MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd0 Structured version   Visualization version   GIF version

Theorem swrdnd0 14007
Description: The value of a subword operation for inproper arguments is the empty set. (Contributed by AV, 2-Dec-2022.)
Assertion
Ref Expression
swrdnd0 (𝑆 ∈ Word 𝑉 → (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))

Proof of Theorem swrdnd0
StepHypRef Expression
1 ianor 975 . . 3 (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ↔ (¬ 𝐹 ∈ (0...𝐿) ∨ ¬ 𝐿 ∈ (0...(♯‘𝑆))))
2 3ianor 1099 . . . . 5 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
3 elfz2nn0 12986 . . . . 5 (𝐹 ∈ (0...𝐿) ↔ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
42, 3xchnxbir 334 . . . 4 𝐹 ∈ (0...𝐿) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
5 3ianor 1099 . . . . 5 (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑆) ∈ ℕ0𝐿 ≤ (♯‘𝑆)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)))
6 elfz2nn0 12986 . . . . 5 (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑆) ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
75, 6xchnxbir 334 . . . 4 𝐿 ∈ (0...(♯‘𝑆)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)))
84, 7orbi12i 908 . . 3 ((¬ 𝐹 ∈ (0...𝐿) ∨ ¬ 𝐿 ∈ (0...(♯‘𝑆))) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))))
91, 8bitri 276 . 2 (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))))
10 df-3or 1080 . . . . 5 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∨ ¬ 𝐹𝐿))
11 ianor 975 . . . . . . 7 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0))
12 swrdnnn0nd 14006 . . . . . . . 8 ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
1312expcom 414 . . . . . . 7 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
1411, 13sylbir 236 . . . . . 6 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
15 anor 976 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ ¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0))
16 nn0re 11894 . . . . . . . . . 10 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
17 nn0re 11894 . . . . . . . . . 10 (𝐹 ∈ ℕ0𝐹 ∈ ℝ)
18 ltnle 10708 . . . . . . . . . 10 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿 < 𝐹 ↔ ¬ 𝐹𝐿))
1916, 17, 18syl2anr 596 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝐹 ↔ ¬ 𝐹𝐿))
20 nn0z 11993 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℕ0𝐹 ∈ ℤ)
21 nn0z 11993 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2220, 21anim12i 612 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2322anim2i 616 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)))
24 3anass 1087 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ (𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)))
2523, 24sylibr 235 . . . . . . . . . . . . . 14 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2625adantr 481 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2717, 16anim12ci 613 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ))
2827adantl 482 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ))
29 ltle 10717 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿 < 𝐹𝐿𝐹))
3028, 29syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 < 𝐹𝐿𝐹))
3130imp 407 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → 𝐿𝐹)
32313mix2d 1329 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿))
33 swrdnd 14004 . . . . . . . . . . . . 13 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
3426, 32, 33sylc 65 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
3534ex 413 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 < 𝐹 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
3635expcom 414 . . . . . . . . . 10 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝐿 < 𝐹 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3736com23 86 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝐹 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3819, 37sylbird 261 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (¬ 𝐹𝐿 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3915, 38sylbir 236 . . . . . . 7 (¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) → (¬ 𝐹𝐿 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
4039imp 407 . . . . . 6 ((¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∧ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
4114, 40jaoi3 1052 . . . . 5 (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
4210, 41sylbi 218 . . . 4 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
43 3anor 1100 . . . . . 6 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ↔ ¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
44 pm2.24 124 . . . . . . . . 9 (𝐿 ∈ ℕ0 → (¬ 𝐿 ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
45443ad2ant2 1126 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (¬ 𝐿 ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
4645com12 32 . . . . . . 7 𝐿 ∈ ℕ0 → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
47 pm2.24 124 . . . . . . . . 9 ((♯‘𝑆) ∈ ℕ0 → (¬ (♯‘𝑆) ∈ ℕ0 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
48 lencl 13871 . . . . . . . . 9 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℕ0)
4947, 48syl11 33 . . . . . . . 8 (¬ (♯‘𝑆) ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
5049a1d 25 . . . . . . 7 (¬ (♯‘𝑆) ∈ ℕ0 → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
5148nn0red 11944 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℝ)
52163ad2ant2 1126 . . . . . . . . . . 11 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐿 ∈ ℝ)
53 ltnle 10708 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑆) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑆)))
5451, 52, 53syl2anr 596 . . . . . . . . . 10 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → ((♯‘𝑆) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑆)))
55 simpr 485 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝑆 ∈ Word 𝑉)
56203ad2ant1 1125 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐹 ∈ ℤ)
5756adantr 481 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝐹 ∈ ℤ)
58213ad2ant2 1126 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐿 ∈ ℤ)
5958adantr 481 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝐿 ∈ ℤ)
6055, 57, 593jca 1120 . . . . . . . . . . 11 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
61 3mix3 1324 . . . . . . . . . . 11 ((♯‘𝑆) < 𝐿 → (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿))
6260, 61, 33syl2im 40 . . . . . . . . . 10 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → ((♯‘𝑆) < 𝐿 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6354, 62sylbird 261 . . . . . . . . 9 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (¬ 𝐿 ≤ (♯‘𝑆) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6463com12 32 . . . . . . . 8 𝐿 ≤ (♯‘𝑆) → (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6564expd 416 . . . . . . 7 𝐿 ≤ (♯‘𝑆) → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6646, 50, 653jaoi 1419 . . . . . 6 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)) → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6743, 66syl5bir 244 . . . . 5 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)) → (¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6867impcom 408 . . . 4 ((¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∧ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6942, 68jaoi3 1052 . . 3 (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
7069com12 32 . 2 (𝑆 ∈ Word 𝑉 → (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
719, 70syl5bi 243 1 (𝑆 ∈ Word 𝑉 → (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  w3o 1078  w3a 1079   = wceq 1528  wcel 2105  c0 4288  cop 4563   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525   < clt 10663  cle 10664  0cn0 11885  cz 11969  ...cfz 12880  chash 13678  Word cword 13849   substr csubstr 13990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-substr 13991
This theorem is referenced by:  swrdwrdsymb  14012
  Copyright terms: Public domain W3C validator