![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
Ref | Expression |
---|---|
con1bii.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
con1bii | ⊢ (¬ 𝜓 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | con1bii.1 | . . 3 ⊢ (¬ 𝜑 ↔ 𝜓) | |
3 | 1, 2 | xchbinx 334 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) |
4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜓 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: xor 1015 3anor 1108 3oran 1109 2nexaln 1828 2exanali 1859 nnel 3062 spc2d 3615 npss 4136 dfnul3OLD 4358 snprc 4742 dffv2 7017 kmlem3 10222 axpowndlem3 10668 nnunb 12549 rpnnen2lem12 16273 dsmmacl 21784 ntreq0 23106 noetasuplem4 27799 noetainflem4 27803 largei 32299 ballotlem2 34453 dffr5 35716 brsset 35853 brtxpsd 35858 dfrecs2 35914 dfint3 35916 con1bii2 37298 notbinot1 38039 elpadd0 39766 pm10.252 44330 pm10.253 44331 ralfal 45066 |
Copyright terms: Public domain | W3C validator |