| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > olcs | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
| Ref | Expression |
|---|---|
| olcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| olcs | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olcs.1 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
| 2 | 1 | orcoms 872 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
| 3 | 2 | orcs 875 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: 0nn0 12521 fsum00 15819 pcfac 16924 mndifsplit 22579 bposlem2 27253 axcgrid 28900 3o2cs 32448 3o3cs 32449 fprodex01 32809 indsumin 32844 fsum2dsub 34644 finxpreclem2 37413 itg2addnclem 37700 tsan3 38172 ecexALTV 38354 cnvepimaex 38359 xrninxpex 38417 disjimxrn 38772 |
| Copyright terms: Public domain | W3C validator |