MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con1bii Structured version   Visualization version   GIF version

Theorem con1bii 356
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.)
Hypothesis
Ref Expression
con1bii.1 𝜑𝜓)
Assertion
Ref Expression
con1bii 𝜓𝜑)

Proof of Theorem con1bii
StepHypRef Expression
1 notnotb 315 . . 3 (𝜑 ↔ ¬ ¬ 𝜑)
2 con1bii.1 . . 3 𝜑𝜓)
31, 2xchbinx 334 . 2 (𝜑 ↔ ¬ 𝜓)
43bicomi 224 1 𝜓𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  xor  1016  3anor  1107  3oran  1108  2nexaln  1830  2exanali  1860  nnel  3046  spc2d  3581  npss  4088  snprc  4693  dffv2  6974  kmlem3  10167  axpowndlem3  10613  nnunb  12497  rpnnen2lem12  16243  dsmmacl  21701  ntreq0  23015  noetasuplem4  27700  noetainflem4  27704  largei  32248  ballotlem2  34521  dffr5  35771  brsset  35907  brtxpsd  35912  dfrecs2  35968  dfint3  35970  con1bii2  37350  notbinot1  38103  elpadd0  39828  pm10.252  44385  pm10.253  44386  ralfal  45185
  Copyright terms: Public domain W3C validator