![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
Ref | Expression |
---|---|
con1bii.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
con1bii | ⊢ (¬ 𝜓 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 307 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | con1bii.1 | . . 3 ⊢ (¬ 𝜑 ↔ 𝜓) | |
3 | 1, 2 | xchbinx 326 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) |
4 | 3 | bicomi 216 | 1 ⊢ (¬ 𝜓 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: con2bii 349 xor 1000 3anor 1095 3oran 1096 2nexaln 1873 nnel 3084 npss 3939 symdifassOLD 4077 dfnul3 4145 snprc 4484 dffv2 6533 kmlem3 9311 axpowndlem3 9758 nnunb 11642 rpnnen2lem12 15362 dsmmacl 20488 ntreq0 21293 largei 29702 spc2d 29889 ballotlem2 31153 dffr5 32241 noetalem3 32458 brsset 32589 brtxpsd 32594 dfrecs2 32650 dfint3 32652 con1bii2 33778 notbinot1 34507 elpadd0 35968 pm10.252 39526 pm10.253 39527 2exanali 39553 |
Copyright terms: Public domain | W3C validator |