Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimkerim Structured version   Visualization version   GIF version

Theorem dimkerim 33672
Description: Given a linear map 𝐹 between vector spaces 𝑉 and 𝑈, the dimension of the vector space 𝑉 is the sum of the dimension of 𝐹 's kernel and the dimension of 𝐹's image. Second part of theorem 5.3 in [Lang] p. 141 This can also be described as the Rank-nullity theorem, (dim‘𝐼) being the rank of 𝐹 (the dimension of its image), and (dim‘𝐾) its nullity (the dimension of its kernel). (Contributed by Thierry Arnoux, 17-May-2023.)
Hypotheses
Ref Expression
dimkerim.0 0 = (0g𝑈)
dimkerim.k 𝐾 = (𝑉s (𝐹 “ { 0 }))
dimkerim.i 𝐼 = (𝑈s ran 𝐹)
Assertion
Ref Expression
dimkerim ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))

Proof of Theorem dimkerim
Dummy variables 𝑏 𝑢 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dimkerim.0 . . . . 5 0 = (0g𝑈)
2 dimkerim.k . . . . 5 𝐾 = (𝑉s (𝐹 “ { 0 }))
31, 2kerlmhm 33665 . . . 4 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐾 ∈ LVec)
4 eqid 2736 . . . . 5 (LBasis‘𝐾) = (LBasis‘𝐾)
54lbsex 21131 . . . 4 (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅)
63, 5syl 17 . . 3 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (LBasis‘𝐾) ≠ ∅)
7 n0 4333 . . 3 ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (LBasis‘𝐾))
86, 7sylib 218 . 2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → ∃𝑤 𝑤 ∈ (LBasis‘𝐾))
9 simpllr 775 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ∈ (LBasis‘𝐾))
10 vex 3468 . . . . . . 7 𝑏 ∈ V
1110difexi 5305 . . . . . 6 (𝑏𝑤) ∈ V
1211a1i 11 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ V)
13 disjdif 4452 . . . . . 6 (𝑤 ∩ (𝑏𝑤)) = ∅
1413a1i 11 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∩ (𝑏𝑤)) = ∅)
15 hashunx 14409 . . . . 5 ((𝑤 ∈ (LBasis‘𝐾) ∧ (𝑏𝑤) ∈ V ∧ (𝑤 ∩ (𝑏𝑤)) = ∅) → (♯‘(𝑤 ∪ (𝑏𝑤))) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
169, 12, 14, 15syl3anc 1373 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (♯‘(𝑤 ∪ (𝑏𝑤))) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
17 simp-4l 782 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ LVec)
18 simpr 484 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤𝑏)
19 undif 4462 . . . . . . 7 (𝑤𝑏 ↔ (𝑤 ∪ (𝑏𝑤)) = 𝑏)
2018, 19sylib 218 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∪ (𝑏𝑤)) = 𝑏)
21 simplr 768 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ∈ (LBasis‘𝑉))
2220, 21eqeltrd 2835 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∪ (𝑏𝑤)) ∈ (LBasis‘𝑉))
23 eqid 2736 . . . . . 6 (LBasis‘𝑉) = (LBasis‘𝑉)
2423dimval 33645 . . . . 5 ((𝑉 ∈ LVec ∧ (𝑤 ∪ (𝑏𝑤)) ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘(𝑤 ∪ (𝑏𝑤))))
2517, 22, 24syl2anc 584 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝑉) = (♯‘(𝑤 ∪ (𝑏𝑤))))
263ad3antrrr 730 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐾 ∈ LVec)
274dimval 33645 . . . . . 6 ((𝐾 ∈ LVec ∧ 𝑤 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑤))
2826, 9, 27syl2anc 584 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐾) = (♯‘𝑤))
29 dimkerim.i . . . . . . . . 9 𝐼 = (𝑈s ran 𝐹)
3029imlmhm 33666 . . . . . . . 8 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐼 ∈ LVec)
3130ad3antrrr 730 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐼 ∈ LVec)
32 simp-4r 783 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 ∈ (𝑉 LMHom 𝑈))
33 lmhmlmod2 20995 . . . . . . . . . . 11 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝑈 ∈ LMod)
3432, 33syl 17 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑈 ∈ LMod)
35 lmhmrnlss 21013 . . . . . . . . . . 11 (𝐹 ∈ (𝑉 LMHom 𝑈) → ran 𝐹 ∈ (LSubSp‘𝑈))
3632, 35syl 17 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran 𝐹 ∈ (LSubSp‘𝑈))
37 df-ima 5672 . . . . . . . . . . 11 (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))
38 imassrn 6063 . . . . . . . . . . . 12 (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹
3938a1i 11 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹)
4037, 39eqsstrrid 4003 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹)
41 lveclmod 21069 . . . . . . . . . . . . 13 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
4241ad4antr 732 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ LMod)
4323lbslinds 21798 . . . . . . . . . . . . . . 15 (LBasis‘𝑉) ⊆ (LIndS‘𝑉)
4443, 21sselid 3961 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ∈ (LIndS‘𝑉))
45 difssd 4117 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ 𝑏)
46 lindsss 21789 . . . . . . . . . . . . . 14 ((𝑉 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑉) ∧ (𝑏𝑤) ⊆ 𝑏) → (𝑏𝑤) ∈ (LIndS‘𝑉))
