Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ne3anior | Structured version Visualization version GIF version |
Description: A De Morgan's law for inequality. (Contributed by NM, 30-Sep-2013.) |
Ref | Expression |
---|---|
ne3anior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷 ∨ 𝐸 = 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anor 1106 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹) ↔ ¬ (¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐶 ≠ 𝐷 ∨ ¬ 𝐸 ≠ 𝐹)) | |
2 | nne 2946 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
3 | nne 2946 | . . 3 ⊢ (¬ 𝐶 ≠ 𝐷 ↔ 𝐶 = 𝐷) | |
4 | nne 2946 | . . 3 ⊢ (¬ 𝐸 ≠ 𝐹 ↔ 𝐸 = 𝐹) | |
5 | 2, 3, 4 | 3orbi123i 1154 | . 2 ⊢ ((¬ 𝐴 ≠ 𝐵 ∨ ¬ 𝐶 ≠ 𝐷 ∨ ¬ 𝐸 ≠ 𝐹) ↔ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷 ∨ 𝐸 = 𝐹)) |
6 | 1, 5 | xchbinx 333 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷 ∨ 𝐸 = 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ w3o 1084 ∧ w3a 1085 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-ne 2943 |
This theorem is referenced by: eldiftp 4619 |
Copyright terms: Public domain | W3C validator |