| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1bii | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
| Ref | Expression |
|---|---|
| con1bii.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| con1bii | ⊢ (¬ 𝜓 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | con1bii.1 | . . 3 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜓 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xor 1016 3anor 1107 3oran 1108 2nexaln 1830 2exanali 1860 nnel 3046 spc2d 3581 npss 4088 snprc 4693 dffv2 6974 kmlem3 10167 axpowndlem3 10613 nnunb 12497 rpnnen2lem12 16243 dsmmacl 21701 ntreq0 23015 noetasuplem4 27700 noetainflem4 27704 largei 32248 ballotlem2 34521 dffr5 35771 brsset 35907 brtxpsd 35912 dfrecs2 35968 dfint3 35970 con1bii2 37350 notbinot1 38103 elpadd0 39828 pm10.252 44385 pm10.253 44386 ralfal 45185 |
| Copyright terms: Public domain | W3C validator |