MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poxp3 Structured version   Visualization version   GIF version

Theorem poxp3 8082
Description: Triple Cartesian product partial ordering. (Contributed by Scott Fenton, 21-Aug-2024.)
Hypotheses
Ref Expression
xpord3.1 𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}
poxp3.1 (𝜑𝑅 Po 𝐴)
poxp3.2 (𝜑𝑆 Po 𝐵)
poxp3.3 (𝜑𝑇 Po 𝐶)
Assertion
Ref Expression
poxp3 (𝜑𝑈 Po ((𝐴 × 𝐵) × 𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦)

Proof of Theorem poxp3
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 el2xptp 7967 . . . 4 (𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) ↔ ∃𝑎𝐴𝑏𝐵𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩)
2 neirr 2952 . . . . . . . . . . 11 ¬ 𝑎𝑎
3 neirr 2952 . . . . . . . . . . 11 ¬ 𝑏𝑏
4 neirr 2952 . . . . . . . . . . 11 ¬ 𝑐𝑐
52, 3, 43pm3.2ni 1488 . . . . . . . . . 10 ¬ (𝑎𝑎𝑏𝑏𝑐𝑐)
65intnan 487 . . . . . . . . 9 ¬ (((𝑎𝑅𝑎𝑎 = 𝑎) ∧ (𝑏𝑆𝑏𝑏 = 𝑏) ∧ (𝑐𝑇𝑐𝑐 = 𝑐)) ∧ (𝑎𝑎𝑏𝑏𝑐𝑐))
7 simp3 1138 . . . . . . . . 9 (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (((𝑎𝑅𝑎𝑎 = 𝑎) ∧ (𝑏𝑆𝑏𝑏 = 𝑏) ∧ (𝑐𝑇𝑐𝑐 = 𝑐)) ∧ (𝑎𝑎𝑏𝑏𝑐𝑐))) → (((𝑎𝑅𝑎𝑎 = 𝑎) ∧ (𝑏𝑆𝑏𝑏 = 𝑏) ∧ (𝑐𝑇𝑐𝑐 = 𝑐)) ∧ (𝑎𝑎𝑏𝑏𝑐𝑐)))
86, 7mto 196 . . . . . . . 8 ¬ ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (((𝑎𝑅𝑎𝑎 = 𝑎) ∧ (𝑏𝑆𝑏𝑏 = 𝑏) ∧ (𝑐𝑇𝑐𝑐 = 𝑐)) ∧ (𝑎𝑎𝑏𝑏𝑐𝑐)))
9 breq12 5110 . . . . . . . . . 10 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩) → (𝑝𝑈𝑝 ↔ ⟨𝑎, 𝑏, 𝑐𝑈𝑎, 𝑏, 𝑐⟩))
109anidms 567 . . . . . . . . 9 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ → (𝑝𝑈𝑝 ↔ ⟨𝑎, 𝑏, 𝑐𝑈𝑎, 𝑏, 𝑐⟩))
11 xpord3.1 . . . . . . . . . 10 𝑈 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st ‘(1st𝑥))𝑅(1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥))𝑆(2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥)𝑇(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}
1211xpord3lem 8081 . . . . . . . . 9 (⟨𝑎, 𝑏, 𝑐𝑈𝑎, 𝑏, 𝑐⟩ ↔ ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (((𝑎𝑅𝑎𝑎 = 𝑎) ∧ (𝑏𝑆𝑏𝑏 = 𝑏) ∧ (𝑐𝑇𝑐𝑐 = 𝑐)) ∧ (𝑎𝑎𝑏𝑏𝑐𝑐))))
1310, 12bitrdi 286 . . . . . . . 8 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ → (𝑝𝑈𝑝 ↔ ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (((𝑎𝑅𝑎𝑎 = 𝑎) ∧ (𝑏𝑆𝑏𝑏 = 𝑏) ∧ (𝑐𝑇𝑐𝑐 = 𝑐)) ∧ (𝑎𝑎𝑏𝑏𝑐𝑐)))))
148, 13mtbiri 326 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ → ¬ 𝑝𝑈𝑝)
1514rexlimivw 3148 . . . . . 6 (∃𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ → ¬ 𝑝𝑈𝑝)
1615rexlimivw 3148 . . . . 5 (∃𝑏𝐵𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ → ¬ 𝑝𝑈𝑝)
1716rexlimivw 3148 . . . 4 (∃𝑎𝐴𝑏𝐵𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ → ¬ 𝑝𝑈𝑝)
181, 17sylbi 216 . . 3 (𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) → ¬ 𝑝𝑈𝑝)
1918adantl 482 . 2 ((𝜑𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)) → ¬ 𝑝𝑈𝑝)
20 3reeanv 3218 . . . . 5 (∃𝑎𝐴𝑑𝐴𝑔𝐴 (∃𝑏𝐵𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ ∃𝑒𝐵𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ ∃𝐵𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩) ↔ (∃𝑎𝐴𝑏𝐵𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ ∃𝑑𝐴𝑒𝐵𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ ∃𝑔𝐴𝐵𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩))
21 3reeanv 3218 . . . . . . . . . 10 (∃𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) ↔ (∃𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ ∃𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ ∃𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩))
