii.1 | . . 3 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜓 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor 1017 3anor 1108 3oran 1109 2nexaln 1830 2exanali 1860 nnel 3056 spc2d 3602 npss 4113 snprc 4717 dffv2 7004 kmlem3 10193 axpowndlem3 10639 nnunb 12522 rpnnen2lem12 16261 dsmmacl 21761 ntreq0 23085 noetasuplem4 27781 noetainflem4 27785 largei 32286 ballotlem2 34491 dffr5 35754 brsset 35890 brtxpsd 35895 dfrecs2 35951 dfint3 35953 con1bii2 37333 notbinot1 38086 elpadd0 39811 pm10.252 44380 pm10.253 44381 ralfal 45166 |
| Copyright terms: Public domain | W3C validator |