Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3orel13 | Structured version Visualization version GIF version |
Description: Elimination of two disjuncts in a triple disjunction. (Contributed by Scott Fenton, 9-Jun-2011.) |
Ref | Expression |
---|---|
3orel13 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜒) → ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3orel3 33557 | . 2 ⊢ (¬ 𝜒 → ((𝜑 ∨ 𝜓 ∨ 𝜒) → (𝜑 ∨ 𝜓))) | |
2 | orel1 885 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
3 | 1, 2 | sylan9r 508 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜒) → ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 |
This theorem is referenced by: soseq 33730 nodenselem8 33821 |
Copyright terms: Public domain | W3C validator |