MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  olcs Structured version   Visualization version   GIF version

Theorem olcs 876
Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
Hypothesis
Ref Expression
olcs.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
olcs (𝜓𝜒)

Proof of Theorem olcs
StepHypRef Expression
1 olcs.1 . . 3 ((𝜑𝜓) → 𝜒)
21orcoms 872 . 2 ((𝜓𝜑) → 𝜒)
32orcs 875 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  0nn0  12539  fsum00  15831  pcfac  16933  mndifsplit  22658  bposlem2  27344  axcgrid  28946  3o2cs  32491  3o3cs  32492  fprodex01  32832  indsumin  34003  fsum2dsub  34601  finxpreclem2  37373  itg2addnclem  37658  tsan3  38130  ecexALTV  38313  cnvepimaex  38318  xrninxpex  38376  disjimxrn  38731
  Copyright terms: Public domain W3C validator