Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con1bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
Ref | Expression |
---|---|
con1bii.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
con1bii | ⊢ (¬ 𝜓 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | con1bii.1 | . . 3 ⊢ (¬ 𝜑 ↔ 𝜓) | |
3 | 1, 2 | xchbinx 334 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) |
4 | 3 | bicomi 223 | 1 ⊢ (¬ 𝜓 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xor 1012 3anor 1107 3oran 1108 2nexaln 1832 2exanali 1863 nnel 3058 spc2d 3541 npss 4045 dfnul3OLD 4262 snprc 4653 dffv2 6863 kmlem3 9908 axpowndlem3 10355 nnunb 12229 rpnnen2lem12 15934 dsmmacl 20948 ntreq0 22228 largei 30629 ballotlem2 32455 dffr5 33721 noetasuplem4 33939 noetainflem4 33943 brsset 34191 brtxpsd 34196 dfrecs2 34252 dfint3 34254 con1bii2 35503 notbinot1 36237 elpadd0 37823 pm10.252 41979 pm10.253 41980 |
Copyright terms: Public domain | W3C validator |