MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd0 Structured version   Visualization version   GIF version

Theorem swrdnd0 14622
Description: The value of a subword operation for inproper arguments is the empty set. (Contributed by AV, 2-Dec-2022.)
Assertion
Ref Expression
swrdnd0 (𝑆 ∈ Word 𝑉 → (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))

Proof of Theorem swrdnd0
StepHypRef Expression
1 ianor 983 . . 3 (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ↔ (¬ 𝐹 ∈ (0...𝐿) ∨ ¬ 𝐿 ∈ (0...(♯‘𝑆))))
2 3ianor 1106 . . . . 5 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
3 elfz2nn0 13579 . . . . 5 (𝐹 ∈ (0...𝐿) ↔ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿))
42, 3xchnxbir 333 . . . 4 𝐹 ∈ (0...𝐿) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
5 3ianor 1106 . . . . 5 (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑆) ∈ ℕ0𝐿 ≤ (♯‘𝑆)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)))
6 elfz2nn0 13579 . . . . 5 (𝐿 ∈ (0...(♯‘𝑆)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑆) ∈ ℕ0𝐿 ≤ (♯‘𝑆)))
75, 6xchnxbir 333 . . . 4 𝐿 ∈ (0...(♯‘𝑆)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)))
84, 7orbi12i 914 . . 3 ((¬ 𝐹 ∈ (0...𝐿) ∨ ¬ 𝐿 ∈ (0...(♯‘𝑆))) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))))
91, 8bitri 275 . 2 (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))))
10 df-3or 1087 . . . . 5 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ↔ ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∨ ¬ 𝐹𝐿))
11 ianor 983 . . . . . . 7 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0))
12 swrdnnn0nd 14621 . . . . . . . 8 ((𝑆 ∈ Word 𝑉 ∧ ¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
1312expcom 413 . . . . . . 7 (¬ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
1411, 13sylbir 235 . . . . . 6 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
15 anor 984 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) ↔ ¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0))
16 nn0re 12451 . . . . . . . . . 10 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
17 nn0re 12451 . . . . . . . . . 10 (𝐹 ∈ ℕ0𝐹 ∈ ℝ)
18 ltnle 11253 . . . . . . . . . 10 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿 < 𝐹 ↔ ¬ 𝐹𝐿))
1916, 17, 18syl2anr 597 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝐹 ↔ ¬ 𝐹𝐿))
20 nn0z 12554 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℕ0𝐹 ∈ ℤ)
21 nn0z 12554 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2220, 21anim12i 613 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2322anim2i 617 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)))
24 3anass 1094 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ↔ (𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)))
2523, 24sylibr 234 . . . . . . . . . . . . . 14 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2625adantr 480 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2717, 16anim12ci 614 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ))
2827adantl 481 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ))
29 ltle 11262 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿 < 𝐹𝐿𝐹))
3028, 29syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 < 𝐹𝐿𝐹))
3130imp 406 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → 𝐿𝐹)
32313mix2d 1338 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿))
33 swrdnd 14619 . . . . . . . . . . . . 13 ((𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
3426, 32, 33sylc 65 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) ∧ 𝐿 < 𝐹) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
3534ex 412 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝑉 ∧ (𝐹 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 < 𝐹 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
3635expcom 413 . . . . . . . . . 10 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑆 ∈ Word 𝑉 → (𝐿 < 𝐹 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3736com23 86 . . . . . . . . 9 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝐹 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3819, 37sylbird 260 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0) → (¬ 𝐹𝐿 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
3915, 38sylbir 235 . . . . . . 7 (¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) → (¬ 𝐹𝐿 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
4039imp 406 . . . . . 6 ((¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∧ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
4114, 40jaoi3 1060 . . . . 5 (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0) ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
4210, 41sylbi 217 . . . 4 ((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
43 3anor 1107 . . . . . 6 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ↔ ¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿))
44 pm2.24 124 . . . . . . . . 9 (𝐿 ∈ ℕ0 → (¬ 𝐿 ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
45443ad2ant2 1134 . . . . . . . 8 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (¬ 𝐿 ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
4645com12 32 . . . . . . 7 𝐿 ∈ ℕ0 → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
47 pm2.24 124 . . . . . . . . 9 ((♯‘𝑆) ∈ ℕ0 → (¬ (♯‘𝑆) ∈ ℕ0 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
48 lencl 14498 . . . . . . . . 9 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℕ0)
4947, 48syl11 33 . . . . . . . 8 (¬ (♯‘𝑆) ∈ ℕ0 → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
5049a1d 25 . . . . . . 7 (¬ (♯‘𝑆) ∈ ℕ0 → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
5148nn0red 12504 . . . . . . . . . . 11 (𝑆 ∈ Word 𝑉 → (♯‘𝑆) ∈ ℝ)
52163ad2ant2 1134 . . . . . . . . . . 11 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐿 ∈ ℝ)
53 ltnle 11253 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑆) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑆)))
5451, 52, 53syl2anr 597 . . . . . . . . . 10 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → ((♯‘𝑆) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑆)))
55 simpr 484 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝑆 ∈ Word 𝑉)
56203ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐹 ∈ ℤ)
5756adantr 480 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝐹 ∈ ℤ)
58213ad2ant2 1134 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → 𝐿 ∈ ℤ)
5958adantr 480 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → 𝐿 ∈ ℤ)
6055, 57, 593jca 1128 . . . . . . . . . . 11 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (𝑆 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
61 3mix3 1333 . . . . . . . . . . 11 ((♯‘𝑆) < 𝐿 → (𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑆) < 𝐿))
6260, 61, 33syl2im 40 . . . . . . . . . 10 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → ((♯‘𝑆) < 𝐿 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6354, 62sylbird 260 . . . . . . . . 9 (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (¬ 𝐿 ≤ (♯‘𝑆) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6463com12 32 . . . . . . . 8 𝐿 ≤ (♯‘𝑆) → (((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) ∧ 𝑆 ∈ Word 𝑉) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6564expd 415 . . . . . . 7 𝐿 ≤ (♯‘𝑆) → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6646, 50, 653jaoi 1430 . . . . . 6 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)) → ((𝐹 ∈ ℕ0𝐿 ∈ ℕ0𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6743, 66biimtrrid 243 . . . . 5 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆)) → (¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)))
6867impcom 407 . . . 4 ((¬ (¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∧ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
6942, 68jaoi3 1060 . . 3 (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 ∈ Word 𝑉 → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
7069com12 32 . 2 (𝑆 ∈ Word 𝑉 → (((¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹𝐿) ∨ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑆) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
719, 70biimtrid 242 1 (𝑆 ∈ Word 𝑉 → (¬ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  c0 4296  cop 4595   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068   < clt 11208  cle 11209  0cn0 12442  cz 12529  ...cfz 13468  chash 14295  Word cword 14478   substr csubstr 14605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-substr 14606
This theorem is referenced by:  swrdwrdsymb  14627
  Copyright terms: Public domain W3C validator