MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.2ni Structured version   Visualization version   GIF version

Theorem pm3.2ni 878
Description: Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.)
Hypotheses
Ref Expression
pm3.2ni.1 ¬ 𝜑
pm3.2ni.2 ¬ 𝜓
Assertion
Ref Expression
pm3.2ni ¬ (𝜑𝜓)

Proof of Theorem pm3.2ni
StepHypRef Expression
1 pm3.2ni.1 . 2 ¬ 𝜑
2 id 22 . . 3 (𝜑𝜑)
3 pm3.2ni.2 . . . 4 ¬ 𝜓
43pm2.21i 119 . . 3 (𝜓𝜑)
52, 4jaoi 854 . 2 ((𝜑𝜓) → 𝜑)
61, 5mto 196 1 ¬ (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  snsn0non  6385  canthp1lem2  10409  recgt0ii  11881  xrltnr  12855  pnfnlt  12864  nltmnf  12865  smndex1n0mnd  18551  lhop  25180  2lgslem4  26554  axlowdimlem13  27322  3pm3.2ni  33656  nosgnn0  33861  clsk1indlem4  41654  clsk1indlem1  41655  dandysum2p2e4  44493
  Copyright terms: Public domain W3C validator