MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd0 Structured version   Visualization version   GIF version

Theorem swrdnd0 14645
Description: The value of a subword operation for inproper arguments is the empty set. (Contributed by AV, 2-Dec-2022.)
Assertion
Ref Expression
swrdnd0 (𝑆 ∈ Word 𝑉 → (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))

Proof of Theorem swrdnd0
StepHypRef Expression
1 ianor 979 . . 3 (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ↔ (¬ 𝐹 ∈ (0...𝐿) ∨ ¬ 𝐿 ∈ (0...(♯‘𝑆))))
2 3ianor 1104 . . . . 5 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
3 elfz2nn0 13630 . . . . 5 (𝐹 ∈ (0...𝐿) ↔ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
42, 3xchnxbir 332 . . . 4 𝐹 ∈ (0...𝐿) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
5 3ianor 1104 . . . . 5 (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑆) ∈ ℕ0𝐿 ≤ (♯‘𝑆)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)))
6 elfz2nn0 13630 . . . . 5 (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑆) ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
75, 6xchnxbir 332 . . . 4 𝐿 ∈ (0...(♯‘𝑆)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)))
84, 7orbi12i 912 . . 3 ((¬ 𝐹 ∈ (0...𝐿) ∨ ¬ 𝐿 ∈ (0...(♯‘𝑆))) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))))
91, 8bitri 274 . 2 (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))))
10 df-3or 1085 . . . . 5 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∨ ¬ 𝐹𝐿))
11 ianor 979 . . . . . . 7 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0))
12 swrdnnn0nd 14644 . . . . . . . 8 ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
1312expcom 412 . . . . . . 7 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
1411, 13sylbir 234 . . . . . 6 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
15 anor 980 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ ¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0))
16 nn0re 12517 . . . . . . . . . 10 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
17 nn0re 12517 . . . . . . . . . 10 (𝐹 ∈ ℕ0𝐹 ∈ ℝ)
18 ltnle 11329 . . . . . . . . . 10 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿 < 𝐹 ↔ ¬ 𝐹𝐿))
1916, 17, 18syl2anr 595 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝐹 ↔ ¬ 𝐹𝐿))
20 nn0z 12619 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℕ0𝐹 ∈ ℤ)
21 nn0z 12619 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2220, 21anim12i 611 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2322anim2i 615 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)))
24 3anass 1092 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ (𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)))
2523, 24sylibr 233 . . . . . . . . . . . . . 14 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2625adantr 479 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2717, 16anim12ci 612 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ))
2827adantl 480 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ))
29 ltle 11338 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿 < 𝐹𝐿𝐹))
3028, 29syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 < 𝐹𝐿𝐹))
3130imp 405 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → 𝐿𝐹)
32313mix2d 1334 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿))
33 swrdnd 14642 . . . . . . . . . . . . 13 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
3426, 32, 33sylc 65 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
3534ex 411 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 < 𝐹 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
3635expcom 412 . . . . . . . . . 10 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝐿 < 𝐹 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3736com23 86 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝐹 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3819, 37sylbird 259 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (¬ 𝐹𝐿 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3915, 38sylbir 234 . . . . . . 7 (¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) → (¬ 𝐹𝐿 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
4039imp 405 . . . . . 6 ((¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∧ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
4114, 40jaoi3 1058 . . . . 5 (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
4210, 41sylbi 216 . . . 4 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
43 3anor 1105 . . . . . 6 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ↔ ¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
44 pm2.24 124 . . . . . . . . 9 (𝐿 ∈ ℕ0 → (¬ 𝐿 ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
45443ad2ant2 1131 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (¬ 𝐿 ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
4645com12 32 . . . . . . 7 𝐿 ∈ ℕ0 → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
47 pm2.24 124 . . . . . . . . 9 ((♯‘𝑆) ∈ ℕ0 → (¬ (♯‘𝑆) ∈ ℕ0 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
48 lencl 14521 . . . . . . . . 9 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℕ0)
4947, 48syl11 33 . . . . . . . 8 (¬ (♯‘𝑆) ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
5049a1d 25 . . . . . . 7 (¬ (♯‘𝑆) ∈ ℕ0 → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
5148nn0red 12569 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℝ)
52163ad2ant2 1131 . . . . . . . . . . 11 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐿 ∈ ℝ)
53 ltnle 11329 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑆) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑆)))
5451, 52, 53syl2anr 595 . . . . . . . . . 10 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → ((♯‘𝑆) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑆)))
55 simpr 483 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝑆 ∈ Word 𝑉)
56203ad2ant1 1130 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐹 ∈ ℤ)
5756adantr 479 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝐹 ∈ ℤ)
58213ad2ant2 1131 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐿 ∈ ℤ)
5958adantr 479 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝐿 ∈ ℤ)
6055, 57, 593jca 1125 . . . . . . . . . . 11 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
61 3mix3 1329 . . . . . . . . . . 11 ((♯‘𝑆) < 𝐿 → (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿))
6260, 61, 33syl2im 40 . . . . . . . . . 10 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → ((♯‘𝑆) < 𝐿 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6354, 62sylbird 259 . . . . . . . . 9 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (¬ 𝐿 ≤ (♯‘𝑆) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6463com12 32 . . . . . . . 8 𝐿 ≤ (♯‘𝑆) → (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6564expd 414 . . . . . . 7 𝐿 ≤ (♯‘𝑆) → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6646, 50, 653jaoi 1424 . . . . . 6 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)) → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6743, 66biimtrrid 242 . . . . 5 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)) → (¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6867impcom 406 . . . 4 ((¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∧ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6942, 68jaoi3 1058 . . 3 (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
7069com12 32 . 2 (𝑆 ∈ Word 𝑉 → (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
719, 70biimtrid 241 1 (𝑆 ∈ Word 𝑉 → (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  c0 4324  cop 4636   class class class wbr 5150  cfv 6551  (class class class)co 7424  cr 11143  0cc0 11144   < clt 11284  cle 11285  0cn0 12508  cz 12594  ...cfz 13522  chash 14327  Word cword 14502   substr csubstr 14628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-n0 12509  df-z 12595  df-uz 12859  df-fz 13523  df-fzo 13666  df-hash 14328  df-word 14503  df-substr 14629
This theorem is referenced by:  swrdwrdsymb  14650
  Copyright terms: Public domain W3C validator