Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3orel13 Structured version   Visualization version   GIF version

Theorem 3orel13 33562
Description: Elimination of two disjuncts in a triple disjunction. (Contributed by Scott Fenton, 9-Jun-2011.)
Assertion
Ref Expression
3orel13 ((¬ 𝜑 ∧ ¬ 𝜒) → ((𝜑𝜓𝜒) → 𝜓))

Proof of Theorem 3orel13
StepHypRef Expression
1 3orel3 33557 . 2 𝜒 → ((𝜑𝜓𝜒) → (𝜑𝜓)))
2 orel1 885 . 2 𝜑 → ((𝜑𝜓) → 𝜓))
31, 2sylan9r 508 1 ((¬ 𝜑 ∧ ¬ 𝜒) → ((𝜑𝜓𝜒) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3o 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086
This theorem is referenced by:  soseq  33730  nodenselem8  33821
  Copyright terms: Public domain W3C validator