| Step | Hyp | Ref
| Expression |
| 1 | | dimkerim.0 |
. . . . 5
⊢ 0 =
(0g‘𝑈) |
| 2 | | dimkerim.k |
. . . . 5
⊢ 𝐾 = (𝑉 ↾s (◡𝐹 “ { 0 })) |
| 3 | 1, 2 | kerlmhm 33665 |
. . . 4
⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐾 ∈ LVec) |
| 4 | | eqid 2736 |
. . . . 5
⊢
(LBasis‘𝐾) =
(LBasis‘𝐾) |
| 5 | 4 | lbsex 21131 |
. . . 4
⊢ (𝐾 ∈ LVec →
(LBasis‘𝐾) ≠
∅) |
| 6 | 3, 5 | syl 17 |
. . 3
⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (LBasis‘𝐾) ≠ ∅) |
| 7 | | n0 4333 |
. . 3
⊢
((LBasis‘𝐾)
≠ ∅ ↔ ∃𝑤 𝑤 ∈ (LBasis‘𝐾)) |
| 8 | 6, 7 | sylib 218 |
. 2
⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → ∃𝑤 𝑤 ∈ (LBasis‘𝐾)) |
| 9 | | simpllr 775 |
. . . . 5
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝑤 ∈ (LBasis‘𝐾)) |
| 10 | | vex 3468 |
. . . . . . 7
⊢ 𝑏 ∈ V |
| 11 | 10 | difexi 5305 |
. . . . . 6
⊢ (𝑏 ∖ 𝑤) ∈ V |
| 12 | 11 | a1i 11 |
. . . . 5
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑏 ∖ 𝑤) ∈ V) |
| 13 | | disjdif 4452 |
. . . . . 6
⊢ (𝑤 ∩ (𝑏 ∖ 𝑤)) = ∅ |
| 14 | 13 | a1i 11 |
. . . . 5
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑤 ∩ (𝑏 ∖ 𝑤)) = ∅) |
| 15 | | hashunx 14409 |
. . . . 5
⊢ ((𝑤 ∈ (LBasis‘𝐾) ∧ (𝑏 ∖ 𝑤) ∈ V ∧ (𝑤 ∩ (𝑏 ∖ 𝑤)) = ∅) → (♯‘(𝑤 ∪ (𝑏 ∖ 𝑤))) = ((♯‘𝑤) +𝑒 (♯‘(𝑏 ∖ 𝑤)))) |
| 16 | 9, 12, 14, 15 | syl3anc 1373 |
. . . 4
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (♯‘(𝑤 ∪ (𝑏 ∖ 𝑤))) = ((♯‘𝑤) +𝑒 (♯‘(𝑏 ∖ 𝑤)))) |
| 17 | | simp-4l 782 |
. . . . 5
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝑉 ∈ LVec) |
| 18 | | simpr 484 |
. . . . . . 7
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝑤 ⊆ 𝑏) |
| 19 | | undif 4462 |
. . . . . . 7
⊢ (𝑤 ⊆ 𝑏 ↔ (𝑤 ∪ (𝑏 ∖ 𝑤)) = 𝑏) |
| 20 | 18, 19 | sylib 218 |
. . . . . 6
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑤 ∪ (𝑏 ∖ 𝑤)) = 𝑏) |
| 21 | | simplr 768 |
. . . . . 6
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝑏 ∈ (LBasis‘𝑉)) |
| 22 | 20, 21 | eqeltrd 2835 |
. . . . 5
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑤 ∪ (𝑏 ∖ 𝑤)) ∈ (LBasis‘𝑉)) |
| 23 | | eqid 2736 |
. . . . . 6
⊢
(LBasis‘𝑉) =
(LBasis‘𝑉) |
| 24 | 23 | dimval 33645 |
. . . . 5
⊢ ((𝑉 ∈ LVec ∧ (𝑤 ∪ (𝑏 ∖ 𝑤)) ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘(𝑤 ∪ (𝑏 ∖ 𝑤)))) |
| 25 | 17, 22, 24 | syl2anc 584 |
. . . 4
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (dim‘𝑉) = (♯‘(𝑤 ∪ (𝑏 ∖ 𝑤)))) |
| 26 | 3 | ad3antrrr 730 |
. . . . . 6
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝐾 ∈ LVec) |
| 27 | 4 | dimval 33645 |
. . . . . 6
⊢ ((𝐾 ∈ LVec ∧ 𝑤 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑤)) |
| 28 | 26, 9, 27 | syl2anc 584 |
. . . . 5
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (dim‘𝐾) = (♯‘𝑤)) |
| 29 | | dimkerim.i |
. . . . . . . . 9
⊢ 𝐼 = (𝑈 ↾s ran 𝐹) |
| 30 | 29 | imlmhm 33666 |
. . . . . . . 8
⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐼 ∈ LVec) |
| 31 | 30 | ad3antrrr 730 |
. . . . . . 7
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝐼 ∈ LVec) |
| 32 | | simp-4r 783 |
. . . . . . . . . . 11
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝐹 ∈ (𝑉 LMHom 𝑈)) |
| 33 | | lmhmlmod2 20995 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝑈 ∈ LMod) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝑈 ∈ LMod) |
| 35 | | lmhmrnlss 21013 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → ran 𝐹 ∈ (LSubSp‘𝑈)) |
| 36 | 32, 35 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ran 𝐹 ∈ (LSubSp‘𝑈)) |
| 37 | | df-ima 5672 |
