| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrpxdivcld | Structured version Visualization version GIF version | ||
| Description: Closure law for extended division of positive extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| Ref | Expression |
|---|---|
| xrpxdivcld.1 | ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) |
| xrpxdivcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| xrpxdivcld | ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7356 | . . . 4 ⊢ (𝐴 = 0 → (𝐴 /𝑒 𝐵) = (0 /𝑒 𝐵)) | |
| 2 | xrpxdivcld.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | xdiv0rp 32870 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → (0 /𝑒 𝐵) = 0) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (0 /𝑒 𝐵) = 0) |
| 5 | 1, 4 | sylan9eqr 2786 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 0) → (𝐴 /𝑒 𝐵) = 0) |
| 6 | elxrge02 32872 | . . . . 5 ⊢ ((𝐴 /𝑒 𝐵) ∈ (0[,]+∞) ↔ ((𝐴 /𝑒 𝐵) = 0 ∨ (𝐴 /𝑒 𝐵) ∈ ℝ+ ∨ (𝐴 /𝑒 𝐵) = +∞)) | |
| 7 | 6 | biimpri 228 | . . . 4 ⊢ (((𝐴 /𝑒 𝐵) = 0 ∨ (𝐴 /𝑒 𝐵) ∈ ℝ+ ∨ (𝐴 /𝑒 𝐵) = +∞) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
| 8 | 7 | 3o1cs 32405 | . . 3 ⊢ ((𝐴 /𝑒 𝐵) = 0 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
| 9 | 5, 8 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 0) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
| 10 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ+) | |
| 11 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → 𝐵 ∈ ℝ+) |
| 12 | 10, 11 | rpxdivcld 32874 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → (𝐴 /𝑒 𝐵) ∈ ℝ+) |
| 13 | 7 | 3o2cs 32406 | . . 3 ⊢ ((𝐴 /𝑒 𝐵) ∈ ℝ+ → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
| 14 | 12, 13 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
| 15 | oveq1 7356 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 /𝑒 𝐵) = (+∞ /𝑒 𝐵)) | |
| 16 | xdivpnfrp 32873 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → (+∞ /𝑒 𝐵) = +∞) | |
| 17 | 2, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (+∞ /𝑒 𝐵) = +∞) |
| 18 | 15, 17 | sylan9eqr 2786 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = +∞) → (𝐴 /𝑒 𝐵) = +∞) |
| 19 | 7 | 3o3cs 32407 | . . 3 ⊢ ((𝐴 /𝑒 𝐵) = +∞ → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
| 20 | 18, 19 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 = +∞) → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
| 21 | xrpxdivcld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) | |
| 22 | elxrge02 32872 | . . 3 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞)) | |
| 23 | 21, 22 | sylib 218 | . 2 ⊢ (𝜑 → (𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞)) |
| 24 | 9, 14, 20, 23 | mpjao3dan 1434 | 1 ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 0cc0 11009 +∞cpnf 11146 ℝ+crp 12893 [,]cicc 13251 /𝑒 cxdiv 32857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-xdiv 32858 |
| This theorem is referenced by: measdivcst 34191 measdivcstALTV 34192 |
| Copyright terms: Public domain | W3C validator |