MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  olcs Structured version   Visualization version   GIF version

Theorem olcs 875
Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
Hypothesis
Ref Expression
olcs.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
olcs (𝜓𝜒)

Proof of Theorem olcs
StepHypRef Expression
1 olcs.1 . . 3 ((𝜑𝜓) → 𝜒)
21orcoms 871 . 2 ((𝜓𝜑) → 𝜒)
32orcs 874 1 (𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847
This theorem is referenced by:  0nn0  12568  fsum00  15846  pcfac  16946  mndifsplit  22663  bposlem2  27347  axcgrid  28949  3o2cs  32491  3o3cs  32492  fprodex01  32829  indsumin  33986  fsum2dsub  34584  finxpreclem2  37356  itg2addnclem  37631  tsan3  38103  ecexALTV  38287  cnvepimaex  38292  xrninxpex  38350  disjimxrn  38705
  Copyright terms: Public domain W3C validator