2221rexbii 3097 . . . . . . . . 9 (∃𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) ↔ ∃𝐵 (∃𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ ∃𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ ∃𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩))
23222rexbii 3128 . . . . . . . 8 (∃𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) ↔ ∃𝑏𝐵𝑒𝐵𝐵 (∃𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ ∃𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ ∃𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩))
24 3reeanv 3218 . . . . . . . 8 (∃𝑏𝐵𝑒𝐵𝐵 (∃𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ ∃𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ ∃𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩) ↔ (∃𝑏𝐵𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ ∃𝑒𝐵𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ ∃𝐵𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩))
2523, 24bitri 274 . . . . . . 7 (∃𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) ↔ (∃𝑏𝐵𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ ∃𝑒𝐵𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ ∃𝐵𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩))
2625rexbii 3097 . . . . . 6 (∃𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) ↔ ∃𝑔𝐴 (∃𝑏𝐵𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ ∃𝑒𝐵𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ ∃𝐵𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩))
27262rexbii 3128 . . . . 5 (∃𝑎𝐴𝑑𝐴𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) ↔ ∃𝑎𝐴𝑑𝐴𝑔𝐴 (∃𝑏𝐵𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ ∃𝑒𝐵𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ ∃𝐵𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩))
28 el2xptp 7967 . . . . . 6 (𝑞 ∈ ((𝐴 × 𝐵) × 𝐶) ↔ ∃𝑑𝐴𝑒𝐵𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩)
29 el2xptp 7967 . . . . . 6 (𝑟 ∈ ((𝐴 × 𝐵) × 𝐶) ↔ ∃𝑔𝐴𝐵𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩)
301, 28, 293anbi123i 1155 . . . . 5 ((𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑞 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑟 ∈ ((𝐴 × 𝐵) × 𝐶)) ↔ (∃𝑎𝐴𝑏𝐵𝑐𝐶 𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ ∃𝑑𝐴𝑒𝐵𝑓𝐶 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ ∃𝑔𝐴𝐵𝑖𝐶 𝑟 = ⟨𝑔, , 𝑖⟩))
3120, 27, 303bitr4ri 303 . . . 4 ((𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑞 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑟 ∈ ((𝐴 × 𝐵) × 𝐶)) ↔ ∃𝑎𝐴𝑑𝐴𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩))
32 simpr1l 1230 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑎𝐴𝑏𝐵𝑐𝐶))
33 simpr2r 1233 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑔𝐴𝐵𝑖𝐶))
34 poxp3.1 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 Po 𝐴)
35 simp1l1 1266 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → 𝑎𝐴)
36 simp2l1 1272 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → 𝑑𝐴)
37 simp2r1 1275 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → 𝑔𝐴)
3835, 36, 373jca 1128 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → (𝑎𝐴𝑑𝐴𝑔𝐴))
39 potr 5558 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 Po 𝐴 ∧ (𝑎𝐴𝑑𝐴𝑔𝐴)) → ((𝑎𝑅𝑑𝑑𝑅𝑔) → 𝑎𝑅𝑔))
