| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > olcs | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
| Ref | Expression |
|---|---|
| olcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| olcs | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olcs.1 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
| 2 | 1 | orcoms 872 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
| 3 | 2 | orcs 875 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: 0nn0 12393 fsum00 15702 pcfac 16808 mndifsplit 22549 bposlem2 27221 axcgrid 28892 3o2cs 32436 3o3cs 32437 fprodex01 32803 indsumin 32838 fsum2dsub 34615 finxpreclem2 37423 itg2addnclem 37710 tsan3 38182 xrninxpex 38425 disjimxrn 38786 |
| Copyright terms: Public domain | W3C validator |