4742, 44, 45, 46syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LIndS‘𝑉))
48 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝑉) = (Base‘𝑉)
4948linds1 21775 . . . . . . . . . . . . 13 ((𝑏𝑤) ∈ (LIndS‘𝑉) → (𝑏𝑤) ⊆ (Base‘𝑉))
5047, 49syl 17 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ (Base‘𝑉))
51 eqid 2736 . . . . . . . . . . . . 13 (LSubSp‘𝑉) = (LSubSp‘𝑉)
52 eqid 2736 . . . . . . . . . . . . 13 (LSpan‘𝑉) = (LSpan‘𝑉)
5348, 51, 52lspcl 20938 . . . . . . . . . . . 12 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
5442, 50, 53syl2anc 584 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
55 eqid 2736 . . . . . . . . . . . 12 (𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) = (𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))
5651, 55reslmhm 21015 . . . . . . . . . . 11 ((𝐹 ∈ (𝑉 LMHom 𝑈) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈))
5732, 54, 56syl2anc 584 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈))
58 eqid 2736 . . . . . . . . . . . 12 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5929, 58reslmhm2b 21017 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼)))
6059biimpa 476 . . . . . . . . . 10 (((𝑈 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) ∧ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼))
6134, 36, 40, 57, 60syl31anc 1375 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼))
62 lmghm 20994 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
6362ad4antlr 733 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
6448, 23lbsss 21040 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ (LBasis‘𝑉) → 𝑏 ⊆ (Base‘𝑉))
6521, 64syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ⊆ (Base‘𝑉))
6645, 65sstrd 3974 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ (Base‘𝑉))
6742, 66, 53syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
6851lsssubg 20919 . . . . . . . . . . . . . . . . 17 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉))
6942, 67, 68syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉))
7055resghm 19220 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝑉 GrpHom 𝑈) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈))
7163, 69, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈))
72 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝑈) = (Base‘𝑈)
7348, 72lmhmf 20997 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
7473ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
7574ffnd 6712 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 Fn (Base‘𝑉))
7648, 52lspssv 20945 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
7742, 66, 76syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
7875, 77fnssresd 6667 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)))
79 fniniseg 7055 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)) → (𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) ↔ (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 )))
8079biimpa 476 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 ))
8178, 80sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 ))
8281simpld 494 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
8375adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝐹 Fn (Base‘𝑉))
8477adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
8584, 82sseldd 3964 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (Base‘𝑉))
8682fvresd 6901 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = (𝐹𝑥))
8781simprd 495 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 )
8886, 87eqtr3d 2773 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝐹𝑥) = 0 )
89 fniniseg 7055 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn (Base‘𝑉) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑉) ∧ (𝐹𝑥) = 0 )))
9089biimpar 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 Fn (Base‘𝑉) ∧ (𝑥 ∈ (Base‘𝑉) ∧ (𝐹𝑥) = 0 )) → 𝑥 ∈ (𝐹 “ { 0 }))
9183, 85, 88, 90syl12anc 836 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (𝐹 “ { 0 }))
9282, 91elind 4180 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })))
93 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LBasis‘𝐾))
94 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝐾) = (Base‘𝐾)
95 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (LSpan‘𝐾) = (LSpan‘𝐾)
9694, 4, 95lbssp 21042 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (LBasis‘𝐾) → ((LSpan‘𝐾)‘𝑤) = (Base‘𝐾))
9793, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝐾)‘𝑤) = (Base‘𝐾))
9841ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑉 ∈ LMod)
99 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹 “ { 0 }) = (𝐹 “ { 0 })