4034, 38, 39syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → ((𝑎𝑅𝑑𝑑𝑅𝑔) → 𝑎𝑅𝑔))
4140expd 416 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑎𝑅𝑑 → (𝑑𝑅𝑔𝑎𝑅𝑔)))
42 breq1 5108 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑑 → (𝑎𝑅𝑔𝑑𝑅𝑔))
4342biimprd 247 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑑 → (𝑑𝑅𝑔𝑎𝑅𝑔))
4443a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑎 = 𝑑 → (𝑑𝑅𝑔𝑎𝑅𝑔)))
45 simpll1 1212 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))) → (𝑎𝑅𝑑𝑎 = 𝑑))
46453ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → (𝑎𝑅𝑑𝑎 = 𝑑))
4746adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑎𝑅𝑑𝑎 = 𝑑))
4841, 44, 47mpjaod 858 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑑𝑅𝑔𝑎𝑅𝑔))
49 orc 865 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑅𝑔 → (𝑎𝑅𝑔𝑎 = 𝑔))
5048, 49syl6 35 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑑𝑅𝑔 → (𝑎𝑅𝑔𝑎 = 𝑔)))
51 breq2 5109 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑔 → (𝑎𝑅𝑑𝑎𝑅𝑔))
52 equequ2 2029 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑔 → (𝑎 = 𝑑𝑎 = 𝑔))
5351, 52orbi12d 917 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑔 → ((𝑎𝑅𝑑𝑎 = 𝑑) ↔ (𝑎𝑅𝑔𝑎 = 𝑔)))
5447, 53syl5ibcom 244 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑑 = 𝑔 → (𝑎𝑅𝑔𝑎 = 𝑔)))
55 simprl1 1218 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))) → (𝑑𝑅𝑔𝑑 = 𝑔))
56553ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → (𝑑𝑅𝑔𝑑 = 𝑔))
5756adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑑𝑅𝑔𝑑 = 𝑔))
5850, 54, 57mpjaod 858 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑎𝑅𝑔𝑎 = 𝑔))
59 poxp3.2 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆 Po 𝐵)
60 simp1l2 1267 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → 𝑏𝐵)
61 simp2l2 1273 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → 𝑒𝐵)
62 simp2r2 1276 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → 𝐵)
6360, 61, 623jca 1128 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → (𝑏𝐵𝑒𝐵𝐵))
64 potr 5558 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 Po 𝐵 ∧ (𝑏𝐵𝑒𝐵𝐵)) → ((𝑏𝑆𝑒𝑒𝑆) → 𝑏𝑆))
6559, 63, 64syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → ((𝑏𝑆𝑒𝑒𝑆) → 𝑏𝑆))
6665expd 416 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑏𝑆𝑒 → (𝑒𝑆𝑏𝑆)))
67 breq1 5108 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑒 → (𝑏𝑆𝑒𝑆))
6867biimprd 247 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑒 → (𝑒𝑆𝑏𝑆))
6968a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑏 = 𝑒 → (𝑒𝑆𝑏𝑆)))
70 simpll2 1213 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))) → (𝑏𝑆𝑒𝑏 = 𝑒))
71703ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → (𝑏𝑆𝑒𝑏 = 𝑒))
7271adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑏𝑆𝑒𝑏 = 𝑒))
7366, 69, 72mpjaod 858 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑒𝑆𝑏𝑆))
74 orc 865 . . . . . . . . . . . . . . . . . . . 20 (𝑏𝑆 → (𝑏𝑆𝑏 = ))
7573, 74syl6 35 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑒𝑆 → (𝑏𝑆𝑏 = )))
76 breq2 5109 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = → (𝑏𝑆𝑒𝑏𝑆))
77 equequ2 2029 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = → (𝑏 = 𝑒𝑏 = ))
7876, 77orbi12d 917 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = → ((𝑏𝑆𝑒𝑏 = 𝑒) ↔ (𝑏𝑆𝑏 = )))
7972, 78syl5ibcom 244 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑒 = → (𝑏𝑆𝑏 = )))
