![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > olcs | Structured version Visualization version GIF version |
Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
Ref | Expression |
---|---|
olcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
olcs | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olcs.1 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
2 | 1 | orcoms 871 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
3 | 2 | orcs 874 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: 0nn0 12568 fsum00 15846 pcfac 16946 mndifsplit 22663 bposlem2 27347 axcgrid 28949 3o2cs 32491 3o3cs 32492 fprodex01 32829 indsumin 33986 fsum2dsub 34584 finxpreclem2 37356 itg2addnclem 37631 tsan3 38103 ecexALTV 38287 cnvepimaex 38292 xrninxpex 38350 disjimxrn 38705 |
Copyright terms: Public domain | W3C validator |