10099, 1, 51lmhmkerlss 21014 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉))
101100ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉))
10294, 4lbsss 21040 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ (LBasis‘𝐾) → 𝑤 ⊆ (Base‘𝐾))
10393, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ⊆ (Base‘𝐾))
104 cnvimass 6074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹 “ { 0 }) ⊆ dom 𝐹
105104, 73fssdm 6730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) ⊆ (Base‘𝑉))
1062, 48ressbas2 17264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹 “ { 0 }) ⊆ (Base‘𝑉) → (𝐹 “ { 0 }) = (Base‘𝐾))
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) = (Base‘𝐾))
108107ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝐹 “ { 0 }) = (Base‘𝐾))
109103, 108sseqtrrd 4001 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ⊆ (𝐹 “ { 0 }))
1102, 52, 95, 51lsslsp 20977 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) → ((LSpan‘𝐾)‘𝑤) = ((LSpan‘𝑉)‘𝑤))
111110eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) → ((LSpan‘𝑉)‘𝑤) = ((LSpan‘𝐾)‘𝑤))
11298, 101, 109, 111syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝑉)‘𝑤) = ((LSpan‘𝐾)‘𝑤))
11397, 112, 1083eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
114113ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
115114ineq2d 4200 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })))
116 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (0g𝑉) = (0g𝑉)
11723, 52, 116lbsdiflsp0 33671 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = {(0g𝑉)})
118117ad5ant145 1371 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = {(0g𝑉)})
119115, 118eqtr3d 2773 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })) = {(0g𝑉)})
120119adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })) = {(0g𝑉)})
12192, 120eleqtrd 2837 . . . . . . . . . . . . . . . . . . 19 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ {(0g𝑉)})
122121ex 412 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) → 𝑥 ∈ {(0g𝑉)}))
123122ssrdv 3969 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) ⊆ {(0g𝑉)})
124116, 48, 520ellsp 33389 . . . . . . . . . . . . . . . . . . . 20 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
12542, 66, 124syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
126 fvexd 6896 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V)
127125fvresd 6901 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = (𝐹‘(0g𝑉)))
128116, 1ghmid 19210 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (𝑉 GrpHom 𝑈) → (𝐹‘(0g𝑉)) = 0 )
12962, 128syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹‘(0g𝑉)) = 0 )
130129ad4antlr 733 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹‘(0g𝑉)) = 0 )
131127, 130eqtrd 2771 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 )
132 elsng 4620 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V → (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 } ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 ))
133132biimpar 477 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 ) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 })
134126, 131, 133syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 })
13578, 125, 134elpreimad 7054 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }))
136135snssd 4790 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → {(0g𝑉)} ⊆ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }))
137123, 136eqssd 3981 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g𝑉)})
138 lmodgrp 20829 . . . . . . . . . . . . . . . . . . 19 (𝑉 ∈ LMod → 𝑉 ∈ Grp)
139 grpmnd 18928 . . . . . . . . . . . . . . . . . . 19 (𝑉 ∈ Grp → 𝑉 ∈ Mnd)
14042, 138, 1393syl 18 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ Mnd)
14155, 48, 116ress0g 18745 . . . . . . . . . . . . . . . . . 18 ((𝑉 ∈ Mnd ∧ (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) → (0g𝑉) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
142140, 125, 77, 141syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
143142sneqd 4618 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → {(0g𝑉)} = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))})
144137, 143eqtrd 2771 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))})
145 eqid 2736 . . . . . . . . . . . . . . . . 17 (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
146 eqid 2736 . . . . . . . . . . . . . . . . 17 (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
147145, 72, 146, 1kerf1ghm 19235 . . . . . . . . . . . . . . . 16 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈) ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))}))