80 simprl2 1219 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))) → (𝑒𝑆𝑒 = ))
81803ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → (𝑒𝑆𝑒 = ))
8281adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑒𝑆𝑒 = ))
8375, 79, 82mpjaod 858 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑏𝑆𝑏 = ))
84 poxp3.3 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑇 Po 𝐶)
85 simp1l3 1268 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → 𝑐𝐶)
86 simp2l3 1274 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → 𝑓𝐶)
87 simp2r3 1277 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → 𝑖𝐶)
8885, 86, 873jca 1128 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → (𝑐𝐶𝑓𝐶𝑖𝐶))
89 potr 5558 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇 Po 𝐶 ∧ (𝑐𝐶𝑓𝐶𝑖𝐶)) → ((𝑐𝑇𝑓𝑓𝑇𝑖) → 𝑐𝑇𝑖))
9084, 88, 89syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → ((𝑐𝑇𝑓𝑓𝑇𝑖) → 𝑐𝑇𝑖))
9190expd 416 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑐𝑇𝑓 → (𝑓𝑇𝑖𝑐𝑇𝑖)))
92 breq1 5108 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = 𝑓 → (𝑐𝑇𝑖𝑓𝑇𝑖))
9392biimprd 247 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = 𝑓 → (𝑓𝑇𝑖𝑐𝑇𝑖))
9493a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑐 = 𝑓 → (𝑓𝑇𝑖𝑐𝑇𝑖)))
95 simpll3 1214 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))) → (𝑐𝑇𝑓𝑐 = 𝑓))
96953ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → (𝑐𝑇𝑓𝑐 = 𝑓))
9796adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑐𝑇𝑓𝑐 = 𝑓))
9891, 94, 97mpjaod 858 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑓𝑇𝑖𝑐𝑇𝑖))
99 orc 865 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝑇𝑖 → (𝑐𝑇𝑖𝑐 = 𝑖))
10098, 99syl6 35 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑓𝑇𝑖 → (𝑐𝑇𝑖𝑐 = 𝑖)))
101 breq2 5109 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑖 → (𝑐𝑇𝑓𝑐𝑇𝑖))
102 equequ2 2029 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑖 → (𝑐 = 𝑓𝑐 = 𝑖))
103101, 102orbi12d 917 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑖 → ((𝑐𝑇𝑓𝑐 = 𝑓) ↔ (𝑐𝑇𝑖𝑐 = 𝑖)))
10497, 103syl5ibcom 244 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑓 = 𝑖 → (𝑐𝑇𝑖𝑐 = 𝑖)))
105 simprl3 1220 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))) → (𝑓𝑇𝑖𝑓 = 𝑖))
1061053ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → (𝑓𝑇𝑖𝑓 = 𝑖))
107106adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑓𝑇𝑖𝑓 = 𝑖))
108100, 104, 107mpjaod 858 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑐𝑇𝑖𝑐 = 𝑖))
10958, 83, 1083jca 1128 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → ((𝑎𝑅𝑔𝑎 = 𝑔) ∧ (𝑏𝑆𝑏 = ) ∧ (𝑐𝑇𝑖𝑐 = 𝑖)))
110 simp3rr 1247 . . . . . . . . . . . . . . . . . . 19 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → (𝑑𝑔𝑒𝑓𝑖))
111110adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑑𝑔𝑒𝑓𝑖))
11257adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑎 = 𝑔) → (𝑑𝑅𝑔𝑑 = 𝑔))
113 breq1 5108 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑔 → (𝑎𝑅𝑑𝑔𝑅𝑑))
114 equequ1 2028 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑔 → (𝑎 = 𝑑𝑔 = 𝑑))
115 equcom 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔 = 𝑑𝑑 = 𝑔)
116114, 115bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑔 → (𝑎 = 𝑑𝑑 = 𝑔))
117113, 116orbi12d 917 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑔 → ((𝑎𝑅𝑑𝑎 = 𝑑) ↔ (𝑔𝑅𝑑𝑑 = 𝑔)))
11847, 117syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑎 = 𝑔 → (𝑔𝑅𝑑𝑑 = 𝑔)))
