Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimkerim Structured version   Visualization version   GIF version

Theorem dimkerim 33623
Description: Given a linear map 𝐹 between vector spaces 𝑉 and 𝑈, the dimension of the vector space 𝑉 is the sum of the dimension of 𝐹 's kernel and the dimension of 𝐹's image. Second part of theorem 5.3 in [Lang] p. 141 This can also be described as the Rank-nullity theorem, (dim‘𝐼) being the rank of 𝐹 (the dimension of its image), and (dim‘𝐾) its nullity (the dimension of its kernel). (Contributed by Thierry Arnoux, 17-May-2023.)
Hypotheses
Ref Expression
dimkerim.0 0 = (0g𝑈)
dimkerim.k 𝐾 = (𝑉s (𝐹 “ { 0 }))
dimkerim.i 𝐼 = (𝑈s ran 𝐹)
Assertion
Ref Expression
dimkerim ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))

Proof of Theorem dimkerim
Dummy variables 𝑏 𝑢 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dimkerim.0 . . . . 5 0 = (0g𝑈)
2 dimkerim.k . . . . 5 𝐾 = (𝑉s (𝐹 “ { 0 }))
31, 2kerlmhm 33616 . . . 4 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐾 ∈ LVec)
4 eqid 2729 . . . . 5 (LBasis‘𝐾) = (LBasis‘𝐾)
54lbsex 21075 . . . 4 (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅)
63, 5syl 17 . . 3 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (LBasis‘𝐾) ≠ ∅)
7 n0 4316 . . 3 ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (LBasis‘𝐾))
86, 7sylib 218 . 2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → ∃𝑤 𝑤 ∈ (LBasis‘𝐾))
9 simpllr 775 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ∈ (LBasis‘𝐾))
10 vex 3451 . . . . . . 7 𝑏 ∈ V
1110difexi 5285 . . . . . 6 (𝑏𝑤) ∈ V
1211a1i 11 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ V)
13 disjdif 4435 . . . . . 6 (𝑤 ∩ (𝑏𝑤)) = ∅
1413a1i 11 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∩ (𝑏𝑤)) = ∅)
15 hashunx 14351 . . . . 5 ((𝑤 ∈ (LBasis‘𝐾) ∧ (𝑏𝑤) ∈ V ∧ (𝑤 ∩ (𝑏𝑤)) = ∅) → (♯‘(𝑤 ∪ (𝑏𝑤))) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
169, 12, 14, 15syl3anc 1373 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (♯‘(𝑤 ∪ (𝑏𝑤))) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
17 simp-4l 782 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ LVec)
18 simpr 484 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤𝑏)
19 undif 4445 . . . . . . 7 (𝑤𝑏 ↔ (𝑤 ∪ (𝑏𝑤)) = 𝑏)
2018, 19sylib 218 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∪ (𝑏𝑤)) = 𝑏)
21 simplr 768 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ∈ (LBasis‘𝑉))
2220, 21eqeltrd 2828 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∪ (𝑏𝑤)) ∈ (LBasis‘𝑉))
23 eqid 2729 . . . . . 6 (LBasis‘𝑉) = (LBasis‘𝑉)
2423dimval 33596 . . . . 5 ((𝑉 ∈ LVec ∧ (𝑤 ∪ (𝑏𝑤)) ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘(𝑤 ∪ (𝑏𝑤))))
2517, 22, 24syl2anc 584 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝑉) = (♯‘(𝑤 ∪ (𝑏𝑤))))
263ad3antrrr 730 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐾 ∈ LVec)
274dimval 33596 . . . . . 6 ((𝐾 ∈ LVec ∧ 𝑤 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑤))
2826, 9, 27syl2anc 584 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐾) = (♯‘𝑤))
29 dimkerim.i . . . . . . . . 9 𝐼 = (𝑈s ran 𝐹)
3029imlmhm 33617 . . . . . . . 8 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐼 ∈ LVec)
3130ad3antrrr 730 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐼 ∈ LVec)
32 simp-4r 783 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 ∈ (𝑉 LMHom 𝑈))
33 lmhmlmod2 20939 . . . . . . . . . . 11 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝑈 ∈ LMod)
3432, 33syl 17 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑈 ∈ LMod)
35 lmhmrnlss 20957 . . . . . . . . . . 11 (𝐹 ∈ (𝑉 LMHom 𝑈) → ran 𝐹 ∈ (LSubSp‘𝑈))
3632, 35syl 17 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran 𝐹 ∈ (LSubSp‘𝑈))
37 df-ima 5651 . . . . . . . . . . 11 (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))
38 imassrn 6042 . . . . . . . . . . . 12 (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹
3938a1i 11 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹)
4037, 39eqsstrrid 3986 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹)
41 lveclmod 21013 . . . . . . . . . . . . 13 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
4241ad4antr 732 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ LMod)
4323lbslinds 21742 . . . . . . . . . . . . . . 15 (LBasis‘𝑉) ⊆ (LIndS‘𝑉)
4443, 21sselid 3944 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ∈ (LIndS‘𝑉))
45 difssd 4100 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ 𝑏)
46 lindsss 21733 . . . . . . . . . . . . . 14 ((𝑉 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑉) ∧ (𝑏𝑤) ⊆ 𝑏) → (𝑏𝑤) ∈ (LIndS‘𝑉))
