Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcoreleleq | Structured version Visualization version GIF version |
Description: Substitution of a setvar variable for another setvar variable in a 3-conjunct formula. Derived automatically from sbcoreleleqVD 42852. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbcoreleleq | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc3or 42525 | . 2 ⊢ ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦)) | |
2 | sbcel2gv 3799 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
3 | sbcel1v 3798 | . . . 4 ⊢ ([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) |
5 | eqsbc2 3796 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
6 | 3orbi123 42504 | . . . 4 ⊢ ((([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) ∧ ([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥) ∧ ([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) → (([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) | |
7 | 6 | 3impexpbicomi 42473 | . . 3 ⊢ (([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴) → (([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥) → (([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))))) |
8 | 2, 4, 5, 7 | syl3c 66 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))) |
9 | 1, 8 | bitr4id 289 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ w3o 1085 = wceq 1540 ∈ wcel 2105 [wsbc 3727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-sbc 3728 |
This theorem is referenced by: tratrb 42529 tratrbVD 42854 |
Copyright terms: Public domain | W3C validator |