MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.2ni Structured version   Visualization version   GIF version

Theorem pm3.2ni 880
Description: Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.)
Hypotheses
Ref Expression
pm3.2ni.1 ¬ 𝜑
pm3.2ni.2 ¬ 𝜓
Assertion
Ref Expression
pm3.2ni ¬ (𝜑𝜓)

Proof of Theorem pm3.2ni
StepHypRef Expression
1 pm3.2ni.1 . 2 ¬ 𝜑
2 id 22 . . 3 (𝜑𝜑)
3 pm3.2ni.2 . . . 4 ¬ 𝜓
43pm2.21i 119 . . 3 (𝜓𝜑)
52, 4jaoi 857 . 2 ((𝜑𝜓) → 𝜑)
61, 5mto 197 1 ¬ (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  3pm3.2ni  1490  snsn0non  6437  canthp1lem2  10551  recgt0ii  12035  xrltnr  13020  pnfnlt  13029  nltmnf  13030  smndex1n0mnd  18822  lhop  25949  2lgslem4  27345  nosgnn0  27598  axlowdimlem13  28934  clsk1indlem4  44161  clsk1indlem1  44162  dandysum2p2e4  47122
  Copyright terms: Public domain W3C validator