Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > olcs | Structured version Visualization version GIF version |
Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
Ref | Expression |
---|---|
olcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
olcs | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olcs.1 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
2 | 1 | orcoms 868 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
3 | 2 | orcs 871 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: 0nn0 12231 fsum00 15491 pcfac 16581 mndifsplit 21766 bposlem2 26414 axcgrid 27265 3o2cs 30792 3o3cs 30793 fprodex01 31118 indsumin 31969 fsum2dsub 32566 finxpreclem2 35540 itg2addnclem 35807 tsan3 36280 ecexALTV 36445 cnvepimaex 36450 xrninxpex 36499 disjimxrn 36836 |
Copyright terms: Public domain | W3C validator |