Proof of Theorem swrdnd0
Step | Hyp | Ref
| Expression |
1 | | ianor 978 |
. . 3
⊢ (¬
(𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ↔ (¬ 𝐹 ∈ (0...𝐿) ∨ ¬ 𝐿 ∈ (0...(♯‘𝑆)))) |
2 | | 3ianor 1105 |
. . . . 5
⊢ (¬
(𝐹 ∈
ℕ0 ∧ 𝐿
∈ ℕ0 ∧ 𝐹 ≤ 𝐿) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨
¬ 𝐹 ≤ 𝐿)) |
3 | | elfz2nn0 13329 |
. . . . 5
⊢ (𝐹 ∈ (0...𝐿) ↔ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝐹 ≤ 𝐿)) |
4 | 2, 3 | xchnxbir 332 |
. . . 4
⊢ (¬
𝐹 ∈ (0...𝐿) ↔ (¬ 𝐹 ∈ ℕ0 ∨
¬ 𝐿 ∈
ℕ0 ∨ ¬ 𝐹 ≤ 𝐿)) |
5 | | 3ianor 1105 |
. . . . 5
⊢ (¬
(𝐿 ∈
ℕ0 ∧ (♯‘𝑆) ∈ ℕ0 ∧ 𝐿 ≤ (♯‘𝑆)) ↔ (¬ 𝐿 ∈ ℕ0 ∨
¬ (♯‘𝑆)
∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) |
6 | | elfz2nn0 13329 |
. . . . 5
⊢ (𝐿 ∈
(0...(♯‘𝑆))
↔ (𝐿 ∈
ℕ0 ∧ (♯‘𝑆) ∈ ℕ0 ∧ 𝐿 ≤ (♯‘𝑆))) |
7 | 5, 6 | xchnxbir 332 |
. . . 4
⊢ (¬
𝐿 ∈
(0...(♯‘𝑆))
↔ (¬ 𝐿 ∈
ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬
𝐿 ≤ (♯‘𝑆))) |
8 | 4, 7 | orbi12i 911 |
. . 3
⊢ ((¬
𝐹 ∈ (0...𝐿) ∨ ¬ 𝐿 ∈ (0...(♯‘𝑆))) ↔ ((¬ 𝐹 ∈ ℕ0 ∨
¬ 𝐿 ∈
ℕ0 ∨ ¬ 𝐹 ≤ 𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬
(♯‘𝑆) ∈
ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)))) |
9 | 1, 8 | bitri 274 |
. 2
⊢ (¬
(𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ↔ ((¬ 𝐹 ∈ ℕ0 ∨
¬ 𝐿 ∈
ℕ0 ∨ ¬ 𝐹 ≤ 𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬
(♯‘𝑆) ∈
ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)))) |
10 | | df-3or 1086 |
. . . . 5
⊢ ((¬
𝐹 ∈
ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0)
∨ ¬ 𝐹 ≤ 𝐿)) |
11 | | ianor 978 |
. . . . . . 7
⊢ (¬
(𝐹 ∈
ℕ0 ∧ 𝐿
∈ ℕ0) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈
ℕ0)) |
12 | | swrdnnn0nd 14350 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0))
→ (𝑆 substr
〈𝐹, 𝐿〉) = ∅) |
13 | 12 | expcom 413 |
. . . . . . 7
⊢ (¬
(𝐹 ∈
ℕ0 ∧ 𝐿
∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
14 | 11, 13 | sylbir 234 |
. . . . . 6
⊢ ((¬
𝐹 ∈
ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
15 | | anor 979 |
. . . . . . . 8
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ↔ ¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈
ℕ0)) |
16 | | nn0re 12225 |
. . . . . . . . . 10
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℝ) |
17 | | nn0re 12225 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ℕ0
→ 𝐹 ∈
ℝ) |
18 | | ltnle 11038 |
. . . . . . . . . 10
⊢ ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿 < 𝐹 ↔ ¬ 𝐹 ≤ 𝐿)) |
19 | 16, 17, 18 | syl2anr 596 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐿 < 𝐹 ↔ ¬ 𝐹 ≤ 𝐿)) |
20 | | nn0z 12326 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ ℕ0
→ 𝐹 ∈
ℤ) |
21 | | nn0z 12326 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℤ) |
22 | 20, 21 | anim12i 612 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
23 | 22 | anim2i 616 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0))
→ (𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))) |
24 | | 3anass 1093 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ (𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))) |
25 | 23, 24 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0))
→ (𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0))
∧ 𝐿 < 𝐹) → (𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
27 | 17, 16 | anim12ci 613 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ)) |
28 | 27 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0))
→ (𝐿 ∈ ℝ
∧ 𝐹 ∈
ℝ)) |
29 | | ltle 11047 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿 < 𝐹 → 𝐿 ≤ 𝐹)) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0))
→ (𝐿 < 𝐹 → 𝐿 ≤ 𝐹)) |
31 | 30 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0))
∧ 𝐿 < 𝐹) → 𝐿 ≤ 𝐹) |
32 | 31 | 3mix2d 1335 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0))
∧ 𝐿 < 𝐹) → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑆) < 𝐿)) |
33 | | swrdnd 14348 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑆) < 𝐿) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
34 | 26, 32, 33 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0))
∧ 𝐿 < 𝐹) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅) |
35 | 34 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0))
→ (𝐿 < 𝐹 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
36 | 35 | expcom 413 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝑆 ∈ Word 𝑉 → (𝐿 < 𝐹 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
37 | 36 | com23 86 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐿 < 𝐹 → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
38 | 19, 37 | sylbird 259 |
. . . . . . . 8
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (¬ 𝐹 ≤ 𝐿 → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
39 | 15, 38 | sylbir 234 |