119118imp 407 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑎 = 𝑔) → (𝑔𝑅𝑑𝑑 = 𝑔))
120 ordir 1005 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑑𝑅𝑔𝑔𝑅𝑑) ∨ 𝑑 = 𝑔) ↔ ((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑔𝑅𝑑𝑑 = 𝑔)))
121112, 119, 120sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑎 = 𝑔) → ((𝑑𝑅𝑔𝑔𝑅𝑑) ∨ 𝑑 = 𝑔))
12234adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → 𝑅 Po 𝐴)
12336adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → 𝑑𝐴)
12437adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → 𝑔𝐴)
125 po2nr 5559 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 Po 𝐴 ∧ (𝑑𝐴𝑔𝐴)) → ¬ (𝑑𝑅𝑔𝑔𝑅𝑑))
126122, 123, 124, 125syl12anc 835 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → ¬ (𝑑𝑅𝑔𝑔𝑅𝑑))
127126adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑎 = 𝑔) → ¬ (𝑑𝑅𝑔𝑔𝑅𝑑))
128121, 127orcnd 877 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑎 = 𝑔) → 𝑑 = 𝑔)
129128ex 413 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑎 = 𝑔𝑑 = 𝑔))
130129necon3d 2964 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑑𝑔𝑎𝑔))
13182adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑏 = ) → (𝑒𝑆𝑒 = ))
132 breq1 5108 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = → (𝑏𝑆𝑒𝑆𝑒))
133 equequ1 2028 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 = → (𝑏 = 𝑒 = 𝑒))
134 equcom 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑒𝑒 = )
135133, 134bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = → (𝑏 = 𝑒𝑒 = ))
136132, 135orbi12d 917 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = → ((𝑏𝑆𝑒𝑏 = 𝑒) ↔ (𝑆𝑒𝑒 = )))
13772, 136syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑏 = → (𝑆𝑒𝑒 = )))
138137imp 407 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑏 = ) → (𝑆𝑒𝑒 = ))
139 ordir 1005 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑒𝑆𝑆𝑒) ∨ 𝑒 = ) ↔ ((𝑒𝑆𝑒 = ) ∧ (𝑆𝑒𝑒 = )))
140131, 138, 139sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑏 = ) → ((𝑒𝑆𝑆𝑒) ∨ 𝑒 = ))
14159adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → 𝑆 Po 𝐵)
14261adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → 𝑒𝐵)
14362adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → 𝐵)
144 po2nr 5559 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 Po 𝐵 ∧ (𝑒𝐵𝐵)) → ¬ (𝑒𝑆𝑆𝑒))
145141, 142, 143, 144syl12anc 835 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → ¬ (𝑒𝑆𝑆𝑒))
146145adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑏 = ) → ¬ (𝑒𝑆𝑆𝑒))
147140, 146orcnd 877 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑏 = ) → 𝑒 = )
148147ex 413 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑏 = 𝑒 = ))
149148necon3d 2964 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑒𝑏))
150107adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑐 = 𝑖) → (𝑓𝑇𝑖𝑓 = 𝑖))
151 breq1 5108 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑖 → (𝑐𝑇𝑓𝑖𝑇𝑓))
152 equequ1 2028 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑐 = 𝑖 → (𝑐 = 𝑓𝑖 = 𝑓))
153 equcom 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑓𝑓 = 𝑖)
154152, 153bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑖 → (𝑐 = 𝑓𝑓 = 𝑖))
155151, 154orbi12d 917 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑖 → ((𝑐𝑇𝑓𝑐 = 𝑓) ↔ (𝑖𝑇𝑓𝑓 = 𝑖)))
15697, 155syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑐 = 𝑖 → (𝑖𝑇𝑓𝑓 = 𝑖)))
