| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3o2cs | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| Ref | Expression |
|---|---|
| 3o1cs.1 | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3o2cs | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1087 | . . . 4 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | 3o1cs.1 | . . . 4 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylbir 235 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) → 𝜃) |
| 4 | 3 | orcs 875 | . 2 ⊢ ((𝜑 ∨ 𝜓) → 𝜃) |
| 5 | 4 | olcs 876 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: xrpxdivcld 32857 |
| Copyright terms: Public domain | W3C validator |