| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > olcs | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
| Ref | Expression |
|---|---|
| olcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| olcs | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olcs.1 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
| 2 | 1 | orcoms 872 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
| 3 | 2 | orcs 875 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: 0nn0 12403 fsum00 15707 pcfac 16813 mndifsplit 22552 bposlem2 27224 axcgrid 28896 3o2cs 32443 3o3cs 32444 fprodex01 32813 indsumin 32850 fsum2dsub 34641 finxpreclem2 37455 itg2addnclem 37731 tsan3 38203 xrninxpex 38461 disjimxrn 38867 |
| Copyright terms: Public domain | W3C validator |