![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > olcs | Structured version Visualization version GIF version |
Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
Ref | Expression |
---|---|
olcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
olcs | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olcs.1 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
2 | 1 | orcoms 872 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
3 | 2 | orcs 875 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: 0nn0 12539 fsum00 15831 pcfac 16933 mndifsplit 22658 bposlem2 27344 axcgrid 28946 3o2cs 32491 3o3cs 32492 fprodex01 32832 indsumin 34003 fsum2dsub 34601 finxpreclem2 37373 itg2addnclem 37658 tsan3 38130 ecexALTV 38313 cnvepimaex 38318 xrninxpex 38376 disjimxrn 38731 |
Copyright terms: Public domain | W3C validator |