| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3pm3.2ni | Structured version Visualization version GIF version | ||
| Description: Triple negated disjunction introduction. (Contributed by Scott Fenton, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| 3pm3.2ni.1 | ⊢ ¬ 𝜑 |
| 3pm3.2ni.2 | ⊢ ¬ 𝜓 |
| 3pm3.2ni.3 | ⊢ ¬ 𝜒 |
| Ref | Expression |
|---|---|
| 3pm3.2ni | ⊢ ¬ (𝜑 ∨ 𝜓 ∨ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3pm3.2ni.1 | . . . 4 ⊢ ¬ 𝜑 | |
| 2 | 3pm3.2ni.2 | . . . 4 ⊢ ¬ 𝜓 | |
| 3 | 1, 2 | pm3.2ni 881 | . . 3 ⊢ ¬ (𝜑 ∨ 𝜓) |
| 4 | 3pm3.2ni.3 | . . 3 ⊢ ¬ 𝜒 | |
| 5 | 3, 4 | pm3.2ni 881 | . 2 ⊢ ¬ ((𝜑 ∨ 𝜓) ∨ 𝜒) |
| 6 | df-3or 1088 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 7 | 5, 6 | mtbir 323 | 1 ⊢ ¬ (𝜑 ∨ 𝜓 ∨ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 848 ∨ w3o 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 df-3or 1088 |
| This theorem is referenced by: poxp3 8175 cnfldfun 21378 sltsolem1 27720 usgrexmpl2nb1 47991 usgrexmpl2nb2 47992 usgrexmpl2nb4 47994 usgrexmpl2nb5 47995 |
| Copyright terms: Public domain | W3C validator |