157156imp 407 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑐 = 𝑖) → (𝑖𝑇𝑓𝑓 = 𝑖))
158 ordir 1005 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓𝑇𝑖𝑖𝑇𝑓) ∨ 𝑓 = 𝑖) ↔ ((𝑓𝑇𝑖𝑓 = 𝑖) ∧ (𝑖𝑇𝑓𝑓 = 𝑖)))
159150, 157, 158sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑐 = 𝑖) → ((𝑓𝑇𝑖𝑖𝑇𝑓) ∨ 𝑓 = 𝑖))
16084adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → 𝑇 Po 𝐶)
16186adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → 𝑓𝐶)
16287adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → 𝑖𝐶)
163 po2nr 5559 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑇 Po 𝐶 ∧ (𝑓𝐶𝑖𝐶)) → ¬ (𝑓𝑇𝑖𝑖𝑇𝑓))
164160, 161, 162, 163syl12anc 835 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → ¬ (𝑓𝑇𝑖𝑖𝑇𝑓))
165164adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑐 = 𝑖) → ¬ (𝑓𝑇𝑖𝑖𝑇𝑓))
166159, 165orcnd 877 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) ∧ 𝑐 = 𝑖) → 𝑓 = 𝑖)
167166ex 413 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑐 = 𝑖𝑓 = 𝑖))
168167necon3d 2964 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑓𝑖𝑐𝑖))
169130, 149, 1683orim123d 1444 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → ((𝑑𝑔𝑒𝑓𝑖) → (𝑎𝑔𝑏𝑐𝑖)))
170111, 169mpd 15 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (𝑎𝑔𝑏𝑐𝑖))
171109, 170jca 512 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → (((𝑎𝑅𝑔𝑎 = 𝑔) ∧ (𝑏𝑆𝑏 = ) ∧ (𝑐𝑇𝑖𝑐 = 𝑖)) ∧ (𝑎𝑔𝑏𝑐𝑖)))
17232, 33, 1713jca 1128 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))) → ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶) ∧ (((𝑎𝑅𝑔𝑎 = 𝑔) ∧ (𝑏𝑆𝑏 = ) ∧ (𝑐𝑇𝑖𝑐 = 𝑖)) ∧ (𝑎𝑔𝑏𝑐𝑖))))
173172ex 413 . . . . . . . . . . . . . 14 (𝜑 → ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶) ∧ (((𝑎𝑅𝑔𝑎 = 𝑔) ∧ (𝑏𝑆𝑏 = ) ∧ (𝑐𝑇𝑖𝑐 = 𝑖)) ∧ (𝑎𝑔𝑏𝑐𝑖)))))
174 breq12 5110 . . . . . . . . . . . . . . . . . . 19 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩) → (𝑝𝑈𝑞 ↔ ⟨𝑎, 𝑏, 𝑐𝑈𝑑, 𝑒, 𝑓⟩))
1751743adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → (𝑝𝑈𝑞 ↔ ⟨𝑎, 𝑏, 𝑐𝑈𝑑, 𝑒, 𝑓⟩))
17611xpord3lem 8081 . . . . . . . . . . . . . . . . . 18 (⟨𝑎, 𝑏, 𝑐𝑈𝑑, 𝑒, 𝑓⟩ ↔ ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓))))
177175, 176bitrdi 286 . . . . . . . . . . . . . . . . 17 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → (𝑝𝑈𝑞 ↔ ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)))))
178 breq12 5110 . . . . . . . . . . . . . . . . . . 19 ((𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → (𝑞𝑈𝑟 ↔ ⟨𝑑, 𝑒, 𝑓𝑈𝑔, , 𝑖⟩))
1791783adant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → (𝑞𝑈𝑟 ↔ ⟨𝑑, 𝑒, 𝑓𝑈𝑔, , 𝑖⟩))
18011xpord3lem 8081 . . . . . . . . . . . . . . . . . 18 (⟨𝑑, 𝑒, 𝑓𝑈𝑔, , 𝑖⟩ ↔ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))
181179, 180bitrdi 286 . . . . . . . . . . . . . . . . 17 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → (𝑞𝑈𝑟 ↔ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))))
182177, 181anbi12d 631 . . . . . . . . . . . . . . . 16 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) ↔ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓))) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))))
183 an6 1445 . . . . . . . . . . . . . . . 16 ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓))) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) ↔ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))))
