MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con1bii Structured version   Visualization version   GIF version

Theorem con1bii 356
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.)
Hypothesis
Ref Expression
con1bii.1 𝜑𝜓)
Assertion
Ref Expression
con1bii 𝜓𝜑)

Proof of Theorem con1bii
StepHypRef Expression
1 notnotb 315 . . 3 (𝜑 ↔ ¬ ¬ 𝜑)
2 con1bii.1 . . 3 𝜑𝜓)
31, 2xchbinx 334 . 2 (𝜑 ↔ ¬ 𝜓)
43bicomi 224 1 𝜓𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  xor  1016  3anor  1107  3oran  1108  2nexaln  1831  2exanali  1861  nnel  3043  spc2d  3553  npss  4062  snprc  4671  dffv2  6925  kmlem3  10053  axpowndlem3  10499  nnunb  12386  rpnnen2lem12  16138  dsmmacl  21682  ntreq0  22995  noetasuplem4  27678  noetainflem4  27682  largei  32251  ballotlem2  34525  dffr5  35821  brsset  35954  brtxpsd  35959  dfrecs2  36017  dfint3  36019  con1bii2  37399  notbinot1  38142  elpadd0  39931  pm10.252  44481  pm10.253  44482  ralfal  45285
  Copyright terms: Public domain W3C validator