Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3oran | Structured version Visualization version GIF version |
Description: Triple disjunction in terms of triple conjunction. (Contributed by NM, 8-Oct-2012.) |
Ref | Expression |
---|---|
3oran | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ioran 1106 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) | |
2 | 1 | con1bii 357 | . 2 ⊢ (¬ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) |
3 | 2 | bicomi 223 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ w3o 1086 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 |
This theorem is referenced by: nolt02o 33947 nogt01o 33948 nosupbnd1lem6 33965 noinfbnd1lem6 33980 dalawlem10 38094 |
Copyright terms: Public domain | W3C validator |