MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con1bii Structured version   Visualization version   GIF version

Theorem con1bii 348
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.)
Hypothesis
Ref Expression
con1bii.1 𝜑𝜓)
Assertion
Ref Expression
con1bii 𝜓𝜑)

Proof of Theorem con1bii
StepHypRef Expression
1 notnotb 307 . . 3 (𝜑 ↔ ¬ ¬ 𝜑)
2 con1bii.1 . . 3 𝜑𝜓)
31, 2xchbinx 326 . 2 (𝜑 ↔ ¬ 𝜓)
43bicomi 216 1 𝜓𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199
This theorem is referenced by:  con2bii  349  xor  1000  3anor  1095  3oran  1096  2nexaln  1873  nnel  3084  npss  3939  symdifassOLD  4077  dfnul3  4145  snprc  4484  dffv2  6533  kmlem3  9311  axpowndlem3  9758  nnunb  11642  rpnnen2lem12  15362  dsmmacl  20488  ntreq0  21293  largei  29702  spc2d  29889  ballotlem2  31153  dffr5  32241  noetalem3  32458  brsset  32589  brtxpsd  32594  dfrecs2  32650  dfint3  32652  con1bii2  33778  notbinot1  34507  elpadd0  35968  pm10.252  39526  pm10.253  39527  2exanali  39553
  Copyright terms: Public domain W3C validator