Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimkerim Structured version   Visualization version   GIF version

Theorem dimkerim 33655
Description: Given a linear map 𝐹 between vector spaces 𝑉 and 𝑈, the dimension of the vector space 𝑉 is the sum of the dimension of 𝐹 's kernel and the dimension of 𝐹's image. Second part of theorem 5.3 in [Lang] p. 141 This can also be described as the Rank-nullity theorem, (dim‘𝐼) being the rank of 𝐹 (the dimension of its image), and (dim‘𝐾) its nullity (the dimension of its kernel). (Contributed by Thierry Arnoux, 17-May-2023.)
Hypotheses
Ref Expression
dimkerim.0 0 = (0g𝑈)
dimkerim.k 𝐾 = (𝑉s (𝐹 “ { 0 }))
dimkerim.i 𝐼 = (𝑈s ran 𝐹)
Assertion
Ref Expression
dimkerim ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))

Proof of Theorem dimkerim
Dummy variables 𝑏 𝑢 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dimkerim.0 . . . . 5 0 = (0g𝑈)
2 dimkerim.k . . . . 5 𝐾 = (𝑉s (𝐹 “ { 0 }))
31, 2kerlmhm 33648 . . . 4 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐾 ∈ LVec)
4 eqid 2735 . . . . 5 (LBasis‘𝐾) = (LBasis‘𝐾)
54lbsex 21185 . . . 4 (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅)
63, 5syl 17 . . 3 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (LBasis‘𝐾) ≠ ∅)
7 n0 4359 . . 3 ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (LBasis‘𝐾))
86, 7sylib 218 . 2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → ∃𝑤 𝑤 ∈ (LBasis‘𝐾))
9 simpllr 776 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ∈ (LBasis‘𝐾))
10 vex 3482 . . . . . . 7 𝑏 ∈ V
1110difexi 5336 . . . . . 6 (𝑏𝑤) ∈ V
1211a1i 11 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ V)
13 disjdif 4478 . . . . . 6 (𝑤 ∩ (𝑏𝑤)) = ∅
1413a1i 11 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∩ (𝑏𝑤)) = ∅)
15 hashunx 14422 . . . . 5 ((𝑤 ∈ (LBasis‘𝐾) ∧ (𝑏𝑤) ∈ V ∧ (𝑤 ∩ (𝑏𝑤)) = ∅) → (♯‘(𝑤 ∪ (𝑏𝑤))) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
169, 12, 14, 15syl3anc 1370 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (♯‘(𝑤 ∪ (𝑏𝑤))) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
17 simp-4l 783 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ LVec)
18 simpr 484 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤𝑏)
19 undif 4488 . . . . . . 7 (𝑤𝑏 ↔ (𝑤 ∪ (𝑏𝑤)) = 𝑏)
2018, 19sylib 218 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∪ (𝑏𝑤)) = 𝑏)
21 simplr 769 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ∈ (LBasis‘𝑉))
2220, 21eqeltrd 2839 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∪ (𝑏𝑤)) ∈ (LBasis‘𝑉))
23 eqid 2735 . . . . . 6 (LBasis‘𝑉) = (LBasis‘𝑉)
2423dimval 33628 . . . . 5 ((𝑉 ∈ LVec ∧ (𝑤 ∪ (𝑏𝑤)) ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘(𝑤 ∪ (𝑏𝑤))))
2517, 22, 24syl2anc 584 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝑉) = (♯‘(𝑤 ∪ (𝑏𝑤))))
263ad3antrrr 730 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐾 ∈ LVec)
274dimval 33628 . . . . . 6 ((𝐾 ∈ LVec ∧ 𝑤 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑤))
2826, 9, 27syl2anc 584 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐾) = (♯‘𝑤))
29 dimkerim.i . . . . . . . . 9 𝐼 = (𝑈s ran 𝐹)
3029imlmhm 33649 . . . . . . . 8 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐼 ∈ LVec)
3130ad3antrrr 730 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐼 ∈ LVec)
32 simp-4r 784 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 ∈ (𝑉 LMHom 𝑈))
33 lmhmlmod2 21049 . . . . . . . . . . 11 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝑈 ∈ LMod)
3432, 33syl 17 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑈 ∈ LMod)
35 lmhmrnlss 21067 . . . . . . . . . . 11 (𝐹 ∈ (𝑉 LMHom 𝑈) → ran 𝐹 ∈ (LSubSp‘𝑈))
3632, 35syl 17 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran 𝐹 ∈ (LSubSp‘𝑈))
37 df-ima 5702 . . . . . . . . . . 11 (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))
38 imassrn 6091 . . . . . . . . . . . 12 (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹
3938a1i 11 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹)
4037, 39eqsstrrid 4045 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹)
41 lveclmod 21123 . . . . . . . . . . . . 13 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
4241ad4antr 732 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ LMod)
4323lbslinds 21871 . . . . . . . . . . . . . . 15 (LBasis‘𝑉) ⊆ (LIndS‘𝑉)
4443, 21sselid 3993 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ∈ (LIndS‘𝑉))
45 difssd 4147 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ 𝑏)
46 lindsss 21862 . . . . . . . . . . . . . 14 ((𝑉 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑉) ∧ (𝑏𝑤) ⊆ 𝑏) → (𝑏𝑤) ∈ (LIndS‘𝑉))
4742, 44, 45, 46syl3anc 1370 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LIndS‘𝑉))
48 eqid 2735 . . . . . . . . . . . . . 14 (Base‘𝑉) = (Base‘𝑉)
4948linds1 21848 . . . . . . . . . . . . 13 ((𝑏𝑤) ∈ (LIndS‘𝑉) → (𝑏𝑤) ⊆ (Base‘𝑉))
5047, 49syl 17 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ (Base‘𝑉))
51 eqid 2735 . . . . . . . . . . . . 13 (LSubSp‘𝑉) = (LSubSp‘𝑉)
52 eqid 2735 . . . . . . . . . . . . 13 (LSpan‘𝑉) = (LSpan‘𝑉)
5348, 51, 52lspcl 20992 . . . . . . . . . . . 12 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
5442, 50, 53syl2anc 584 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
55 eqid 2735 . . . . . . . . . . . 12 (𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) = (𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))
5651, 55reslmhm 21069 . . . . . . . . . . 11 ((𝐹 ∈ (𝑉 LMHom 𝑈) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈))
5732, 54, 56syl2anc 584 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈))
58 eqid 2735 . . . . . . . . . . . 12 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5929, 58reslmhm2b 21071 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼)))
6059biimpa 476 . . . . . . . . . 10 (((𝑈 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) ∧ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼))
6134, 36, 40, 57, 60syl31anc 1372 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼))
62 lmghm 21048 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
6362ad4antlr 733 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
6448, 23lbsss 21094 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ (LBasis‘𝑉) → 𝑏 ⊆ (Base‘𝑉))
6521, 64syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ⊆ (Base‘𝑉))
6645, 65sstrd 4006 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ (Base‘𝑉))
6742, 66, 53syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
6851lsssubg 20973 . . . . . . . . . . . . . . . . 17 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉))
6942, 67, 68syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉))
7055resghm 19263 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝑉 GrpHom 𝑈) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈))
7163, 69, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈))
72 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝑈) = (Base‘𝑈)
7348, 72lmhmf 21051 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
7473ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
7574ffnd 6738 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 Fn (Base‘𝑉))
7648, 52lspssv 20999 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
7742, 66, 76syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
7875, 77fnssresd 6693 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)))
79 fniniseg 7080 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)) → (𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) ↔ (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 )))
8079biimpa 476 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 ))
8178, 80sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 ))
8281simpld 494 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
8375adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝐹 Fn (Base‘𝑉))
8477adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
8584, 82sseldd 3996 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (Base‘𝑉))
8682fvresd 6927 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = (𝐹𝑥))
8781simprd 495 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 )
8886, 87eqtr3d 2777 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝐹𝑥) = 0 )
89 fniniseg 7080 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn (Base‘𝑉) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑉) ∧ (𝐹𝑥) = 0 )))
9089biimpar 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 Fn (Base‘𝑉) ∧ (𝑥 ∈ (Base‘𝑉) ∧ (𝐹𝑥) = 0 )) → 𝑥 ∈ (𝐹 “ { 0 }))
9183, 85, 88, 90syl12anc 837 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (𝐹 “ { 0 }))
9282, 91elind 4210 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })))
93 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LBasis‘𝐾))
94 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝐾) = (Base‘𝐾)
95 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (LSpan‘𝐾) = (LSpan‘𝐾)
9694, 4, 95lbssp 21096 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (LBasis‘𝐾) → ((LSpan‘𝐾)‘𝑤) = (Base‘𝐾))
9793, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝐾)‘𝑤) = (Base‘𝐾))
9841ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑉 ∈ LMod)
99 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹 “ { 0 }) = (𝐹 “ { 0 })
10099, 1, 51lmhmkerlss 21068 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉))
101100ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉))
10294, 4lbsss 21094 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ (LBasis‘𝐾) → 𝑤 ⊆ (Base‘𝐾))
10393, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ⊆ (Base‘𝐾))
104 cnvimass 6102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹 “ { 0 }) ⊆ dom 𝐹
105104, 73fssdm 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) ⊆ (Base‘𝑉))
1062, 48ressbas2 17283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹 “ { 0 }) ⊆ (Base‘𝑉) → (𝐹 “ { 0 }) = (Base‘𝐾))
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) = (Base‘𝐾))
108107ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝐹 “ { 0 }) = (Base‘𝐾))
109103, 108sseqtrrd 4037 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ⊆ (𝐹 “ { 0 }))
1102, 52, 95, 51lsslsp 21031 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) → ((LSpan‘𝐾)‘𝑤) = ((LSpan‘𝑉)‘𝑤))
111110eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) → ((LSpan‘𝑉)‘𝑤) = ((LSpan‘𝐾)‘𝑤))
11298, 101, 109, 111syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝑉)‘𝑤) = ((LSpan‘𝐾)‘𝑤))
11397, 112, 1083eqtr4d 2785 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
114113ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
115114ineq2d 4228 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })))
116 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (0g𝑉) = (0g𝑉)
11723, 52, 116lbsdiflsp0 33654 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = {(0g𝑉)})
118117ad5ant145 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = {(0g𝑉)})
119115, 118eqtr3d 2777 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })) = {(0g𝑉)})
120119adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })) = {(0g𝑉)})
12192, 120eleqtrd 2841 . . . . . . . . . . . . . . . . . . 19 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ {(0g𝑉)})
122121ex 412 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) → 𝑥 ∈ {(0g𝑉)}))
123122ssrdv 4001 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) ⊆ {(0g𝑉)})
124116, 48, 520ellsp 33377 . . . . . . . . . . . . . . . . . . . 20 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
12542, 66, 124syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
126 fvexd 6922 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V)
127125fvresd 6927 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = (𝐹‘(0g𝑉)))
128116, 1ghmid 19253 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (𝑉 GrpHom 𝑈) → (𝐹‘(0g𝑉)) = 0 )
12962, 128syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹‘(0g𝑉)) = 0 )
130129ad4antlr 733 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹‘(0g𝑉)) = 0 )
131127, 130eqtrd 2775 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 )
132 elsng 4645 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V → (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 } ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 ))
133132biimpar 477 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 ) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 })
134126, 131, 133syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 })
13578, 125, 134elpreimad 7079 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }))
136135snssd 4814 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → {(0g𝑉)} ⊆ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }))
137123, 136eqssd 4013 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g𝑉)})
138 lmodgrp 20882 . . . . . . . . . . . . . . . . . . 19 (𝑉 ∈ LMod → 𝑉 ∈ Grp)
139 grpmnd 18971 . . . . . . . . . . . . . . . . . . 19 (𝑉 ∈ Grp → 𝑉 ∈ Mnd)
14042, 138, 1393syl 18 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ Mnd)
14155, 48, 116ress0g 18788 . . . . . . . . . . . . . . . . . 18 ((𝑉 ∈ Mnd ∧ (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) → (0g𝑉) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
142140, 125, 77, 141syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
143142sneqd 4643 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → {(0g𝑉)} = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))})
144137, 143eqtrd 2775 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))})
145 eqid 2735 . . . . . . . . . . . . . . . . 17 (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
146 eqid 2735 . . . . . . . . . . . . . . . . 17 (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
147145, 72, 146, 1kerf1ghm 19278 . . . . . . . . . . . . . . . 16 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈) ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))}))
