![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > olcs | Structured version Visualization version GIF version |
Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
Ref | Expression |
---|---|
olcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
olcs | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olcs.1 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
2 | 1 | orcoms 871 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
3 | 2 | orcs 874 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: 0nn0 12487 fsum00 15744 pcfac 16832 mndifsplit 22138 bposlem2 26788 axcgrid 28174 3o2cs 31704 3o3cs 31705 fprodex01 32031 indsumin 33020 fsum2dsub 33619 finxpreclem2 36271 itg2addnclem 36539 tsan3 37011 ecexALTV 37200 cnvepimaex 37205 xrninxpex 37264 disjimxrn 37619 |
Copyright terms: Public domain | W3C validator |