Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3o1cs Structured version   Visualization version   GIF version

Theorem 3o1cs 30812
Description: Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.)
Hypothesis
Ref Expression
3o1cs.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3o1cs (𝜑𝜃)

Proof of Theorem 3o1cs
StepHypRef Expression
1 df-3or 1087 . . . 4 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
2 3o1cs.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
31, 2sylbir 234 . . 3 (((𝜑𝜓) ∨ 𝜒) → 𝜃)
43orcs 872 . 2 ((𝜑𝜓) → 𝜃)
54orcs 872 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  xrpxdivcld  31209
  Copyright terms: Public domain W3C validator