. . . . . . . . . . 11
⊢ (𝐹 “ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) = ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) |
| 38 | | imassrn 6063 |
. . . . . . . . . . . 12
⊢ (𝐹 “ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ⊆ ran 𝐹 |
| 39 | 38 | a1i 11 |
. . . . . . . . . . 11
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 “ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ⊆ ran 𝐹) |
| 40 | 37, 39 | eqsstrrid 4003 |
. . . . . . . . . 10
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ⊆ ran 𝐹) |
| 41 | | lveclmod 21069 |
. . . . . . . . . . . . 13
⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) |
| 42 | 41 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝑉 ∈ LMod) |
| 43 | 23 | lbslinds 21798 |
. . . . . . . . . . . . . . 15
⊢
(LBasis‘𝑉)
⊆ (LIndS‘𝑉) |
| 44 | 43, 21 | sselid 3961 |
. . . . . . . . . . . . . 14
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝑏 ∈ (LIndS‘𝑉)) |
| 45 | | difssd 4117 |
. . . . . . . . . . . . . 14
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑏 ∖ 𝑤) ⊆ 𝑏) |
| 46 | | lindsss 21789 |
. . . . . . . . . . . . . 14
⊢ ((𝑉 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑉) ∧ (𝑏 ∖ 𝑤) ⊆ 𝑏) → (𝑏 ∖ 𝑤) ∈ (LIndS‘𝑉)) |
| 47 | 42, 44, 45, 46 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑏 ∖ 𝑤) ∈ (LIndS‘𝑉)) |
| 48 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑉) =
(Base‘𝑉) |
| 49 | 48 | linds1 21775 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∖ 𝑤) ∈ (LIndS‘𝑉) → (𝑏 ∖ 𝑤) ⊆ (Base‘𝑉)) |
| 50 | 47, 49 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑏 ∖ 𝑤) ⊆ (Base‘𝑉)) |
| 51 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(LSubSp‘𝑉) =
(LSubSp‘𝑉) |
| 52 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(LSpan‘𝑉) =
(LSpan‘𝑉) |
| 53 | 48, 51, 52 | lspcl 20938 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ LMod ∧ (𝑏 ∖ 𝑤) ⊆ (Base‘𝑉)) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (LSubSp‘𝑉)) |
| 54 | 42, 50, 53 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (LSubSp‘𝑉)) |
| 55 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑉 ↾s
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) = (𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) |
| 56 | 51, 55 | reslmhm 21015 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑉 LMHom 𝑈) ∧ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (LSubSp‘𝑉)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) LMHom 𝑈)) |
| 57 | 32, 54, 56 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) LMHom 𝑈)) |
| 58 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 59 | 29, 58 | reslmhm2b 21017 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ⊆ ran 𝐹) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) LMHom 𝑈) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) LMHom 𝐼))) |
| 60 | 59 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ⊆ ran 𝐹) ∧ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) LMHom 𝑈)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) LMHom 𝐼)) |
| 61 | 34, 36, 40, 57, 60 | syl31anc 1375 |
. . . . . . . . 9
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) LMHom 𝐼)) |
| 62 | | lmghm 20994 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝐹 ∈ (𝑉 GrpHom 𝑈)) |
| 63 | 62 | ad4antlr 733 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝐹 ∈ (𝑉 GrpHom 𝑈)) |
| 64 | 48, 23 | lbsss 21040 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ (LBasis‘𝑉) → 𝑏 ⊆ (Base‘𝑉)) |
