MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldfun Structured version   Visualization version   GIF version

Theorem cnfldfun 21378
Description: The field of complex numbers is a function. The proof is much shorter than the proof of cnfldfunALT 21379 by using cnfldstr 21366 and structn0fun 17188: in addition, it must be shown that ∅ ∉ ℂfld. (Contributed by AV, 18-Nov-2021.) Revise df-cnfld 21365. (Revised by GG, 31-Mar-2025.)
Assertion
Ref Expression
cnfldfun Fun ℂfld

Proof of Theorem cnfldfun
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldstr 21366 . 2 fld Struct ⟨1, 13⟩
2 structn0fun 17188 . . 3 (ℂfld Struct ⟨1, 13⟩ → Fun (ℂfld ∖ {∅}))
3 fvex 6919 . . . . . . . . . . . . 13 (Base‘ndx) ∈ V
4 cnex 11236 . . . . . . . . . . . . 13 ℂ ∈ V
53, 4opnzi 5479 . . . . . . . . . . . 12 ⟨(Base‘ndx), ℂ⟩ ≠ ∅
65nesymi 2998 . . . . . . . . . . 11 ¬ ∅ = ⟨(Base‘ndx), ℂ⟩
7 fvex 6919 . . . . . . . . . . . . 13 (+g‘ndx) ∈ V
8 mpoaddex 13030 . . . . . . . . . . . . 13 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) ∈ V
97, 8opnzi 5479 . . . . . . . . . . . 12 ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ≠ ∅
109nesymi 2998 . . . . . . . . . . 11 ¬ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩
11 fvex 6919 . . . . . . . . . . . . 13 (.r‘ndx) ∈ V
12 mpomulex 13032 . . . . . . . . . . . . 13 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ V
1311, 12opnzi 5479 . . . . . . . . . . . 12 ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩ ≠ ∅
1413nesymi 2998 . . . . . . . . . . 11 ¬ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩
15 3ioran 1106 . . . . . . . . . . . 12 (¬ (∅ = ⟨(Base‘ndx), ℂ⟩ ∨ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∨ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩) ↔ (¬ ∅ = ⟨(Base‘ndx), ℂ⟩ ∧ ¬ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∧ ¬ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩))
16 0ex 5307 . . . . . . . . . . . . 13 ∅ ∈ V
1716eltp 4689 . . . . . . . . . . . 12 (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ↔ (∅ = ⟨(Base‘ndx), ℂ⟩ ∨ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∨ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩))
1815, 17xchnxbir 333 . . . . . . . . . . 11 (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ↔ (¬ ∅ = ⟨(Base‘ndx), ℂ⟩ ∧ ¬ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∧ ¬ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩))
196, 10, 14, 18mpbir3an 1342 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩}
20 fvex 6919 . . . . . . . . . . . . 13 (*𝑟‘ndx) ∈ V
21 cjf 15143 . . . . . . . . . . . . . 14 ∗:ℂ⟶ℂ
22 fex 7246 . . . . . . . . . . . . . 14 ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V)
2321, 4, 22mp2an 692 . . . . . . . . . . . . 13 ∗ ∈ V
2420, 23opnzi 5479 . . . . . . . . . . . 12 ⟨(*𝑟‘ndx), ∗⟩ ≠ ∅
2524necomi 2995 . . . . . . . . . . 11 ∅ ≠ ⟨(*𝑟‘ndx), ∗⟩
26 nelsn 4666 . . . . . . . . . . 11 (∅ ≠ ⟨(*𝑟‘ndx), ∗⟩ → ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩})
2725, 26ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}
2819, 27pm3.2i 470 . . . . . . . . 9 (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩})
29 fvex 6919 . . . . . . . . . . . . . 14 (TopSet‘ndx) ∈ V
30 fvex 6919 . . . . . . . . . . . . . 14 (MetOpen‘(abs ∘ − )) ∈ V
3129, 30opnzi 5479 . . . . . . . . . . . . 13 ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ≠ ∅
3231nesymi 2998 . . . . . . . . . . . 12 ¬ ∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
33 fvex 6919 . . . . . . . . . . . . . 14 (le‘ndx) ∈ V
34 letsr 18638 . . . . . . . . . . . . . . 15 ≤ ∈ TosetRel
3534elexi 3503 . . . . . . . . . . . . . 14 ≤ ∈ V
3633, 35opnzi 5479 . . . . . . . . . . . . 13 ⟨(le‘ndx), ≤ ⟩ ≠ ∅
3736nesymi 2998 . . . . . . . . . . . 12 ¬ ∅ = ⟨(le‘ndx), ≤ ⟩
38 fvex 6919 . . . . . . . . . . . . . 14 (dist‘ndx) ∈ V
39 absf 15376 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
40 fex 7246 . . . . . . . . . . . . . . . 16 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4139, 4, 40mp2an 692 . . . . . . . . . . . . . . 15 abs ∈ V
42 subf 11510 . . . . . . . . . . . . . . . 16 − :(ℂ × ℂ)⟶ℂ
