MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldfun Structured version   Visualization version   GIF version

Theorem cnfldfun 20956
Description: The field of complex numbers is a function. The proof is much shorter than the proof of cnfldfunALT 20957 by using cnfldstr 20946 and structn0fun 17084: in addition, it must be shown that ∅ ∉ ℂfld. (Contributed by AV, 18-Nov-2021.)
Assertion
Ref Expression
cnfldfun Fun ℂfld

Proof of Theorem cnfldfun
StepHypRef Expression
1 cnfldstr 20946 . 2 fld Struct ⟨1, 13⟩
2 structn0fun 17084 . . 3 (ℂfld Struct ⟨1, 13⟩ → Fun (ℂfld ∖ {∅}))
3 fvex 6905 . . . . . . . . . . . . 13 (Base‘ndx) ∈ V
4 cnex 11191 . . . . . . . . . . . . 13 ℂ ∈ V
53, 4opnzi 5475 . . . . . . . . . . . 12 ⟨(Base‘ndx), ℂ⟩ ≠ ∅
65nesymi 2999 . . . . . . . . . . 11 ¬ ∅ = ⟨(Base‘ndx), ℂ⟩
7 fvex 6905 . . . . . . . . . . . . 13 (+g‘ndx) ∈ V
8 addex 12972 . . . . . . . . . . . . 13 + ∈ V
97, 8opnzi 5475 . . . . . . . . . . . 12 ⟨(+g‘ndx), + ⟩ ≠ ∅
109nesymi 2999 . . . . . . . . . . 11 ¬ ∅ = ⟨(+g‘ndx), + ⟩
11 fvex 6905 . . . . . . . . . . . . 13 (.r‘ndx) ∈ V
12 mulex 12973 . . . . . . . . . . . . 13 · ∈ V
1311, 12opnzi 5475 . . . . . . . . . . . 12 ⟨(.r‘ndx), · ⟩ ≠ ∅
1413nesymi 2999 . . . . . . . . . . 11 ¬ ∅ = ⟨(.r‘ndx), · ⟩
15 3ioran 1107 . . . . . . . . . . . 12 (¬ (∅ = ⟨(Base‘ndx), ℂ⟩ ∨ ∅ = ⟨(+g‘ndx), + ⟩ ∨ ∅ = ⟨(.r‘ndx), · ⟩) ↔ (¬ ∅ = ⟨(Base‘ndx), ℂ⟩ ∧ ¬ ∅ = ⟨(+g‘ndx), + ⟩ ∧ ¬ ∅ = ⟨(.r‘ndx), · ⟩))
16 0ex 5308 . . . . . . . . . . . . 13 ∅ ∈ V
1716eltp 4693 . . . . . . . . . . . 12 (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ↔ (∅ = ⟨(Base‘ndx), ℂ⟩ ∨ ∅ = ⟨(+g‘ndx), + ⟩ ∨ ∅ = ⟨(.r‘ndx), · ⟩))
1815, 17xchnxbir 333 . . . . . . . . . . 11 (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ↔ (¬ ∅ = ⟨(Base‘ndx), ℂ⟩ ∧ ¬ ∅ = ⟨(+g‘ndx), + ⟩ ∧ ¬ ∅ = ⟨(.r‘ndx), · ⟩))
196, 10, 14, 18mpbir3an 1342 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
20 fvex 6905 . . . . . . . . . . . . 13 (*𝑟‘ndx) ∈ V
21 cjf 15051 . . . . . . . . . . . . . 14 ∗:ℂ⟶ℂ
22 fex 7228 . . . . . . . . . . . . . 14 ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V)
2321, 4, 22mp2an 691 . . . . . . . . . . . . 13 ∗ ∈ V
2420, 23opnzi 5475 . . . . . . . . . . . 12 ⟨(*𝑟‘ndx), ∗⟩ ≠ ∅
2524necomi 2996 . . . . . . . . . . 11 ∅ ≠ ⟨(*𝑟‘ndx), ∗⟩
26 nelsn 4669 . . . . . . . . . . 11 (∅ ≠ ⟨(*𝑟‘ndx), ∗⟩ → ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩})
2725, 26ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}
2819, 27pm3.2i 472 . . . . . . . . 9 (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩})
29 fvex 6905 . . . . . . . . . . . . . 14 (TopSet‘ndx) ∈ V
30 fvex 6905 . . . . . . . . . . . . . 14 (MetOpen‘(abs ∘ − )) ∈ V
3129, 30opnzi 5475 . . . . . . . . . . . . 13 ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ≠ ∅
3231nesymi 2999 . . . . . . . . . . . 12 ¬ ∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
33 fvex 6905 . . . . . . . . . . . . . 14 (le‘ndx) ∈ V
34 letsr 18546 . . . . . . . . . . . . . . 15 ≤ ∈ TosetRel
3534elexi 3494 . . . . . . . . . . . . . 14 ≤ ∈ V
3633, 35opnzi 5475 . . . . . . . . . . . . 13 ⟨(le‘ndx), ≤ ⟩ ≠ ∅
3736nesymi 2999 . . . . . . . . . . . 12 ¬ ∅ = ⟨(le‘ndx), ≤ ⟩
38 fvex 6905 . . . . . . . . . . . . . 14 (dist‘ndx) ∈ V
39 absf 15284 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
40 fex 7228 . . . . . . . . . . . . . . . 16 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4139, 4, 40mp2an 691 . . . . . . . . . . . . . . 15 abs ∈ V
42 subf 11462 . . . . . . . . . . . . . . . 16 − :(ℂ × ℂ)⟶ℂ
434, 4xpex 7740 . . . . . . . . . . . . . . . 16 (ℂ × ℂ) ∈ V
44 fex 7228 . . . . . . . . . . . . . . . 16 (( − :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V) → − ∈ V)
4542, 43, 44mp2an 691 . . . . . . . . . . . . . . 15 − ∈ V
4641, 45coex 7921 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ V
4738, 46opnzi 5475 . . . . . . . . . . . . 13 ⟨(dist‘ndx), (abs ∘ − )⟩ ≠ ∅
4847nesymi 2999 . . . . . . . . . . . 12 ¬ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩
49 3ioran 1107 . . . . . . . . . . . 12 (¬ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩) ↔ (¬ ∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∧ ¬ ∅ = ⟨(le‘ndx), ≤ ⟩ ∧ ¬ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩))
5032, 37, 48, 49mpbir3an 1342 . . . . . . . . . . 11 ¬ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩)
5116eltp 4693 . . . . . . . . . . 11 (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ↔ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩))
5250, 51mtbir 323 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
53 fvex 6905 . . . . . . . . . . . . 13 (UnifSet‘ndx) ∈ V
54 fvex 6905 . . . . . . . . . . . . 13 (metUnif‘(abs ∘ − )) ∈ V
5553, 54opnzi 5475 . . . . . . . . . . . 12 ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩ ≠ ∅
5655necomi 2996 . . . . . . . . . . 11 ∅ ≠ ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
57 nelsn 4669 . . . . . . . . . . 11 (∅ ≠ ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩ → ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5856, 57ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5952, 58pm3.2i 472 . . . . . . . . 9 (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
6028, 59pm3.2i 472 . . . . . . . 8 ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
61 ioran 983 . . . . . . . . 9 (¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ ¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
62 ioran 983 . . . . . . . . . 10 (¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
63 ioran 983 . . . . . . . . . 10 (¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ↔ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
6462, 63anbi12i 628 . . . . . . . . 9 ((¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ ¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
6561, 64bitri 275 . . . . . . . 8 (¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
6660, 65mpbir 230 . . . . . . 7 ¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
67 df-cnfld 20945 . . . . . . . . 9 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
6867eleq2i 2826 . . . . . . . 8 (∅ ∈ ℂfld ↔ ∅ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
69 elun 4149 . . . . . . . 8 (∅ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
70 elun 4149 . . . . . . . . 9 (∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
71 elun 4149 . . . . . . . . 9 (∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ↔ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7270, 71orbi12i 914 . . . . . . . 8 ((∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
7368, 69, 723bitri 297 . . . . . . 7 (∅ ∈ ℂfld ↔ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
7466, 73mtbir 323 . . . . . 6 ¬ ∅ ∈ ℂfld
75 disjsn 4716 . . . . . 6 ((ℂfld ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ℂfld)
7674, 75mpbir 230 . . . . 5 (ℂfld ∩ {∅}) = ∅
77 disjdif2 4480 . . . . 5 ((ℂfld ∩ {∅}) = ∅ → (ℂfld ∖ {∅}) = ℂfld)
7876, 77ax-mp 5 . . . 4 (ℂfld ∖ {∅}) = ℂfld
7978funeqi 6570 . . 3 (Fun (ℂfld ∖ {∅}) ↔ Fun ℂfld)
802, 79sylib 217 . 2 (ℂfld Struct ⟨1, 13⟩ → Fun ℂfld)
811, 80ax-mp 5 1 Fun ℂfld
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397  wo 846  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  cdif 3946  cun 3947  cin 3948  c0 4323  {csn 4629  {ctp 4633  cop 4635   class class class wbr 5149   × cxp 5675  ccom 5681  Fun wfun 6538  wf 6540  cfv 6544  cc 11108  cr 11109  1c1 11111   + caddc 11113   · cmul 11115  cle 11249  cmin 11444  3c3 12268  cdc 12677  ccj 15043  abscabs 15181   Struct cstr 17079  ndxcnx 17126  Basecbs 17144  +gcplusg 17197  .rcmulr 17198  *𝑟cstv 17199  TopSetcts 17203  lecple 17204  distcds 17206  UnifSetcunif 17207   TosetRel ctsr 18518  MetOpencmopn 20934  metUnifcmetu 20935  fldccnfld 20944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-rp 12975  df-fz 13485  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-struct 17080  df-slot 17115  df-ndx 17127  df-base 17145  df-plusg 17210  df-mulr 17211  df-starv 17212  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-ps 18519  df-tsr 18520  df-cnfld 20945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator