MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3oran Structured version   Visualization version   GIF version

Theorem 3oran 1109
Description: Triple disjunction in terms of triple conjunction. (Contributed by NM, 8-Oct-2012.)
Assertion
Ref Expression
3oran ((𝜑𝜓𝜒) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒))

Proof of Theorem 3oran
StepHypRef Expression
1 3ioran 1106 . . 3 (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒))
21con1bii 357 . 2 (¬ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒) ↔ (𝜑𝜓𝜒))
32bicomi 223 1 ((𝜑𝜓𝜒) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  w3o 1086  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089
This theorem is referenced by:  nolt02o  33947  nogt01o  33948  nosupbnd1lem6  33965  noinfbnd1lem6  33980  dalawlem10  38094
  Copyright terms: Public domain W3C validator