MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.2ni Structured version   Visualization version   GIF version

Theorem pm3.2ni 877
Description: Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.)
Hypotheses
Ref Expression
pm3.2ni.1 ¬ 𝜑
pm3.2ni.2 ¬ 𝜓
Assertion
Ref Expression
pm3.2ni ¬ (𝜑𝜓)

Proof of Theorem pm3.2ni
StepHypRef Expression
1 pm3.2ni.1 . 2 ¬ 𝜑
2 id 22 . . 3 (𝜑𝜑)
3 pm3.2ni.2 . . . 4 ¬ 𝜓
43pm2.21i 119 . . 3 (𝜓𝜑)
52, 4jaoi 853 . 2 ((𝜑𝜓) → 𝜑)
61, 5mto 196 1 ¬ (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  snsn0non  6370  canthp1lem2  10340  recgt0ii  11811  xrltnr  12784  pnfnlt  12793  nltmnf  12794  smndex1n0mnd  18466  lhop  25085  2lgslem4  26459  axlowdimlem13  27225  3pm3.2ni  33558  nosgnn0  33788  clsk1indlem4  41543  clsk1indlem1  41544  dandysum2p2e4  44380
  Copyright terms: Public domain W3C validator