148147biimpar 477 . . . . . . . . . . . . . . 15 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))}) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈))
14971, 144, 148syl2anc 584 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈))
150 eqidd 2736 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) = (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
15155, 48ressbas2 17283 . . . . . . . . . . . . . . . 16 (((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
15277, 151syl 17 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
153 eqidd 2736 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (Base‘𝑈) = (Base‘𝑈))
154150, 152, 153f1eq123d 6841 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈)))
155149, 154mpbird 257 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈))
156 f1ssr 6811 . . . . . . . . . . . . 13 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹)
157155, 40, 156syl2anc 584 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹)
158 f1f1orn 6860 . . . . . . . . . . . 12 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
159157, 158syl 17 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
160 simp-4r 784 . . . . . . . . . . . . . . . . . 18 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = 𝑦)
16175ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹 Fn (Base‘𝑉))
162 simpllr 776 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ ((LSpan‘𝑉)‘𝑤))
163113ad8antr 740 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
164162, 163eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ (𝐹 “ { 0 }))
165 fniniseg 7080 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 Fn (Base‘𝑉) → (𝑢 ∈ (𝐹 “ { 0 }) ↔ (𝑢 ∈ (Base‘𝑉) ∧ (𝐹𝑢) = 0 )))
166165simplbda 499 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn (Base‘𝑉) ∧ 𝑢 ∈ (𝐹 “ { 0 })) → (𝐹𝑢) = 0 )
167161, 164, 166syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑢) = 0 )
168167oveq1d 7446 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((𝐹𝑢)(+g𝑈)(𝐹𝑣)) = ( 0 (+g𝑈)(𝐹𝑣)))
169 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑥 = (𝑢(+g𝑉)𝑣))
170169fveq2d 6911 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = (𝐹‘(𝑢(+g𝑉)𝑣)))
17163ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
17248, 52lspss 21000 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑉) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ ((LSpan‘𝑉)‘𝑏))
17342, 65, 18, 172syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ ((LSpan‘𝑉)‘𝑏))
17448, 23, 52lbssp 21096 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (LBasis‘𝑉) → ((LSpan‘𝑉)‘𝑏) = (Base‘𝑉))
17521, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑏) = (Base‘𝑉))
176173, 175sseqtrd 4036 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
177176ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
178177ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
179178, 162sseldd 3996 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ (Base‘𝑉))
18077ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
181180ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
182 simplr 769 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
183181, 182sseldd 3996 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑣 ∈ (Base‘𝑉))
184 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑉) = (+g𝑉)
185 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑈) = (+g𝑈)
18648, 184, 185ghmlin 19252 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (𝑉 GrpHom 𝑈) ∧ 𝑢 ∈ (Base‘𝑉) ∧ 𝑣 ∈ (Base‘𝑉)) → (𝐹‘(𝑢(+g𝑉)𝑣)) = ((𝐹𝑢)(+g𝑈)(𝐹𝑣)))
187171, 179, 183, 186syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹‘(𝑢(+g𝑉)𝑣)) = ((𝐹𝑢)(+g𝑈)(𝐹𝑣)))
188170, 187eqtr2d 2776 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((𝐹𝑢)(+g𝑈)(𝐹𝑣)) = (𝐹𝑥))
189 lmhmlvec2 33647 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)
190189lvecgrpd 21125 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ Grp)
191190ad9antr 742 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑈 ∈ Grp)
19274ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
193192, 183ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑣) ∈ (Base‘𝑈))
19472, 185, 1, 191, 193grplidd 19000 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ( 0 (+g𝑈)(𝐹𝑣)) = (𝐹𝑣))
195168, 188, 1943eqtr3d 2783 . . . . . . . . . . . . . . . . . 18 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = (𝐹𝑣))
196160, 195eqtr3d 2777 . . . . . . . . . . . . . . . . 17 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑦 = (𝐹𝑣))
197161, 183, 182fnfvimad 7254 . . . . . . . . . . . . . . . . 17 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑣) ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
