| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orel13 | Structured version Visualization version GIF version | ||
| Description: Elimination of two disjuncts in a triple disjunction. (Contributed by Scott Fenton, 9-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3orel13 | ⊢ ((¬ 𝜑 ∧ ¬ 𝜒) → ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3orel3 1488 | . 2 ⊢ (¬ 𝜒 → ((𝜑 ∨ 𝜓 ∨ 𝜒) → (𝜑 ∨ 𝜓))) | |
| 2 | orel1 888 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 3 | 1, 2 | sylan9r 508 | 1 ⊢ ((¬ 𝜑 ∧ ¬ 𝜒) → ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 |
| This theorem is referenced by: soseq 8140 nodenselem8 27609 |
| Copyright terms: Public domain | W3C validator |