148147biimpar 477 . . . . . . . . . . . . . . 15 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))}) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈))
14971, 144, 148syl2anc 584 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈))
150 eqidd 2737 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) = (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
15155, 48ressbas2 17264 . . . . . . . . . . . . . . . 16 (((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
15277, 151syl 17 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
153 eqidd 2737 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (Base‘𝑈) = (Base‘𝑈))
154150, 152, 153f1eq123d 6815 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈)))
155149, 154mpbird 257 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈))
156 f1ssr 6785 . . . . . . . . . . . . 13 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹)
157155, 40, 156syl2anc 584 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹)
158 f1f1orn 6834 . . . . . . . . . . . 12 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
159157, 158syl 17 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
160 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = 𝑦)
16175ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹 Fn (Base‘𝑉))
162 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ ((LSpan‘𝑉)‘𝑤))
163113ad8antr 740 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
164162, 163eleqtrd 2837 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ (𝐹 “ { 0 }))
165 fniniseg 7055 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 Fn (Base‘𝑉) → (𝑢 ∈ (𝐹 “ { 0 }) ↔ (𝑢 ∈ (Base‘𝑉) ∧ (𝐹𝑢) = 0 )))
166165simplbda 499 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn (Base‘𝑉) ∧ 𝑢 ∈ (𝐹 “ { 0 })) → (𝐹𝑢) = 0 )
167161, 164, 166syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑢) = 0 )
168167oveq1d 7425 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((𝐹𝑢)(+g𝑈)(𝐹𝑣)) = ( 0 (+g𝑈)(𝐹𝑣)))
169 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑥 = (𝑢(+g𝑉)𝑣))
170169fveq2d 6885 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = (𝐹‘(𝑢(+g𝑉)𝑣)))
17163ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
17248, 52lspss 20946 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑉) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ ((LSpan‘𝑉)‘𝑏))
17342, 65, 18, 172syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ ((LSpan‘𝑉)‘𝑏))
17448, 23, 52lbssp 21042 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (LBasis‘𝑉) → ((LSpan‘𝑉)‘𝑏) = (Base‘𝑉))
17521, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑏) = (Base‘𝑉))
176173, 175sseqtrd 4000 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
177176ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
178177ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
179178, 162sseldd 3964 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ (Base‘𝑉))
18077ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
181180ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
182 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
183181, 182sseldd 3964 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑣 ∈ (Base‘𝑉))
184 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑉) = (+g𝑉)
185 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑈) = (+g𝑈)
18648, 184, 185ghmlin 19209 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (𝑉 GrpHom 𝑈) ∧ 𝑢 ∈ (Base‘𝑉) ∧ 𝑣 ∈ (Base‘𝑉)) → (𝐹‘(𝑢(+g𝑉)𝑣)) = ((𝐹𝑢)(+g𝑈)(𝐹𝑣)))
187171, 179, 183, 186syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹‘(𝑢(+g𝑉)𝑣)) = ((𝐹𝑢)(+g𝑈)(𝐹𝑣)))
188170, 187eqtr2d 2772 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((𝐹𝑢)(+g𝑈)(𝐹𝑣)) = (𝐹𝑥))
189 lmhmlvec2 33664 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)
190189lvecgrpd 21071 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ Grp)
191190ad9antr 742 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑈 ∈ Grp)
19274ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
193192, 183ffvelcdmd 7080 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑣) ∈ (Base‘𝑈))
19472, 185, 1, 191, 193grplidd 18957 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ( 0 (+g𝑈)(𝐹𝑣)) = (𝐹𝑣))
195168, 188, 1943eqtr3d 2779 . . . . . . . . . . . . . . . . . 18 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = (𝐹𝑣))
196160, 195eqtr3d 2773 . . . . . . . . . . . . . . . . 17 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑦 = (𝐹𝑣))
197161, 183, 182fnfvimad 7231 . . . . . . . . . . . . . . . . 17 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑣) ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
198196, 197eqeltrd 2835 . . . . . . . . . . . . . . . 16 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
199 simp-7l 788 . . . . . . . . . . . . . . . . 17 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑉 ∈ LVec)
200 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (Base‘𝑉))
201109ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ⊆ (𝐹 “ { 0 }))
202105ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ { 0 }) ⊆ (Base‘𝑉))
203201, 202sstrd 3974 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ⊆ (Base‘𝑉))
204 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (LSSum‘𝑉) = (LSSum‘𝑉)
20548, 52, 204lsmsp2 21050 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ LMod ∧ 𝑤 ⊆ (Base‘𝑉) ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) = ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))))
20642, 203, 66, 205syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) = ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))))
20720fveq2d 6885 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))) = ((LSpan‘𝑉)‘𝑏))
208206, 207, 1753eqtrrd 2776 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (Base‘𝑉) = (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
209208ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → (Base‘𝑉) = (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
210200, 209eleqtrd 2837 . . . . . . . . . . . . . . . . 17 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
21148, 184, 204lsmelvalx 19626 . . . . . . . . . . . . . . . . . 18 ((𝑉 ∈ LVec ∧ ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) → (𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) ↔ ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣)))
212211biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝑉 ∈ LVec ∧ ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) ∧ 𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤)))) → ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣))
213199, 177, 180, 210, 212syl31anc 1375 . . . . . . . . . . . . . . . 16 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣))
214198, 213r19.29vva 3205 . . . . . . . . . . . . . . 15 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
215 fvelrnb 6944 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝑉) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦))
216215biimpa 476 . . . . . . . . . . . . . . . 16 ((𝐹 Fn (Base‘𝑉) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦)
21775, 216sylan 580 . . . . . . . . . . . . . . 15 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦)
218214, 217r19.29a 3149 . . . . . . . . . . . . . 14 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
21939, 218eqelssd 3985 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran 𝐹)
22037, 219eqtr3id 2785 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran 𝐹)
221220f1oeq3d 6820 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹))
222159, 221mpbid 232 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹)
22342, 50, 76syl2anc 584 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
224223, 151syl 17 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
225 frn 6718 . . . . . . . . . . . 12 (𝐹:(Base‘𝑉)⟶(Base‘𝑈) → ran 𝐹 ⊆ (Base‘𝑈))
22629, 72ressbas2 17264 . . . . . . . . . . . 12 (ran 𝐹 ⊆ (Base‘𝑈) → ran 𝐹 = (Base‘𝐼))
22732, 73, 225, 2264syl 19 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran 𝐹 = (Base‘𝐼))
228150, 224, 227f1oeq123d 6817 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹 ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼)))
229222, 228mpbid 232 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼))
230 eqid 2736 . . . . . . . . . 10 (Base‘𝐼) = (Base‘𝐼)
231145, 230islmim 21025 . . . . . . . . 9 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼) ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼) ∧ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼)))
23261, 229, 231sylanbrc 583 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼))
23348, 52lspssid 20947 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)))
23442, 50, 233syl2anc 584 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)))
23551, 55lsslinds 21796 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) → ((𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ↔ (𝑏𝑤) ∈ (LIndS‘𝑉)))
236235biimpar 477 . . . . . . . . . 10 (((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → (𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
23742, 67, 234, 47, 236syl31anc 1375 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
238 eqid 2736 . . . . . . . . . . . . 13 (LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