198196, 197eqeltrd 2839 . . . . . . . . . . . . . . . 16 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
199 simp-7l 789 . . . . . . . . . . . . . . . . 17 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑉 ∈ LVec)
200 simplr 769 . . . . . . . . . . . . . . . . . 18 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (Base‘𝑉))
201109ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ⊆ (𝐹 “ { 0 }))
202105ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ { 0 }) ⊆ (Base‘𝑉))
203201, 202sstrd 4006 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ⊆ (Base‘𝑉))
204 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (LSSum‘𝑉) = (LSSum‘𝑉)
20548, 52, 204lsmsp2 21104 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ LMod ∧ 𝑤 ⊆ (Base‘𝑉) ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) = ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))))
20642, 203, 66, 205syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) = ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))))
20720fveq2d 6911 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))) = ((LSpan‘𝑉)‘𝑏))
208206, 207, 1753eqtrrd 2780 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (Base‘𝑉) = (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
209208ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → (Base‘𝑉) = (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
210200, 209eleqtrd 2841 . . . . . . . . . . . . . . . . 17 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
21148, 184, 204lsmelvalx 19673 . . . . . . . . . . . . . . . . . 18 ((𝑉 ∈ LVec ∧ ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) → (𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) ↔ ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣)))
212211biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝑉 ∈ LVec ∧ ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) ∧ 𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤)))) → ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣))
213199, 177, 180, 210, 212syl31anc 1372 . . . . . . . . . . . . . . . 16 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣))
214198, 213r19.29vva 3214 . . . . . . . . . . . . . . 15 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
215 fvelrnb 6969 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝑉) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦))
216215biimpa 476 . . . . . . . . . . . . . . . 16 ((𝐹 Fn (Base‘𝑉) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦)
21775, 216sylan 580 . . . . . . . . . . . . . . 15 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦)
218214, 217r19.29a 3160 . . . . . . . . . . . . . 14 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
21939, 218eqelssd 4017 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran 𝐹)
22037, 219eqtr3id 2789 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran 𝐹)
221220f1oeq3d 6846 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹))
222159, 221mpbid 232 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹)
22342, 50, 76syl2anc 584 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
224223, 151syl 17 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
225 frn 6744 . . . . . . . . . . . 12 (𝐹:(Base‘𝑉)⟶(Base‘𝑈) → ran 𝐹 ⊆ (Base‘𝑈))
22629, 72ressbas2 17283 . . . . . . . . . . . 12 (ran 𝐹 ⊆ (Base‘𝑈) → ran 𝐹 = (Base‘𝐼))
22732, 73, 225, 2264syl 19 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran 𝐹 = (Base‘𝐼))
228150, 224, 227f1oeq123d 6843 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹 ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼)))
229222, 228mpbid 232 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼))
230 eqid 2735 . . . . . . . . . 10 (Base‘𝐼) = (Base‘𝐼)
231145, 230islmim 21079 . . . . . . . . 9 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼) ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼) ∧ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼)))
23261, 229, 231sylanbrc 583 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼))
23348, 52lspssid 21001 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)))
23442, 50, 233syl2anc 584 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)))
23551, 55lsslinds 21869 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) → ((𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ↔ (𝑏𝑤) ∈ (LIndS‘𝑉)))
236235biimpar 477 . . . . . . . . . 10 (((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → (𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
23742, 67, 234, 47, 236syl31anc 1372 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
238 eqid 2735 . . . . . . . . . . . . 13 (LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
23955, 52, 238, 51lsslsp 21031 . . . . . . . . . . . 12 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) → ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)) = ((LSpan‘𝑉)‘(𝑏𝑤)))
240239eqcomd 2741 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) → ((LSpan‘𝑉)‘(𝑏𝑤)) = ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)))
24142, 54, 234, 240syl3anc 1370 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)))
242241, 224eqtr3d 2777 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
243 eqid 2735 . . . . . . . . . 10 (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
244145, 243, 238islbs4 21870 . . . . . . . . 9 ((𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ↔ ((𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ∧ ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))))
245237, 242, 244sylanbrc 583 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
246 eqid 2735 . . . . . . . . 9 (LBasis‘𝐼) = (LBasis‘𝐼)
247243, 246lmimlbs 21874 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼) ∧ (𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼))
248232, 245, 247syl2anc 584 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼))
249246dimval 33628 . . . . . . 7 ((𝐼 ∈ LVec ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼)) → (dim‘𝐼) = (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))))
25031, 248, 249syl2anc 584 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐼) = (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))))
251 f1imaeng 9053 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ≈ (𝑏𝑤))
252 hasheni 14384 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ≈ (𝑏𝑤) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
253251, 252syl 17 . . . . . . 7 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
254157, 234, 47, 253syl3anc 1370 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
255250, 254eqtrd 2775 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐼) = (♯‘(𝑏𝑤)))
25628, 255oveq12d 7449 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((dim‘𝐾) +𝑒 (dim‘𝐼)) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
25716, 25, 2563eqtr4d 2785 . . 3 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
2584lbslinds 21871 . . . . . 6 (LBasis‘𝐾) ⊆ (LIndS‘𝐾)
259258, 93sselid 3993 . . . . 5 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LIndS‘𝐾))
26051, 2lsslinds 21869 . . . . . 6 ((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) → (𝑤 ∈ (LIndS‘𝐾) ↔ 𝑤 ∈ (LIndS‘𝑉)))
261260biimpa 476 . . . . 5 (((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) ∧ 𝑤 ∈ (LIndS‘𝐾)) → 𝑤 ∈ (LIndS‘𝑉))
26298, 101, 109, 259, 261syl31anc 1372 . . . 4 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LIndS‘𝑉))
26323islinds4 21873 . . . . 5 (𝑉 ∈ LVec → (𝑤 ∈ (LIndS‘𝑉) ↔ ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏))
264263ad2antrr 726 . . . 4 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝑤 ∈ (LIndS‘𝑉) ↔ ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏))
265262, 264mpbid 232 . . 3 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏)
266257, 265r19.29a 3160 . 2 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
2678, 266exlimddv 1933 1 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wrex 3068  Vcvv 3478  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631   class class class wbr 5148  ccnv 5688  ran crn 5690  cres 5691  cima 5692   Fn wfn 6558  wf 6559  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cen 8981   +𝑒 cxad 13150  chash 14366  Basecbs 17245  s cress 17274  +gcplusg 17298  0gc0g 17486  Mndcmnd 18760  Grpcgrp 18964  SubGrpcsubg 19151   GrpHom cghm 19243  LSSumclsm 19667  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987   LMHom clmhm 21036   LMIso clmim 21037  LBasisclbs 21091  LVecclvec 21119  LIndSclinds 21843  dimcldim 33626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-rpss 7742  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-r1 9802  df-rank 9803  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-xadd 13153  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ocomp 17319  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-mri 17633  df-acs 17634  df-proset 18352  df-drs 18353  df-poset 18371  df-ipo 18586  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-nzr 20530  df-subrg 20587  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lmhm 21039  df-lmim 21040  df-lbs 21092  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-uvc 21821  df-lindf 21844  df-linds 21845  df-dim 33627
This theorem is referenced by:  qusdimsum  33656  lvecendof1f1o  33661
  Copyright terms: Public domain W3C validator