MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldfun Structured version   Visualization version   GIF version

Theorem cnfldfun 21311
Description: The field of complex numbers is a function. The proof is much shorter than the proof of cnfldfunALT 21312 by using cnfldstr 21299 and structn0fun 17068: in addition, it must be shown that ∅ ∉ ℂfld. (Contributed by AV, 18-Nov-2021.) Revise df-cnfld 21298. (Revised by GG, 31-Mar-2025.)
Assertion
Ref Expression
cnfldfun Fun ℂfld

Proof of Theorem cnfldfun
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldstr 21299 . 2 fld Struct ⟨1, 13⟩
2 structn0fun 17068 . . 3 (ℂfld Struct ⟨1, 13⟩ → Fun (ℂfld ∖ {∅}))
3 fvex 6841 . . . . . . . . . . . . 13 (Base‘ndx) ∈ V
4 cnex 11093 . . . . . . . . . . . . 13 ℂ ∈ V
53, 4opnzi 5417 . . . . . . . . . . . 12 ⟨(Base‘ndx), ℂ⟩ ≠ ∅
65nesymi 2985 . . . . . . . . . . 11 ¬ ∅ = ⟨(Base‘ndx), ℂ⟩
7 fvex 6841 . . . . . . . . . . . . 13 (+g‘ndx) ∈ V
8 mpoaddex 12892 . . . . . . . . . . . . 13 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) ∈ V
97, 8opnzi 5417 . . . . . . . . . . . 12 ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ≠ ∅
109nesymi 2985 . . . . . . . . . . 11 ¬ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩
11 fvex 6841 . . . . . . . . . . . . 13 (.r‘ndx) ∈ V
12 mpomulex 12894 . . . . . . . . . . . . 13 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ V
1311, 12opnzi 5417 . . . . . . . . . . . 12 ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩ ≠ ∅
1413nesymi 2985 . . . . . . . . . . 11 ¬ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩
15 3ioran 1105 . . . . . . . . . . . 12 (¬ (∅ = ⟨(Base‘ndx), ℂ⟩ ∨ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∨ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩) ↔ (¬ ∅ = ⟨(Base‘ndx), ℂ⟩ ∧ ¬ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∧ ¬ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩))
16 0ex 5247 . . . . . . . . . . . . 13 ∅ ∈ V
1716eltp 4641 . . . . . . . . . . . 12 (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ↔ (∅ = ⟨(Base‘ndx), ℂ⟩ ∨ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∨ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩))
1815, 17xchnxbir 333 . . . . . . . . . . 11 (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ↔ (¬ ∅ = ⟨(Base‘ndx), ℂ⟩ ∧ ¬ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∧ ¬ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩))
196, 10, 14, 18mpbir3an 1342 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩}
20 fvex 6841 . . . . . . . . . . . . 13 (*𝑟‘ndx) ∈ V
21 cjf 15017 . . . . . . . . . . . . . 14 ∗:ℂ⟶ℂ
22 fex 7166 . . . . . . . . . . . . . 14 ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V)
2321, 4, 22mp2an 692 . . . . . . . . . . . . 13 ∗ ∈ V
2420, 23opnzi 5417 . . . . . . . . . . . 12 ⟨(*𝑟‘ndx), ∗⟩ ≠ ∅
2524necomi 2982 . . . . . . . . . . 11 ∅ ≠ ⟨(*𝑟‘ndx), ∗⟩
26 nelsn 4618 . . . . . . . . . . 11 (∅ ≠ ⟨(*𝑟‘ndx), ∗⟩ → ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩})
2725, 26ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}
2819, 27pm3.2i 470 . . . . . . . . 9 (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩})
29 fvex 6841 . . . . . . . . . . . . . 14 (TopSet‘ndx) ∈ V
30 fvex 6841 . . . . . . . . . . . . . 14 (MetOpen‘(abs ∘ − )) ∈ V
3129, 30opnzi 5417 . . . . . . . . . . . . 13 ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ≠ ∅
3231nesymi 2985 . . . . . . . . . . . 12 ¬ ∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
33 fvex 6841 . . . . . . . . . . . . . 14 (le‘ndx) ∈ V
34 letsr 18505 . . . . . . . . . . . . . . 15 ≤ ∈ TosetRel
3534elexi 3459 . . . . . . . . . . . . . 14 ≤ ∈ V
3633, 35opnzi 5417 . . . . . . . . . . . . 13 ⟨(le‘ndx), ≤ ⟩ ≠ ∅
3736nesymi 2985 . . . . . . . . . . . 12 ¬ ∅ = ⟨(le‘ndx), ≤ ⟩
38 fvex 6841 . . . . . . . . . . . . . 14 (dist‘ndx) ∈ V
39 absf 15251 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
40 fex 7166 . . . . . . . . . . . . . . . 16 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4139, 4, 40mp2an 692 . . . . . . . . . . . . . . 15 abs ∈ V
42 subf 11368 . . . . . . . . . . . . . . . 16 − :(ℂ × ℂ)⟶ℂ
434, 4xpex 7692 . . . . . . . . . . . . . . . 16 (ℂ × ℂ) ∈ V
44 fex 7166 . . . . . . . . . . . . . . . 16 (( − :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V) → − ∈ V)
4542, 43, 44mp2an 692 . . . . . . . . . . . . . . 15 − ∈ V
4641, 45coex 7866 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ V
4738, 46opnzi 5417 . . . . . . . . . . . . 13 ⟨(dist‘ndx), (abs ∘ − )⟩ ≠ ∅
4847nesymi 2985 . . . . . . . . . . . 12 ¬ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩
4932, 37, 483pm3.2ni 1490 . . . . . . . . . . 11 ¬ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩)
5016eltp 4641 . . . . . . . . . . 11 (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ↔ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩))
5149, 50mtbir 323 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
52 fvex 6841 . . . . . . . . . . . . 13 (UnifSet‘ndx) ∈ V
53 fvex 6841 . . . . . . . . . . . . 13 (metUnif‘(abs ∘ − )) ∈ V
5452, 53opnzi 5417 . . . . . . . . . . . 12 ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩ ≠ ∅
5554necomi 2982 . . . . . . . . . . 11 ∅ ≠ ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
56 nelsn 4618 . . . . . . . . . . 11 (∅ ≠ ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩ → ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5755, 56ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5851, 57pm3.2i 470 . . . . . . . . 9 (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5928, 58pm3.2i 470 . . . . . . . 8 ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
60 ioran 985 . . . . . . . . 9 (¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ ¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
61 ioran 985 . . . . . . . . . 10 (¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
62 ioran 985 . . . . . . . . . 10 (¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ↔ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
6361, 62anbi12i 628 . . . . . . . . 9 ((¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ ¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
6460, 63bitri 275 . . . . . . . 8 (¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
6559, 64mpbir 231 . . . . . . 7 ¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
66 df-cnfld 21298 . . . . . . . . 9 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
6766eleq2i 2823 . . . . . . . 8 (∅ ∈ ℂfld ↔ ∅ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
68 elun 4102 . . . . . . . 8 (∅ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
69 elun 4102 . . . . . . . . 9 (∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
70 elun 4102 . . . . . . . . 9 (∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ↔ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7169, 70orbi12i 914 . . . . . . . 8 ((∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
7267, 68, 713bitri 297 . . . . . . 7 (∅ ∈ ℂfld ↔ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
7365, 72mtbir 323 . . . . . 6 ¬ ∅ ∈ ℂfld
74 disjsn 4663 . . . . . 6 ((ℂfld ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ℂfld)
7573, 74mpbir 231 . . . . 5 (ℂfld ∩ {∅}) = ∅
76 disjdif2 4429 . . . . 5 ((ℂfld ∩ {∅}) = ∅ → (ℂfld ∖ {∅}) = ℂfld)
7775, 76ax-mp 5 . . . 4 (ℂfld ∖ {∅}) = ℂfld
7877funeqi 6508 . . 3 (Fun (ℂfld ∖ {∅}) ↔ Fun ℂfld)
792, 78sylib 218 . 2 (ℂfld Struct ⟨1, 13⟩ → Fun ℂfld)
801, 79ax-mp 5 1 Fun ℂfld
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  cun 3895  cin 3896  c0 4282  {csn 4575  {ctp 4579  cop 4581   class class class wbr 5093   × cxp 5617  ccom 5623  Fun wfun 6481  wf 6483  cfv 6487  (class class class)co 7352  cmpo 7354  cc 11010  cr 11011  1c1 11013   + caddc 11015   · cmul 11017  cle 11153  cmin 11350  3c3 12187  cdc 12594  ccj 15009  abscabs 15147   Struct cstr 17063  ndxcnx 17110  Basecbs 17126  +gcplusg 17167  .rcmulr 17168  *𝑟cstv 17169  TopSetcts 17173  lecple 17174  distcds 17176  UnifSetcunif 17177   TosetRel ctsr 18477  MetOpencmopn 21287  metUnifcmetu 21288  fldccnfld 21297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9332  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-rp 12897  df-fz 13414  df-seq 13915  df-exp 13975  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-struct 17064  df-slot 17099  df-ndx 17111  df-base 17127  df-plusg 17180  df-mulr 17181  df-starv 17182  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-ps 18478  df-tsr 18479  df-cnfld 21298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator