Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con1bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
Ref | Expression |
---|---|
con1bii.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
con1bii | ⊢ (¬ 𝜓 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 314 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | con1bii.1 | . . 3 ⊢ (¬ 𝜑 ↔ 𝜓) | |
3 | 1, 2 | xchbinx 333 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) |
4 | 3 | bicomi 223 | 1 ⊢ (¬ 𝜓 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xor 1011 3anor 1106 3oran 1107 2nexaln 1833 2exanali 1864 nnel 3057 spc2d 3531 npss 4041 dfnul3OLD 4259 snprc 4650 dffv2 6845 kmlem3 9839 axpowndlem3 10286 nnunb 12159 rpnnen2lem12 15862 dsmmacl 20858 ntreq0 22136 largei 30530 ballotlem2 32355 dffr5 33627 noetasuplem4 33866 noetainflem4 33870 brsset 34118 brtxpsd 34123 dfrecs2 34179 dfint3 34181 con1bii2 35430 notbinot1 36164 elpadd0 37750 pm10.252 41868 pm10.253 41869 |
Copyright terms: Public domain | W3C validator |