434, 4xpex 7773 . . . . . . . . . . . . . . . 16 (ℂ × ℂ) ∈ V
44 fex 7246 . . . . . . . . . . . . . . . 16 (( − :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V) → − ∈ V)
4542, 43, 44mp2an 692 . . . . . . . . . . . . . . 15 − ∈ V
4641, 45coex 7952 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ V
4738, 46opnzi 5479 . . . . . . . . . . . . 13 ⟨(dist‘ndx), (abs ∘ − )⟩ ≠ ∅
4847nesymi 2998 . . . . . . . . . . . 12 ¬ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩
4932, 37, 483pm3.2ni 1490 . . . . . . . . . . 11 ¬ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩)
5016eltp 4689 . . . . . . . . . . 11 (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ↔ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩))
5149, 50mtbir 323 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
52 fvex 6919 . . . . . . . . . . . . 13 (UnifSet‘ndx) ∈ V
53 fvex 6919 . . . . . . . . . . . . 13 (metUnif‘(abs ∘ − )) ∈ V
5452, 53opnzi 5479 . . . . . . . . . . . 12 ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩ ≠ ∅
5554necomi 2995 . . . . . . . . . . 11 ∅ ≠ ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
56 nelsn 4666 . . . . . . . . . . 11 (∅ ≠ ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩ → ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5755, 56ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5851, 57pm3.2i 470 . . . . . . . . 9 (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5928, 58pm3.2i 470 . . . . . . . 8 ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
60 ioran 986 . . . . . . . . 9 (¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ ¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
61 ioran 986 . . . . . . . . . 10 (¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
62 ioran 986 . . . . . . . . . 10 (¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ↔ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
6361, 62anbi12i 628 . . . . . . . . 9 ((¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ ¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
6460, 63bitri 275 . . . . . . . 8 (¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
6559, 64mpbir 231 . . . . . . 7 ¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
66 df-cnfld 21365 . . . . . . . . 9 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
6766eleq2i 2833 . . . . . . . 8 (∅ ∈ ℂfld ↔ ∅ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
68 elun 4153 . . . . . . . 8 (∅ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
69 elun 4153 . . . . . . . . 9 (∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
70 elun 4153 . . . . . . . . 9 (∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ↔ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7169, 70orbi12i 915 . . . . . . . 8 ((∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
7267, 68, 713bitri 297 . . . . . . 7 (∅ ∈ ℂfld ↔ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
7365, 72mtbir 323 . . . . . 6 ¬ ∅ ∈ ℂfld
74 disjsn 4711 . . . . . 6 ((ℂfld ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ℂfld)
7573, 74mpbir 231 . . . . 5 (ℂfld ∩ {∅}) = ∅
76 disjdif2 4480 . . . . 5 ((ℂfld ∩ {∅}) = ∅ → (ℂfld ∖ {∅}) = ℂfld)
7775, 76ax-mp 5 . . . 4 (ℂfld ∖ {∅}) = ℂfld
7877funeqi 6587 . . 3 (Fun (ℂfld ∖ {∅}) ↔ Fun ℂfld)
792, 78sylib 218 . 2 (ℂfld Struct ⟨1, 13⟩ → Fun ℂfld)
801, 79ax-mp 5 1 Fun ℂfld
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 848  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  cun 3949  cin 3950  c0 4333  {csn 4626  {ctp 4630  cop 4632   class class class wbr 5143   × cxp 5683  ccom 5689  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  cc 11153  cr 11154  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  3c3 12322  cdc 12733  ccj 15135  abscabs 15273   Struct cstr 17183  ndxcnx 17230  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  *𝑟cstv 17299  TopSetcts 17303  lecple 17304  distcds 17306  UnifSetcunif 17307   TosetRel ctsr 18610  MetOpencmopn 21354  metUnifcmetu 21355  fldccnfld 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-ps 18611  df-tsr 18612  df-cnfld 21365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator