MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldfun Structured version   Visualization version   GIF version

Theorem cnfldfun 21329
Description: The field of complex numbers is a function. The proof is much shorter than the proof of cnfldfunALT 21330 by using cnfldstr 21317 and structn0fun 17170: in addition, it must be shown that ∅ ∉ ℂfld. (Contributed by AV, 18-Nov-2021.) Revise df-cnfld 21316. (Revised by GG, 31-Mar-2025.)
Assertion
Ref Expression
cnfldfun Fun ℂfld

Proof of Theorem cnfldfun
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldstr 21317 . 2 fld Struct ⟨1, 13⟩
2 structn0fun 17170 . . 3 (ℂfld Struct ⟨1, 13⟩ → Fun (ℂfld ∖ {∅}))
3 fvex 6889 . . . . . . . . . . . . 13 (Base‘ndx) ∈ V
4 cnex 11210 . . . . . . . . . . . . 13 ℂ ∈ V
53, 4opnzi 5449 . . . . . . . . . . . 12 ⟨(Base‘ndx), ℂ⟩ ≠ ∅
65nesymi 2989 . . . . . . . . . . 11 ¬ ∅ = ⟨(Base‘ndx), ℂ⟩
7 fvex 6889 . . . . . . . . . . . . 13 (+g‘ndx) ∈ V
8 mpoaddex 13004 . . . . . . . . . . . . 13 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) ∈ V
97, 8opnzi 5449 . . . . . . . . . . . 12 ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ≠ ∅
109nesymi 2989 . . . . . . . . . . 11 ¬ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩
11 fvex 6889 . . . . . . . . . . . . 13 (.r‘ndx) ∈ V
12 mpomulex 13006 . . . . . . . . . . . . 13 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ V
1311, 12opnzi 5449 . . . . . . . . . . . 12 ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩ ≠ ∅
1413nesymi 2989 . . . . . . . . . . 11 ¬ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩
15 3ioran 1105 . . . . . . . . . . . 12 (¬ (∅ = ⟨(Base‘ndx), ℂ⟩ ∨ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∨ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩) ↔ (¬ ∅ = ⟨(Base‘ndx), ℂ⟩ ∧ ¬ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∧ ¬ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩))
16 0ex 5277 . . . . . . . . . . . . 13 ∅ ∈ V
1716eltp 4665 . . . . . . . . . . . 12 (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ↔ (∅ = ⟨(Base‘ndx), ℂ⟩ ∨ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∨ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩))
1815, 17xchnxbir 333 . . . . . . . . . . 11 (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ↔ (¬ ∅ = ⟨(Base‘ndx), ℂ⟩ ∧ ¬ ∅ = ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩ ∧ ¬ ∅ = ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩))
196, 10, 14, 18mpbir3an 1342 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩}
20 fvex 6889 . . . . . . . . . . . . 13 (*𝑟‘ndx) ∈ V
21 cjf 15123 . . . . . . . . . . . . . 14 ∗:ℂ⟶ℂ
22 fex 7218 . . . . . . . . . . . . . 14 ((∗:ℂ⟶ℂ ∧ ℂ ∈ V) → ∗ ∈ V)
2321, 4, 22mp2an 692 . . . . . . . . . . . . 13 ∗ ∈ V
2420, 23opnzi 5449 . . . . . . . . . . . 12 ⟨(*𝑟‘ndx), ∗⟩ ≠ ∅
2524necomi 2986 . . . . . . . . . . 11 ∅ ≠ ⟨(*𝑟‘ndx), ∗⟩
26 nelsn 4642 . . . . . . . . . . 11 (∅ ≠ ⟨(*𝑟‘ndx), ∗⟩ → ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩})
2725, 26ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}
2819, 27pm3.2i 470 . . . . . . . . 9 (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩})
29 fvex 6889 . . . . . . . . . . . . . 14 (TopSet‘ndx) ∈ V
30 fvex 6889 . . . . . . . . . . . . . 14 (MetOpen‘(abs ∘ − )) ∈ V
3129, 30opnzi 5449 . . . . . . . . . . . . 13 ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ≠ ∅
3231nesymi 2989 . . . . . . . . . . . 12 ¬ ∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
33 fvex 6889 . . . . . . . . . . . . . 14 (le‘ndx) ∈ V
34 letsr 18603 . . . . . . . . . . . . . . 15 ≤ ∈ TosetRel
3534elexi 3482 . . . . . . . . . . . . . 14 ≤ ∈ V
3633, 35opnzi 5449 . . . . . . . . . . . . 13 ⟨(le‘ndx), ≤ ⟩ ≠ ∅
3736nesymi 2989 . . . . . . . . . . . 12 ¬ ∅ = ⟨(le‘ndx), ≤ ⟩
38 fvex 6889 . . . . . . . . . . . . . 14 (dist‘ndx) ∈ V
39 absf 15356 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
40 fex 7218 . . . . . . . . . . . . . . . 16 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4139, 4, 40mp2an 692 . . . . . . . . . . . . . . 15 abs ∈ V
42 subf 11484 . . . . . . . . . . . . . . . 16 − :(ℂ × ℂ)⟶ℂ
434, 4xpex 7747 . . . . . . . . . . . . . . . 16 (ℂ × ℂ) ∈ V
44 fex 7218 . . . . . . . . . . . . . . . 16 (( − :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V) → − ∈ V)
4542, 43, 44mp2an 692 . . . . . . . . . . . . . . 15 − ∈ V
4641, 45coex 7926 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ V
4738, 46opnzi 5449 . . . . . . . . . . . . 13 ⟨(dist‘ndx), (abs ∘ − )⟩ ≠ ∅
4847nesymi 2989 . . . . . . . . . . . 12 ¬ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩
4932, 37, 483pm3.2ni 1490 . . . . . . . . . . 11 ¬ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩)
5016eltp 4665 . . . . . . . . . . 11 (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ↔ (∅ = ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩ ∨ ∅ = ⟨(le‘ndx), ≤ ⟩ ∨ ∅ = ⟨(dist‘ndx), (abs ∘ − )⟩))
5149, 50mtbir 323 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
52 fvex 6889 . . . . . . . . . . . . 13 (UnifSet‘ndx) ∈ V
53 fvex 6889 . . . . . . . . . . . . 13 (metUnif‘(abs ∘ − )) ∈ V
5452, 53opnzi 5449 . . . . . . . . . . . 12 ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩ ≠ ∅
5554necomi 2986 . . . . . . . . . . 11 ∅ ≠ ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
56 nelsn 4642 . . . . . . . . . . 11 (∅ ≠ ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩ → ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5755, 56ax-mp 5 . . . . . . . . . 10 ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5851, 57pm3.2i 470 . . . . . . . . 9 (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5928, 58pm3.2i 470 . . . . . . . 8 ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
60 ioran 985 . . . . . . . . 9 (¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ ¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
61 ioran 985 . . . . . . . . . 10 (¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
62 ioran 985 . . . . . . . . . 10 (¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ↔ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
6361, 62anbi12i 628 . . . . . . . . 9 ((¬ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ ¬ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
6460, 63bitri 275 . . . . . . . 8 (¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((¬ ∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∧ ¬ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∧ (¬ ∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∧ ¬ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
6559, 64mpbir 231 . . . . . . 7 ¬ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
66 df-cnfld 21316 . . . . . . . . 9 fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
6766eleq2i 2826 . . . . . . . 8 (∅ ∈ ℂfld ↔ ∅ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
68 elun 4128 . . . . . . . 8 (∅ ∈ (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ (∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
69 elun 4128 . . . . . . . . 9 (∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ↔ (∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}))
70 elun 4128 . . . . . . . . 9 (∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}) ↔ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
7169, 70orbi12i 914 . . . . . . . 8 ((∅ ∈ ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∨ ∅ ∈ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})) ↔ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
7267, 68, 713bitri 297 . . . . . . 7 (∅ ∈ ℂfld ↔ ((∅ ∈ {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))⟩, ⟨(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))⟩} ∨ ∅ ∈ {⟨(*𝑟‘ndx), ∗⟩}) ∨ (∅ ∈ {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∨ ∅ ∈ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})))
7365, 72mtbir 323 . . . . . 6 ¬ ∅ ∈ ℂfld
74 disjsn 4687 . . . . . 6 ((ℂfld ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ℂfld)
7573, 74mpbir 231 . . . . 5 (ℂfld ∩ {∅}) = ∅
76 disjdif2 4455 . . . . 5 ((ℂfld ∩ {∅}) = ∅ → (ℂfld ∖ {∅}) = ℂfld)
7775, 76ax-mp 5 . . . 4 (ℂfld ∖ {∅}) = ℂfld
7877funeqi 6557 . . 3 (Fun (ℂfld ∖ {∅}) ↔ Fun ℂfld)
792, 78sylib 218 . 2 (ℂfld Struct ⟨1, 13⟩ → Fun ℂfld)
801, 79ax-mp 5 1 Fun ℂfld
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  cdif 3923  cun 3924  cin 3925  c0 4308  {csn 4601  {ctp 4605  cop 4607   class class class wbr 5119   × cxp 5652  ccom 5658  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  cc 11127  cr 11128  1c1 11130   + caddc 11132   · cmul 11134  cle 11270  cmin 11466  3c3 12296  cdc 12708  ccj 15115  abscabs 15253   Struct cstr 17165  ndxcnx 17212  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  *𝑟cstv 17273  TopSetcts 17277  lecple 17278  distcds 17280  UnifSetcunif 17281   TosetRel ctsr 18575  MetOpencmopn 21305  metUnifcmetu 21306  fldccnfld 21315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-ps 18576  df-tsr 18577  df-cnfld 21316
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator