MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  olcs Structured version   Visualization version   GIF version

Theorem olcs 875
Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
Hypothesis
Ref Expression
olcs.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
olcs (𝜓𝜒)

Proof of Theorem olcs
StepHypRef Expression
1 olcs.1 . . 3 ((𝜑𝜓) → 𝜒)
21orcoms 871 . 2 ((𝜓𝜑) → 𝜒)
32orcs 874 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 847
This theorem is referenced by:  0nn0  12487  fsum00  15744  pcfac  16832  mndifsplit  22138  bposlem2  26788  axcgrid  28174  3o2cs  31704  3o3cs  31705  fprodex01  32031  indsumin  33020  fsum2dsub  33619  finxpreclem2  36271  itg2addnclem  36539  tsan3  37011  ecexALTV  37200  cnvepimaex  37205  xrninxpex  37264  disjimxrn  37619
  Copyright terms: Public domain W3C validator