Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > olcs | Structured version Visualization version GIF version |
Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
Ref | Expression |
---|---|
olcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
olcs | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olcs.1 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
2 | 1 | orcoms 869 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
3 | 2 | orcs 872 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 845 |
This theorem is referenced by: 0nn0 11949 fsum00 15201 pcfac 16290 mndifsplit 21336 bposlem2 25968 axcgrid 26809 3o2cs 30333 3o3cs 30334 fprodex01 30663 indsumin 31509 fsum2dsub 32106 finxpreclem2 35087 itg2addnclem 35388 tsan3 35861 ecexALTV 36028 cnvepimaex 36033 xrninxpex 36082 disjimxrn 36419 |
Copyright terms: Public domain | W3C validator |