23955, 52, 238, 51lsslsp 20977 . . . . . . . . . . . 12 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) → ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)) = ((LSpan‘𝑉)‘(𝑏𝑤)))
240239eqcomd 2742 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) → ((LSpan‘𝑉)‘(𝑏𝑤)) = ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)))
24142, 54, 234, 240syl3anc 1373 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)))
242241, 224eqtr3d 2773 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
243 eqid 2736 . . . . . . . . . 10 (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
244145, 243, 238islbs4 21797 . . . . . . . . 9 ((𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ↔ ((𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ∧ ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))))
245237, 242, 244sylanbrc 583 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
246 eqid 2736 . . . . . . . . 9 (LBasis‘𝐼) = (LBasis‘𝐼)
247243, 246lmimlbs 21801 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼) ∧ (𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼))
248232, 245, 247syl2anc 584 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼))
249246dimval 33645 . . . . . . 7 ((𝐼 ∈ LVec ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼)) → (dim‘𝐼) = (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))))
25031, 248, 249syl2anc 584 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐼) = (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))))
251 f1imaeng 9033 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ≈ (𝑏𝑤))
252 hasheni 14371 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ≈ (𝑏𝑤) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
253251, 252syl 17 . . . . . . 7 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
254157, 234, 47, 253syl3anc 1373 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
255250, 254eqtrd 2771 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐼) = (♯‘(𝑏𝑤)))
25628, 255oveq12d 7428 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((dim‘𝐾) +𝑒 (dim‘𝐼)) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
25716, 25, 2563eqtr4d 2781 . . 3 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
2584lbslinds 21798 . . . . . 6 (LBasis‘𝐾) ⊆ (LIndS‘𝐾)
259258, 93sselid 3961 . . . . 5 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LIndS‘𝐾))
26051, 2lsslinds 21796 . . . . . 6 ((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) → (𝑤 ∈ (LIndS‘𝐾) ↔ 𝑤 ∈ (LIndS‘𝑉)))
261260biimpa 476 . . . . 5 (((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) ∧ 𝑤 ∈ (LIndS‘𝐾)) → 𝑤 ∈ (LIndS‘𝑉))
26298, 101, 109, 259, 261syl31anc 1375 . . . 4 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LIndS‘𝑉))
26323islinds4 21800 . . . . 5 (𝑉 ∈ LVec → (𝑤 ∈ (LIndS‘𝑉) ↔ ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏))
264263ad2antrr 726 . . . 4 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝑤 ∈ (LIndS‘𝑉) ↔ ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏))
265262, 264mpbid 232 . . 3 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏)
266257, 265r19.29a 3149 . 2 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
2678, 266exlimddv 1935 1 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wrex 3061  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  ccnv 5658  ran crn 5660  cres 5661  cima 5662   Fn wfn 6531  wf 6532  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  cen 8961   +𝑒 cxad 13131  chash 14353  Basecbs 17233  s cress 17256  +gcplusg 17276  0gc0g 17458  Mndcmnd 18717  Grpcgrp 18921  SubGrpcsubg 19108   GrpHom cghm 19200  LSSumclsm 19620  LModclmod 20822  LSubSpclss 20893  LSpanclspn 20933   LMHom clmhm 20982   LMIso clmim 20983  LBasisclbs 21037  LVecclvec 21065  LIndSclinds 21770  dimcldim 33643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-rpss 7722  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-r1 9783  df-rank 9784  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-xadd 13134  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ocomp 17297  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-mri 17605  df-acs 17606  df-proset 18311  df-drs 18312  df-poset 18330  df-ipo 18543  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-nzr 20478  df-subrg 20535  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lmim 20986  df-lbs 21038  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-uvc 21748  df-lindf 21771  df-linds 21772  df-dim 33644
This theorem is referenced by:  qusdimsum  33673  lvecendof1f1o  33678
  Copyright terms: Public domain W3C validator