| 65 | 21, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝑏 ⊆ (Base‘𝑉)) |
| 66 | 45, 65 | sstrd 3974 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑏 ∖ 𝑤) ⊆ (Base‘𝑉)) |
| 67 | 42, 66, 53 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (LSubSp‘𝑉)) |
| 68 | 51 | lsssubg 20919 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑉 ∈ LMod ∧
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (LSubSp‘𝑉)) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (SubGrp‘𝑉)) |
| 69 | 42, 67, 68 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (SubGrp‘𝑉)) |
| 70 | 55 | resghm 19220 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ (𝑉 GrpHom 𝑈) ∧ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (SubGrp‘𝑉)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) GrpHom 𝑈)) |
| 71 | 63, 69, 70 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) GrpHom 𝑈)) |
| 72 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 73 | 48, 72 | lmhmf 20997 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈)) |
| 74 | 73 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈)) |
| 75 | 74 | ffnd 6712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝐹 Fn (Base‘𝑉)) |
| 76 | 48, 52 | lspssv 20945 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑉 ∈ LMod ∧ (𝑏 ∖ 𝑤) ⊆ (Base‘𝑉)) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ⊆ (Base‘𝑉)) |
| 77 | 42, 66, 76 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ⊆ (Base‘𝑉)) |
| 78 | 75, 77 | fnssresd 6667 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) Fn ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) |
| 79 | | fniniseg 7055 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) Fn ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) → (𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 }) ↔ (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘𝑥) = 0 ))) |
| 80 | 79 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) Fn ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) → (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘𝑥) = 0 )) |
| 81 | 78, 80 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) → (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘𝑥) = 0 )) |
| 82 | 81 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) → 𝑥 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) |
| 83 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) → 𝐹 Fn (Base‘𝑉)) |
| 84 | 77 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) →
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ⊆ (Base‘𝑉)) |
| 85 | 84, 82 | sseldd 3964 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) → 𝑥 ∈ (Base‘𝑉)) |
| 86 | 82 | fvresd 6901 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘𝑥) = (𝐹‘𝑥)) |
| 87 | 81 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘𝑥) = 0 ) |
| 88 | 86, 87 | eqtr3d 2773 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) → (𝐹‘𝑥) = 0 ) |
| 89 | | fniniseg 7055 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 Fn (Base‘𝑉) → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑉) ∧ (𝐹‘𝑥) = 0 ))) |
| 90 | 89 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Fn (Base‘𝑉) ∧ (𝑥 ∈ (Base‘𝑉) ∧ (𝐹‘𝑥) = 0 )) → 𝑥 ∈ (◡𝐹 “ { 0 })) |
| 91 | 83, 85, 88, 90 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) → 𝑥 ∈ (◡𝐹 “ { 0 })) |
| 92 | 82, 91 | elind 4180 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) → 𝑥 ∈ (((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∩ (◡𝐹 “ { 0 }))) |