4742, 44, 45, 46syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LIndS‘𝑉))
48 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝑉) = (Base‘𝑉)
4948linds1 21719 . . . . . . . . . . . . 13 ((𝑏𝑤) ∈ (LIndS‘𝑉) → (𝑏𝑤) ⊆ (Base‘𝑉))
5047, 49syl 17 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ (Base‘𝑉))
51 eqid 2729 . . . . . . . . . . . . 13 (LSubSp‘𝑉) = (LSubSp‘𝑉)
52 eqid 2729 . . . . . . . . . . . . 13 (LSpan‘𝑉) = (LSpan‘𝑉)
5348, 51, 52lspcl 20882 . . . . . . . . . . . 12 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
5442, 50, 53syl2anc 584 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
55 eqid 2729 . . . . . . . . . . . 12 (𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) = (𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))
5651, 55reslmhm 20959 . . . . . . . . . . 11 ((𝐹 ∈ (𝑉 LMHom 𝑈) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈))
5732, 54, 56syl2anc 584 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈))
58 eqid 2729 . . . . . . . . . . . 12 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5929, 58reslmhm2b 20961 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼)))
6059biimpa 476 . . . . . . . . . 10 (((𝑈 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) ∧ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼))
6134, 36, 40, 57, 60syl31anc 1375 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼))
62 lmghm 20938 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
6362ad4antlr 733 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
6448, 23lbsss 20984 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ (LBasis‘𝑉) → 𝑏 ⊆ (Base‘𝑉))
6521, 64syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ⊆ (Base‘𝑉))
6645, 65sstrd 3957 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ (Base‘𝑉))
6742, 66, 53syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
6851lsssubg 20863 . . . . . . . . . . . . . . . . 17 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉))
6942, 67, 68syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉))
7055resghm 19164 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝑉 GrpHom 𝑈) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈))
7163, 69, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈))
72 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝑈) = (Base‘𝑈)
7348, 72lmhmf 20941 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
7473ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
7574ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 Fn (Base‘𝑉))
7648, 52lspssv 20889 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
7742, 66, 76syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
7875, 77fnssresd 6642 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)))
79 fniniseg 7032 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)) → (𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) ↔ (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 )))
8079biimpa 476 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 ))
8178, 80sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 ))
8281simpld 494 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
8375adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝐹 Fn (Base‘𝑉))
8477adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
8584, 82sseldd 3947 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (Base‘𝑉))
8682fvresd 6878 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = (𝐹𝑥))
8781simprd 495 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 )
8886, 87eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝐹𝑥) = 0 )
89 fniniseg 7032 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn (Base‘𝑉) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑉) ∧ (𝐹𝑥) = 0 )))
9089biimpar 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 Fn (Base‘𝑉) ∧ (𝑥 ∈ (Base‘𝑉) ∧ (𝐹𝑥) = 0 )) → 𝑥 ∈ (𝐹 “ { 0 }))
9183, 85, 88, 90syl12anc 836 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (𝐹 “ { 0 }))
9282, 91elind 4163 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })))
93 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LBasis‘𝐾))
94 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝐾) = (Base‘𝐾)
95 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (LSpan‘𝐾) = (LSpan‘𝐾)
9694, 4, 95lbssp 20986 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (LBasis‘𝐾) → ((LSpan‘𝐾)‘𝑤) = (Base‘𝐾))
9793, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝐾)‘𝑤) = (Base‘𝐾))
9841ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑉 ∈ LMod)
99 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹 “ { 0 }) = (𝐹 “ { 0 })
10099, 1, 51lmhmkerlss 20958 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉))
101100ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉))
10294, 4lbsss 20984 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ (LBasis‘𝐾) → 𝑤 ⊆ (Base‘𝐾))
10393, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ⊆ (Base‘𝐾))
104 cnvimass 6053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹 “ { 0 }) ⊆ dom 𝐹
105104, 73fssdm 6707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) ⊆ (Base‘𝑉))
1062, 48ressbas2 17208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹 “ { 0 }) ⊆ (Base‘𝑉) → (𝐹 “ { 0 }) = (Base‘𝐾))
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) = (Base‘𝐾))
108107ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝐹 “ { 0 }) = (Base‘𝐾))
109103, 108sseqtrrd 3984 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ⊆ (𝐹 “ { 0 }))
1102, 52, 95, 51lsslsp 20921 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) → ((LSpan‘𝐾)‘𝑤) = ((LSpan‘𝑉)‘𝑤))
111110eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) → ((LSpan‘𝑉)‘𝑤) = ((LSpan‘𝐾)‘𝑤))
11298, 101, 109, 111syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝑉)‘𝑤) = ((LSpan‘𝐾)‘𝑤))
11397, 112, 1083eqtr4d 2774 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
114113ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
115114ineq2d 4183 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })))
116 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (0g𝑉) = (0g𝑉)
11723, 52, 116lbsdiflsp0 33622 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = {(0g𝑉)})
118117ad5ant145 1371 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = {(0g𝑉)})
119115, 118eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })) = {(0g𝑉)})
120119adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })) = {(0g𝑉)})
12192, 120eleqtrd 2830 . . . . . . . . . . . . . . . . . . 19 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ {(0g𝑉)})
122121ex 412 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) → 𝑥 ∈ {(0g𝑉)}))
123122ssrdv 3952 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) ⊆ {(0g𝑉)})
124116, 48, 520ellsp 33340 . . . . . . . . . . . . . . . . . . . 20 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
12542, 66, 124syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
126 fvexd 6873 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V)
127125fvresd 6878 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = (𝐹‘(0g𝑉)))
128116, 1ghmid 19154 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (𝑉 GrpHom 𝑈) → (𝐹‘(0g𝑉)) = 0 )
12962, 128syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹‘(0g𝑉)) = 0 )
130129ad4antlr 733 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹‘(0g𝑉)) = 0 )
131127, 130eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 )
132 elsng 4603 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V → (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 } ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 ))
133132biimpar 477 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 ) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 })
134126, 131, 133syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 })
13578, 125, 134elpreimad 7031 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }))
136135snssd 4773 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → {(0g𝑉)} ⊆ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }))
137123, 136eqssd 3964 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g𝑉)})
138 lmodgrp 20773 . . . . . . . . . . . . . . . . . . 19 (𝑉 ∈ LMod → 𝑉 ∈ Grp)
139 grpmnd 18872 . . . . . . . . . . . . . . . . . . 19 (𝑉 ∈ Grp → 𝑉 ∈ Mnd)
14042, 138, 1393syl 18 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ Mnd)
14155, 48, 116ress0g 18689 . . . . . . . . . . . . . . . . . 18 ((𝑉 ∈ Mnd ∧ (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) → (0g𝑉) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
142140, 125, 77, 141syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
143142sneqd 4601 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → {(0g𝑉)} = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))})
144137, 143eqtrd 2764 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))})
145 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
146 eqid 2729 . . . . . . . . . . . . . . . . 17 (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
147145, 72, 146, 1kerf1ghm 19179 . . . . . . . . . . . . . . . 16 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈) ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))}))
148147biimpar 477 . . . . . . . . . . . . . . 15 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))}) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈))
14971, 144, 148syl2anc 584 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈))
150 eqidd 2730 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) = (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
15155, 48ressbas2 17208 . . . . . . . . . . . . . . . 16 (((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
15277, 151syl 17 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
153 eqidd 2730 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (Base‘𝑈) = (Base‘𝑈))
154150, 152, 153f1eq123d 6792 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈)))
155149, 154mpbird 257 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈))
156 f1ssr 6762 . . . . . . . . . . . . 13 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹)
157155, 40, 156syl2anc 584 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹)
158 f1f1orn 6811 . . . . . . . . . . . 12 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
159157, 158syl 17 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
160 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = 𝑦)
16175ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹 Fn (Base‘𝑉))
162 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ ((LSpan‘𝑉)‘𝑤))
163113ad8antr 740 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
164162, 163eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ (𝐹 “ { 0 }))
165 fniniseg 7032 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 Fn (Base‘𝑉) → (𝑢 ∈ (𝐹 “ { 0 }) ↔ (𝑢 ∈ (Base‘𝑉) ∧ (𝐹𝑢) = 0 )))
166165simplbda 499 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn (Base‘𝑉) ∧ 𝑢 ∈ (𝐹 “ { 0 })) → (𝐹𝑢) = 0 )
167161, 164, 166syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑢) = 0 )
168167oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((𝐹𝑢)(+g𝑈)(𝐹𝑣)) = ( 0 (+g𝑈)(𝐹𝑣)))
169 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑥 = (𝑢(+g𝑉)𝑣))
170169fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = (𝐹‘(𝑢(+g𝑉)𝑣)))
17163ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
17248, 52lspss 20890 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑉) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ ((LSpan‘𝑉)‘𝑏))
17342, 65, 18, 172syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ ((LSpan‘𝑉)‘𝑏))
17448, 23, 52lbssp 20986 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (LBasis‘𝑉) → ((LSpan‘𝑉)‘𝑏) = (Base‘𝑉))
17521, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑏) = (Base‘𝑉))
176173, 175sseqtrd 3983 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
177176ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
178177ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
179178, 162sseldd 3947 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ (Base‘𝑉))
18077ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
181180ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
182 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
183181, 182sseldd 3947 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑣 ∈ (Base‘𝑉))
184 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑉) = (+g𝑉)
185 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑈) = (+g𝑈)
18648, 184, 185ghmlin 19153 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (𝑉 GrpHom 𝑈) ∧ 𝑢 ∈ (Base‘𝑉) ∧ 𝑣 ∈ (Base‘𝑉)) → (𝐹‘(𝑢(+g𝑉)𝑣)) = ((𝐹𝑢)(+g𝑈)(𝐹𝑣)))
187171, 179, 183, 186syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹‘(𝑢(+g𝑉)𝑣)) = ((𝐹𝑢)(+g𝑈)(𝐹𝑣)))
188170, 187eqtr2d 2765 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((𝐹𝑢)(+g𝑈)(𝐹𝑣)) = (𝐹𝑥))
189 lmhmlvec2 33615 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)
190189lvecgrpd 21015 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ Grp)
191190ad9antr 742 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑈 ∈ Grp)
19274ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
193192, 183ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑣) ∈ (Base‘𝑈))
19472, 185, 1, 191, 193grplidd 18901 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ( 0 (+g𝑈)(𝐹𝑣)) = (𝐹𝑣))
195168, 188, 1943eqtr3d 2772 . . . . . . . . . . . . . . . . . 18 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = (𝐹𝑣))
196160, 195eqtr3d 2766 . . . . . . . . . . . . . . . . 17 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑦 = (𝐹𝑣))
197161, 183, 182fnfvimad 7208 . . . . . . . . . . . . . . . . 17 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑣) ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
198196, 197eqeltrd 2828 . . . . . . . . . . . . . . . 16 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
199 simp-7l 788 . . . . . . . . . . . . . . . . 17 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑉 ∈ LVec)
200 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (Base‘𝑉))
201109ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ⊆ (𝐹 “ { 0 }))
202105ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ { 0 }) ⊆ (Base‘𝑉))
203201, 202sstrd 3957 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ⊆ (Base‘𝑉))
204 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (LSSum‘𝑉) = (LSSum‘𝑉)
20548, 52, 204lsmsp2 20994 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ LMod ∧ 𝑤 ⊆ (Base‘𝑉) ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) = ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))))
20642, 203, 66, 205syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) = ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))))
20720fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))) = ((LSpan‘𝑉)‘𝑏))
208206, 207, 1753eqtrrd 2769 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (Base‘𝑉) = (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
209208ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → (Base‘𝑉) = (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
210200, 209eleqtrd 2830 . . . . . . . . . . . . . . . . 17 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
21148, 184, 204lsmelvalx 19570 . . . . . . . . . . . . . . . . . 18 ((𝑉 ∈ LVec ∧ ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) → (𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) ↔ ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣)))
212211biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝑉 ∈ LVec ∧ ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) ∧ 𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤)))) → ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣))
213199, 177, 180, 210, 212syl31anc 1375 . . . . . . . . . . . . . . . 16 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣))
214198, 213r19.29vva 3197 . . . . . . . . . . . . . . 15 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
215 fvelrnb 6921 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝑉) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦))
216215biimpa 476 . . . . . . . . . . . . . . . 16 ((𝐹 Fn (Base‘𝑉) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦)
21775, 216sylan 580 . . . . . . . . . . . . . . 15 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦)
218214, 217r19.29a 3141 . . . . . . . . . . . . . 14 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
21939, 218eqelssd 3968 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran 𝐹)
22037, 219eqtr3id 2778 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran 𝐹)
221220f1oeq3d 6797 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹))
222159, 221mpbid 232 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹)
22342, 50, 76syl2anc 584 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
224223, 151syl 17 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
225 frn 6695 . . . . . . . . . . . 12 (𝐹:(Base‘𝑉)⟶(Base‘𝑈) → ran 𝐹 ⊆ (Base‘𝑈))
22629, 72ressbas2 17208 . . . . . . . . . . . 12 (ran 𝐹 ⊆ (Base‘𝑈) → ran 𝐹 = (Base‘𝐼))
22732, 73, 225, 2264syl 19 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran 𝐹 = (Base‘𝐼))
228150, 224, 227f1oeq123d 6794 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹 ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼)))
229222, 228mpbid 232 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼))
230 eqid 2729 . . . . . . . . . 10 (Base‘𝐼) = (Base‘𝐼)
231145, 230islmim 20969 . . . . . . . . 9 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼) ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼) ∧ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼)))
23261, 229, 231sylanbrc 583 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼))
23348, 52lspssid 20891 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)))
23442, 50, 233syl2anc 584 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)))
23551, 55lsslinds 21740 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) → ((𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ↔ (𝑏𝑤) ∈ (LIndS‘𝑉)))
236235biimpar 477 . . . . . . . . . 10 (((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → (𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
23742, 67, 234, 47, 236syl31anc 1375 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
