![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrpxdivcld | Structured version Visualization version GIF version |
Description: Closure law for extended division of positive extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
Ref | Expression |
---|---|
xrpxdivcld.1 | ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) |
xrpxdivcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
xrpxdivcld | ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7416 | . . . 4 ⊢ (𝐴 = 0 → (𝐴 /𝑒 𝐵) = (0 /𝑒 𝐵)) | |
2 | xrpxdivcld.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | xdiv0rp 32096 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → (0 /𝑒 𝐵) = 0) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (0 /𝑒 𝐵) = 0) |
5 | 1, 4 | sylan9eqr 2795 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 0) → (𝐴 /𝑒 𝐵) = 0) |
6 | elxrge02 32098 | . . . . 5 ⊢ ((𝐴 /𝑒 𝐵) ∈ (0[,]+∞) ↔ ((𝐴 /𝑒 𝐵) = 0 ∨ (𝐴 /𝑒 𝐵) ∈ ℝ+ ∨ (𝐴 /𝑒 𝐵) = +∞)) | |
7 | 6 | biimpri 227 | . . . 4 ⊢ (((𝐴 /𝑒 𝐵) = 0 ∨ (𝐴 /𝑒 𝐵) ∈ ℝ+ ∨ (𝐴 /𝑒 𝐵) = +∞) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
8 | 7 | 3o1cs 31703 | . . 3 ⊢ ((𝐴 /𝑒 𝐵) = 0 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
9 | 5, 8 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 0) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
10 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ+) | |
11 | 2 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → 𝐵 ∈ ℝ+) |
12 | 10, 11 | rpxdivcld 32100 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → (𝐴 /𝑒 𝐵) ∈ ℝ+) |
13 | 7 | 3o2cs 31704 | . . 3 ⊢ ((𝐴 /𝑒 𝐵) ∈ ℝ+ → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
15 | oveq1 7416 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 /𝑒 𝐵) = (+∞ /𝑒 𝐵)) | |
16 | xdivpnfrp 32099 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → (+∞ /𝑒 𝐵) = +∞) | |
17 | 2, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (+∞ /𝑒 𝐵) = +∞) |
18 | 15, 17 | sylan9eqr 2795 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = +∞) → (𝐴 /𝑒 𝐵) = +∞) |
19 | 7 | 3o3cs 31705 | . . 3 ⊢ ((𝐴 /𝑒 𝐵) = +∞ → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
20 | 18, 19 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 = +∞) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
21 | xrpxdivcld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) | |
22 | elxrge02 32098 | . . 3 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞)) | |
23 | 21, 22 | sylib 217 | . 2 ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞)) |
24 | 9, 14, 20, 23 | mpjao3dan 1432 | 1 ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ w3o 1087 = wceq 1542 ∈ wcel 2107 (class class class)co 7409 0cc0 11110 +∞cpnf 11245 ℝ+crp 12974 [,]cicc 13327 /𝑒 cxdiv 32083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xmul 13094 df-ioo 13328 df-ico 13330 df-icc 13331 df-xdiv 32084 |
This theorem is referenced by: measdivcst 33222 measdivcstALTV 33223 |
Copyright terms: Public domain | W3C validator |