MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.2ni Structured version   Visualization version   GIF version

Theorem pm3.2ni 880
Description: Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.)
Hypotheses
Ref Expression
pm3.2ni.1 ¬ 𝜑
pm3.2ni.2 ¬ 𝜓
Assertion
Ref Expression
pm3.2ni ¬ (𝜑𝜓)

Proof of Theorem pm3.2ni
StepHypRef Expression
1 pm3.2ni.1 . 2 ¬ 𝜑
2 id 22 . . 3 (𝜑𝜑)
3 pm3.2ni.2 . . . 4 ¬ 𝜓
43pm2.21i 119 . . 3 (𝜓𝜑)
52, 4jaoi 857 . 2 ((𝜑𝜓) → 𝜑)
61, 5mto 197 1 ¬ (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  3pm3.2ni  1490  snsn0non  6432  canthp1lem2  10541  recgt0ii  12025  xrltnr  13015  pnfnlt  13024  nltmnf  13025  smndex1n0mnd  18817  lhop  25946  2lgslem4  27342  nosgnn0  27595  axlowdimlem13  28930  clsk1indlem4  44076  clsk1indlem1  44077  dandysum2p2e4  47028
  Copyright terms: Public domain W3C validator