238 eqid 2729 . . . . . . . . . . . . 13 (LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
23955, 52, 238, 51lsslsp 20921 . . . . . . . . . . . 12 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) → ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)) = ((LSpan‘𝑉)‘(𝑏𝑤)))
240239eqcomd 2735 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) → ((LSpan‘𝑉)‘(𝑏𝑤)) = ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)))
24142, 54, 234, 240syl3anc 1373 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)))
242241, 224eqtr3d 2766 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
243 eqid 2729 . . . . . . . . . 10 (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
244145, 243, 238islbs4 21741 . . . . . . . . 9 ((𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ↔ ((𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ∧ ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))))
245237, 242, 244sylanbrc 583 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
246 eqid 2729 . . . . . . . . 9 (LBasis‘𝐼) = (LBasis‘𝐼)
247243, 246lmimlbs 21745 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼) ∧ (𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼))
248232, 245, 247syl2anc 584 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼))
249246dimval 33596 . . . . . . 7 ((𝐼 ∈ LVec ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼)) → (dim‘𝐼) = (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))))
25031, 248, 249syl2anc 584 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐼) = (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))))
251 f1imaeng 8985 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ≈ (𝑏𝑤))
252 hasheni 14313 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ≈ (𝑏𝑤) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
253251, 252syl 17 . . . . . . 7 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
254157, 234, 47, 253syl3anc 1373 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
255250, 254eqtrd 2764 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐼) = (♯‘(𝑏𝑤)))
25628, 255oveq12d 7405 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((dim‘𝐾) +𝑒 (dim‘𝐼)) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
25716, 25, 2563eqtr4d 2774 . . 3 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
2584lbslinds 21742 . . . . . 6 (LBasis‘𝐾) ⊆ (LIndS‘𝐾)
259258, 93sselid 3944 . . . . 5 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LIndS‘𝐾))
26051, 2lsslinds 21740 . . . . . 6 ((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) → (𝑤 ∈ (LIndS‘𝐾) ↔ 𝑤 ∈ (LIndS‘𝑉)))
261260biimpa 476 . . . . 5 (((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) ∧ 𝑤 ∈ (LIndS‘𝐾)) → 𝑤 ∈ (LIndS‘𝑉))
26298, 101, 109, 259, 261syl31anc 1375 . . . 4 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LIndS‘𝑉))
26323islinds4 21744 . . . . 5 (𝑉 ∈ LVec → (𝑤 ∈ (LIndS‘𝑉) ↔ ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏))
264263ad2antrr 726 . . . 4 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝑤 ∈ (LIndS‘𝑉) ↔ ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏))
265262, 264mpbid 232 . . 3 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏)
266257, 265r19.29a 3141 . 2 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
2678, 266exlimddv 1935 1 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  ccnv 5637  ran crn 5639  cres 5640  cima 5641   Fn wfn 6506  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cen 8915   +𝑒 cxad 13070  chash 14295  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402  Mndcmnd 18661  Grpcgrp 18865  SubGrpcsubg 19052   GrpHom cghm 19144  LSSumclsm 19564  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877   LMHom clmhm 20926   LMIso clmim 20927  LBasisclbs 20981  LVecclvec 21009  LIndSclinds 21714  dimcldim 33594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-r1 9717  df-rank 9718  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-xadd 13073  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ocomp 17241  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-mri 17549  df-acs 17550  df-proset 18255  df-drs 18256  df-poset 18274  df-ipo 18487  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-nzr 20422  df-subrg 20479  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lmim 20930  df-lbs 20982  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-uvc 21692  df-lindf 21715  df-linds 21716  df-dim 33595
This theorem is referenced by:  qusdimsum  33624  lvecendof1f1o  33629
  Copyright terms: Public domain W3C validator