Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrpxdivcld Structured version   Visualization version   GIF version

Theorem xrpxdivcld 31494
Description: Closure law for extended division of positive extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Hypotheses
Ref Expression
xrpxdivcld.1 (𝜑𝐴 ∈ (0[,]+∞))
xrpxdivcld.2 (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
xrpxdivcld (𝜑 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞))

Proof of Theorem xrpxdivcld
StepHypRef Expression
1 oveq1 7348 . . . 4 (𝐴 = 0 → (𝐴 /𝑒 𝐵) = (0 /𝑒 𝐵))
2 xrpxdivcld.2 . . . . 5 (𝜑𝐵 ∈ ℝ+)
3 xdiv0rp 31489 . . . . 5 (𝐵 ∈ ℝ+ → (0 /𝑒 𝐵) = 0)
42, 3syl 17 . . . 4 (𝜑 → (0 /𝑒 𝐵) = 0)
51, 4sylan9eqr 2799 . . 3 ((𝜑𝐴 = 0) → (𝐴 /𝑒 𝐵) = 0)
6 elxrge02 31491 . . . . 5 ((𝐴 /𝑒 𝐵) ∈ (0[,]+∞) ↔ ((𝐴 /𝑒 𝐵) = 0 ∨ (𝐴 /𝑒 𝐵) ∈ ℝ+ ∨ (𝐴 /𝑒 𝐵) = +∞))
76biimpri 227 . . . 4 (((𝐴 /𝑒 𝐵) = 0 ∨ (𝐴 /𝑒 𝐵) ∈ ℝ+ ∨ (𝐴 /𝑒 𝐵) = +∞) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞))
873o1cs 31099 . . 3 ((𝐴 /𝑒 𝐵) = 0 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞))
95, 8syl 17 . 2 ((𝜑𝐴 = 0) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞))
10 simpr 486 . . . 4 ((𝜑𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ+)
112adantr 482 . . . 4 ((𝜑𝐴 ∈ ℝ+) → 𝐵 ∈ ℝ+)
1210, 11rpxdivcld 31493 . . 3 ((𝜑𝐴 ∈ ℝ+) → (𝐴 /𝑒 𝐵) ∈ ℝ+)
1373o2cs 31100 . . 3 ((𝐴 /𝑒 𝐵) ∈ ℝ+ → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞))
1412, 13syl 17 . 2 ((𝜑𝐴 ∈ ℝ+) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞))
15 oveq1 7348 . . . 4 (𝐴 = +∞ → (𝐴 /𝑒 𝐵) = (+∞ /𝑒 𝐵))
16 xdivpnfrp 31492 . . . . 5 (𝐵 ∈ ℝ+ → (+∞ /𝑒 𝐵) = +∞)
172, 16syl 17 . . . 4 (𝜑 → (+∞ /𝑒 𝐵) = +∞)
1815, 17sylan9eqr 2799 . . 3 ((𝜑𝐴 = +∞) → (𝐴 /𝑒 𝐵) = +∞)
1973o3cs 31101 . . 3 ((𝐴 /𝑒 𝐵) = +∞ → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞))
2018, 19syl 17 . 2 ((𝜑𝐴 = +∞) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞))
21 xrpxdivcld.1 . . 3 (𝜑𝐴 ∈ (0[,]+∞))
22 elxrge02 31491 . . 3 (𝐴 ∈ (0[,]+∞) ↔ (𝐴 = 0 ∨ 𝐴 ∈ ℝ+𝐴 = +∞))
2321, 22sylib 217 . 2 (𝜑 → (𝐴 = 0 ∨ 𝐴 ∈ ℝ+𝐴 = +∞))
249, 14, 20, 23mpjao3dan 1431 1 (𝜑 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3o 1086   = wceq 1541  wcel 2106  (class class class)co 7341  0cc0 10976  +∞cpnf 11111  +crp 12835  [,]cicc 13187   /𝑒 cxdiv 31476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-sup 9303  df-inf 9304  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-n0 12339  df-z 12425  df-uz 12688  df-q 12794  df-rp 12836  df-xneg 12953  df-xmul 12955  df-ioo 13188  df-ico 13190  df-icc 13191  df-xdiv 31477
This theorem is referenced by:  measdivcst  32488  measdivcstALTV  32489
  Copyright terms: Public domain W3C validator