. . . . . . 7
⊢ (¬
(¬ 𝐹 ∈
ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) → (¬
𝐹 ≤ 𝐿 → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
40 | 39 | imp 406 |
. . . . . 6
⊢ ((¬
(¬ 𝐹 ∈
ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∧ ¬
𝐹 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
41 | 14, 40 | jaoi3 1057 |
. . . . 5
⊢ (((¬
𝐹 ∈
ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∨ ¬
𝐹 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
42 | 10, 41 | sylbi 216 |
. . . 4
⊢ ((¬
𝐹 ∈
ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
43 | | 3anor 1106 |
. . . . . 6
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) ↔ ¬ (¬
𝐹 ∈
ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿)) |
44 | | pm2.24 124 |
. . . . . . . . 9
⊢ (𝐿 ∈ ℕ0
→ (¬ 𝐿 ∈
ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
45 | 44 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) → (¬ 𝐿 ∈ ℕ0
→ (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
46 | 45 | com12 32 |
. . . . . . 7
⊢ (¬
𝐿 ∈
ℕ0 → ((𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝐹 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
47 | | pm2.24 124 |
. . . . . . . . 9
⊢
((♯‘𝑆)
∈ ℕ0 → (¬ (♯‘𝑆) ∈ ℕ0 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
48 | | lencl 14217 |
. . . . . . . . 9
⊢ (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈
ℕ0) |
49 | 47, 48 | syl11 33 |
. . . . . . . 8
⊢ (¬
(♯‘𝑆) ∈
ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
50 | 49 | a1d 25 |
. . . . . . 7
⊢ (¬
(♯‘𝑆) ∈
ℕ0 → ((𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝐹 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
51 | 48 | nn0red 12277 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℝ) |
52 | 16 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) → 𝐿 ∈
ℝ) |
53 | | ltnle 11038 |
. . . . . . . . . . 11
⊢
(((♯‘𝑆)
∈ ℝ ∧ 𝐿
∈ ℝ) → ((♯‘𝑆) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑆))) |
54 | 51, 52, 53 | syl2anr 596 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) ∧ 𝑆 ∈ Word 𝑉) → ((♯‘𝑆) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑆))) |
55 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝑆 ∈ Word 𝑉) |
56 | 20 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) → 𝐹 ∈
ℤ) |
57 | 56 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝐹 ∈ ℤ) |
58 | 21 | 3ad2ant2 1132 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) → 𝐿 ∈
ℤ) |
59 | 58 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝐿 ∈ ℤ) |
60 | 55, 57, 59 | 3jca 1126 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) ∧ 𝑆 ∈ Word 𝑉) → (𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
61 | | 3mix3 1330 |
. . . . . . . . . . 11
⊢
((♯‘𝑆)
< 𝐿 → (𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑆) < 𝐿)) |
62 | 60, 61, 33 | syl2im 40 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) ∧ 𝑆 ∈ Word 𝑉) → ((♯‘𝑆) < 𝐿 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
63 | 54, 62 | sylbird 259 |
. . . . . . . . 9
⊢ (((𝐹 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝐹
≤ 𝐿) ∧ 𝑆 ∈ Word 𝑉) → (¬ 𝐿 ≤ (♯‘𝑆) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
64 | 63 | com12 32 |
. . . . . . . 8
⊢ (¬
𝐿 ≤ (♯‘𝑆) → (((𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝐹 ≤ 𝐿) ∧ 𝑆 ∈ Word 𝑉) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
65 | 64 | expd 415 |
. . . . . . 7
⊢ (¬
𝐿 ≤ (♯‘𝑆) → ((𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝐹 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
66 | 46, 50, 65 | 3jaoi 1425 |
. . . . . 6
⊢ ((¬
𝐿 ∈
ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬
𝐿 ≤ (♯‘𝑆)) → ((𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝐹 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
67 | 43, 66 | syl5bir 242 |
. . . . 5
⊢ ((¬
𝐿 ∈
ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬
𝐿 ≤ (♯‘𝑆)) → (¬ (¬ 𝐹 ∈ ℕ0 ∨
¬ 𝐿 ∈
ℕ0 ∨ ¬ 𝐹 ≤ 𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅))) |
68 | 67 | impcom 407 |
. . . 4
⊢ ((¬
(¬ 𝐹 ∈
ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿) ∧ (¬ 𝐿 ∈ ℕ0 ∨ ¬
(♯‘𝑆) ∈
ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
69 | 42, 68 | jaoi3 1057 |
. . 3
⊢ (((¬
𝐹 ∈
ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬
(♯‘𝑆) ∈
ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 ∈ Word 𝑉 → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
70 | 69 | com12 32 |
. 2
⊢ (𝑆 ∈ Word 𝑉 → (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨
¬ 𝐹 ≤ 𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬
(♯‘𝑆) ∈
ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |
71 | 9, 70 | syl5bi 241 |
1
⊢ (𝑆 ∈ Word 𝑉 → (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) = ∅)) |