| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > olcs | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
| Ref | Expression |
|---|---|
| olcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| olcs | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olcs.1 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
| 2 | 1 | orcoms 872 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
| 3 | 2 | orcs 875 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: 0nn0 12457 fsum00 15764 pcfac 16870 mndifsplit 22523 bposlem2 27196 axcgrid 28843 3o2cs 32391 3o3cs 32392 fprodex01 32750 indsumin 32785 fsum2dsub 34598 finxpreclem2 37378 itg2addnclem 37665 tsan3 38137 xrninxpex 38380 disjimxrn 38741 |
| Copyright terms: Public domain | W3C validator |