184182, 183bitrdi 286 . . . . . . . . . . . . . . 15 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) ↔ (((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖))))))
185 breq12 5110 . . . . . . . . . . . . . . . . 17 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → (𝑝𝑈𝑟 ↔ ⟨𝑎, 𝑏, 𝑐𝑈𝑔, , 𝑖⟩))
1861853adant2 1131 . . . . . . . . . . . . . . . 16 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → (𝑝𝑈𝑟 ↔ ⟨𝑎, 𝑏, 𝑐𝑈𝑔, , 𝑖⟩))
18711xpord3lem 8081 . . . . . . . . . . . . . . . 16 (⟨𝑎, 𝑏, 𝑐𝑈𝑔, , 𝑖⟩ ↔ ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶) ∧ (((𝑎𝑅𝑔𝑎 = 𝑔) ∧ (𝑏𝑆𝑏 = ) ∧ (𝑐𝑇𝑖𝑐 = 𝑖)) ∧ (𝑎𝑔𝑏𝑐𝑖))))
188186, 187bitrdi 286 . . . . . . . . . . . . . . 15 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → (𝑝𝑈𝑟 ↔ ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶) ∧ (((𝑎𝑅𝑔𝑎 = 𝑔) ∧ (𝑏𝑆𝑏 = ) ∧ (𝑐𝑇𝑖𝑐 = 𝑖)) ∧ (𝑎𝑔𝑏𝑐𝑖)))))
189184, 188imbi12d 344 . . . . . . . . . . . . . 14 ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → (((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟) ↔ ((((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑑𝐴𝑒𝐵𝑓𝐶)) ∧ ((𝑑𝐴𝑒𝐵𝑓𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶)) ∧ ((((𝑎𝑅𝑑𝑎 = 𝑑) ∧ (𝑏𝑆𝑒𝑏 = 𝑒) ∧ (𝑐𝑇𝑓𝑐 = 𝑓)) ∧ (𝑎𝑑𝑏𝑒𝑐𝑓)) ∧ (((𝑑𝑅𝑔𝑑 = 𝑔) ∧ (𝑒𝑆𝑒 = ) ∧ (𝑓𝑇𝑖𝑓 = 𝑖)) ∧ (𝑑𝑔𝑒𝑓𝑖)))) → ((𝑎𝐴𝑏𝐵𝑐𝐶) ∧ (𝑔𝐴𝐵𝑖𝐶) ∧ (((𝑎𝑅𝑔𝑎 = 𝑔) ∧ (𝑏𝑆𝑏 = ) ∧ (𝑐𝑇𝑖𝑐 = 𝑖)) ∧ (𝑎𝑔𝑏𝑐𝑖))))))
190173, 189syl5ibrcom 246 . . . . . . . . . . . . 13 (𝜑 → ((𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟)))
191190rexlimdvw 3157 . . . . . . . . . . . 12 (𝜑 → (∃𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟)))
192191rexlimdvw 3157 . . . . . . . . . . 11 (𝜑 → (∃𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟)))
193192rexlimdvw 3157 . . . . . . . . . 10 (𝜑 → (∃𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟)))
194193rexlimdvw 3157 . . . . . . . . 9 (𝜑 → (∃𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟)))
195194rexlimdvw 3157 . . . . . . . 8 (𝜑 → (∃𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟)))
196195rexlimdvw 3157 . . . . . . 7 (𝜑 → (∃𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟)))
197196rexlimdvw 3157 . . . . . 6 (𝜑 → (∃𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟)))
198197rexlimdvw 3157 . . . . 5 (𝜑 → (∃𝑑𝐴𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟)))
199198rexlimdvw 3157 . . . 4 (𝜑 → (∃𝑎𝐴𝑑𝐴𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 (𝑝 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝑞 = ⟨𝑑, 𝑒, 𝑓⟩ ∧ 𝑟 = ⟨𝑔, , 𝑖⟩) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟)))
20031, 199biimtrid 241 . . 3 (𝜑 → ((𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑞 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑟 ∈ ((𝐴 × 𝐵) × 𝐶)) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟)))
201200imp 407 . 2 ((𝜑 ∧ (𝑝 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑞 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑟 ∈ ((𝐴 × 𝐵) × 𝐶))) → ((𝑝𝑈𝑞𝑞𝑈𝑟) → 𝑝𝑈𝑟))
20219, 201ispod 5554 1 (𝜑𝑈 Po ((𝐴 × 𝐵) × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cotp 4594   class class class wbr 5105  {copab 5167   Po wpo 5543   × cxp 5631  cfv 6496  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-ot 4595  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fv 6504  df-1st 7921  df-2nd 7922
This theorem is referenced by:  xpord3inddlem  8086
  Copyright terms: Public domain W3C validator