MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd0 Structured version   Visualization version   GIF version

Theorem swrdnd0 14370
Description: The value of a subword operation for inproper arguments is the empty set. (Contributed by AV, 2-Dec-2022.)
Assertion
Ref Expression
swrdnd0 (𝑆 ∈ Word 𝑉 → (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))

Proof of Theorem swrdnd0
StepHypRef Expression
1 ianor 979 . . 3 (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ↔ (¬ 𝐹 ∈ (0...𝐿) ∨ ¬ 𝐿 ∈ (0...(♯‘𝑆))))
2 3ianor 1106 . . . . 5 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
3 elfz2nn0 13347 . . . . 5 (𝐹 ∈ (0...𝐿) ↔ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
42, 3xchnxbir 333 . . . 4 𝐹 ∈ (0...𝐿) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
5 3ianor 1106 . . . . 5 (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑆) ∈ ℕ0𝐿 ≤ (♯‘𝑆)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)))
6 elfz2nn0 13347 . . . . 5 (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑆) ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
75, 6xchnxbir 333 . . . 4 𝐿 ∈ (0...(♯‘𝑆)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)))
84, 7orbi12i 912 . . 3 ((¬ 𝐹 ∈ (0...𝐿) ∨ ¬ 𝐿 ∈ (0...(♯‘𝑆))) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))))
91, 8bitri 274 . 2 (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))))
10 df-3or 1087 . . . . 5 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∨ ¬ 𝐹𝐿))
11 ianor 979 . . . . . . 7 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0))
12 swrdnnn0nd 14369 . . . . . . . 8 ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
1312expcom 414 . . . . . . 7 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
1411, 13sylbir 234 . . . . . 6 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
15 anor 980 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ ¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0))
16 nn0re 12242 . . . . . . . . . 10 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
17 nn0re 12242 . . . . . . . . . 10 (𝐹 ∈ ℕ0𝐹 ∈ ℝ)
18 ltnle 11054 . . . . . . . . . 10 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿 < 𝐹 ↔ ¬ 𝐹𝐿))
1916, 17, 18syl2anr 597 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝐹 ↔ ¬ 𝐹𝐿))
20 nn0z 12343 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℕ0𝐹 ∈ ℤ)
21 nn0z 12343 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2220, 21anim12i 613 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2322anim2i 617 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)))
24 3anass 1094 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ (𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)))
2523, 24sylibr 233 . . . . . . . . . . . . . 14 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2625adantr 481 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2717, 16anim12ci 614 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ))
2827adantl 482 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ))
29 ltle 11063 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿 < 𝐹𝐿𝐹))
3028, 29syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 < 𝐹𝐿𝐹))
3130imp 407 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → 𝐿𝐹)
32313mix2d 1336 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿))
33 swrdnd 14367 . . . . . . . . . . . . 13 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
3426, 32, 33sylc 65 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
3534ex 413 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 < 𝐹 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
3635expcom 414 . . . . . . . . . 10 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝐿 < 𝐹 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3736com23 86 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝐹 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3819, 37sylbird 259 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (¬ 𝐹𝐿 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3915, 38sylbir 234 . . . . . . 7 (¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) → (¬ 𝐹𝐿 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
4039imp 407 . . . . . 6 ((¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∧ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
4114, 40jaoi3 1058 . . . . 5 (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
4210, 41sylbi 216 . . . 4 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
43 3anor 1107 . . . . . 6 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ↔ ¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
44 pm2.24 124 . . . . . . . . 9 (𝐿 ∈ ℕ0 → (¬ 𝐿 ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
45443ad2ant2 1133 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (¬ 𝐿 ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
4645com12 32 . . . . . . 7 𝐿 ∈ ℕ0 → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
47 pm2.24 124 . . . . . . . . 9 ((♯‘𝑆) ∈ ℕ0 → (¬ (♯‘𝑆) ∈ ℕ0 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
48 lencl 14236 . . . . . . . . 9 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℕ0)
4947, 48syl11 33 . . . . . . . 8 (¬ (♯‘𝑆) ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
5049a1d 25 . . . . . . 7 (¬ (♯‘𝑆) ∈ ℕ0 → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
5148nn0red 12294 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℝ)
52163ad2ant2 1133 . . . . . . . . . . 11 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐿 ∈ ℝ)
53 ltnle 11054 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑆) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑆)))
5451, 52, 53syl2anr 597 . . . . . . . . . 10 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → ((♯‘𝑆) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑆)))
55 simpr 485 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝑆 ∈ Word 𝑉)
56203ad2ant1 1132 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐹 ∈ ℤ)
5756adantr 481 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝐹 ∈ ℤ)
58213ad2ant2 1133 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐿 ∈ ℤ)
5958adantr 481 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝐿 ∈ ℤ)
6055, 57, 593jca 1127 . . . . . . . . . . 11 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
61 3mix3 1331 . . . . . . . . . . 11 ((♯‘𝑆) < 𝐿 → (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿))
6260, 61, 33syl2im 40 . . . . . . . . . 10 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → ((♯‘𝑆) < 𝐿 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6354, 62sylbird 259 . . . . . . . . 9 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (¬ 𝐿 ≤ (♯‘𝑆) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6463com12 32 . . . . . . . 8 𝐿 ≤ (♯‘𝑆) → (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6564expd 416 . . . . . . 7 𝐿 ≤ (♯‘𝑆) → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6646, 50, 653jaoi 1426 . . . . . 6 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)) → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6743, 66syl5bir 242 . . . . 5 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)) → (¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6867impcom 408 . . . 4 ((¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∧ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6942, 68jaoi3 1058 . . 3 (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
7069com12 32 . 2 (𝑆 ∈ Word 𝑉 → (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
719, 70syl5bi 241 1 (𝑆 ∈ Word 𝑉 → (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  c0 4256  cop 4567   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   < clt 11009  cle 11010  0cn0 12233  cz 12319  ...cfz 13239  chash 14044  Word cword 14217   substr csubstr 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-substr 14354
This theorem is referenced by:  swrdwrdsymb  14375
  Copyright terms: Public domain W3C validator