|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ad5ant145 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| ad5ant.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| ad5ant145 | ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ad5ant.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | ad4ant134 1175 | . 2 ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| 3 | 2 | adantllr 719 | 1 ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: metuel2 24578 dimkerim 33678 matunitlindflem1 37623 hspmbllem2 46642 smflimlem2 46787 | 
| Copyright terms: Public domain | W3C validator |