MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.2ni Structured version   Visualization version   GIF version

Theorem pm3.2ni 880
Description: Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.)
Hypotheses
Ref Expression
pm3.2ni.1 ¬ 𝜑
pm3.2ni.2 ¬ 𝜓
Assertion
Ref Expression
pm3.2ni ¬ (𝜑𝜓)

Proof of Theorem pm3.2ni
StepHypRef Expression
1 pm3.2ni.1 . 2 ¬ 𝜑
2 id 22 . . 3 (𝜑𝜑)
3 pm3.2ni.2 . . . 4 ¬ 𝜓
43pm2.21i 119 . . 3 (𝜓𝜑)
52, 4jaoi 857 . 2 ((𝜑𝜓) → 𝜑)
61, 5mto 197 1 ¬ (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  3pm3.2ni  1490  snsn0non  6459  canthp1lem2  10606  recgt0ii  12089  xrltnr  13079  pnfnlt  13088  nltmnf  13089  smndex1n0mnd  18839  lhop  25921  2lgslem4  27317  nosgnn0  27570  axlowdimlem13  28881  clsk1indlem4  44033  clsk1indlem1  44034  dandysum2p2e4  46999
  Copyright terms: Public domain W3C validator