| 93 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LBasis‘𝐾)) |
| 94 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 95 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(LSpan‘𝐾) =
(LSpan‘𝐾) |
| 96 | 94, 4, 95 | lbssp 21042 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 ∈ (LBasis‘𝐾) → ((LSpan‘𝐾)‘𝑤) = (Base‘𝐾)) |
| 97 | 93, 96 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝐾)‘𝑤) = (Base‘𝐾)) |
| 98 | 41 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑉 ∈ LMod) |
| 99 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (◡𝐹 “ { 0 }) = (◡𝐹 “ { 0 }) |
| 100 | 99, 1, 51 | lmhmkerlss 21014 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → (◡𝐹 “ { 0 }) ∈
(LSubSp‘𝑉)) |
| 101 | 100 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (◡𝐹 “ { 0 }) ∈
(LSubSp‘𝑉)) |
| 102 | 94, 4 | lbsss 21040 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 ∈ (LBasis‘𝐾) → 𝑤 ⊆ (Base‘𝐾)) |
| 103 | 93, 102 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ⊆ (Base‘𝐾)) |
| 104 | | cnvimass 6074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (◡𝐹 “ { 0 }) ⊆ dom 𝐹 |
| 105 | 104, 73 | fssdm 6730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → (◡𝐹 “ { 0 }) ⊆
(Base‘𝑉)) |
| 106 | 2, 48 | ressbas2 17264 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((◡𝐹 “ { 0 }) ⊆
(Base‘𝑉) →
(◡𝐹 “ { 0 }) = (Base‘𝐾)) |
| 107 | 105, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → (◡𝐹 “ { 0 }) = (Base‘𝐾)) |
| 108 | 107 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (◡𝐹 “ { 0 }) = (Base‘𝐾)) |
| 109 | 103, 108 | sseqtrrd 4001 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ⊆ (◡𝐹 “ { 0 })) |
| 110 | 2, 52, 95, 51 | lsslsp 20977 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑉 ∈ LMod ∧ (◡𝐹 “ { 0 }) ∈
(LSubSp‘𝑉) ∧
𝑤 ⊆ (◡𝐹 “ { 0 })) →
((LSpan‘𝐾)‘𝑤) = ((LSpan‘𝑉)‘𝑤)) |
| 111 | 110 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑉 ∈ LMod ∧ (◡𝐹 “ { 0 }) ∈
(LSubSp‘𝑉) ∧
𝑤 ⊆ (◡𝐹 “ { 0 })) →
((LSpan‘𝑉)‘𝑤) = ((LSpan‘𝐾)‘𝑤)) |
| 112 | 98, 101, 109, 111 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝑉)‘𝑤) = ((LSpan‘𝐾)‘𝑤)) |
| 113 | 97, 112, 108 | 3eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝑉)‘𝑤) = (◡𝐹 “ { 0 })) |
| 114 | 113 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘𝑤) = (◡𝐹 “ { 0 })) |
| 115 | 114 | ineq2d 4200 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = (((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∩ (◡𝐹 “ { 0 }))) |
| 116 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(0g‘𝑉) = (0g‘𝑉) |
| 117 | 23, 52, 116 | lbsdiflsp0 33671 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉) ∧ 𝑤 ⊆ 𝑏) → (((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = {(0g‘𝑉)}) |
| 118 | 117 | ad5ant145 1371 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = {(0g‘𝑉)}) |
| 119 | 115, 118 | eqtr3d 2773 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∩ (◡𝐹 “ { 0 })) =
{(0g‘𝑉)}) |
| 120 | 119 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) →
(((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∩ (◡𝐹 “ { 0 })) =
{(0g‘𝑉)}) |
| 121 | 92, 120 | eleqtrd 2837 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) → 𝑥 ∈
{(0g‘𝑉)}) |
| 122 | 121 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑥 ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 }) → 𝑥 ∈
{(0g‘𝑉)})) |
| 123 | 122 | ssrdv 3969 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 }) ⊆
{(0g‘𝑉)}) |
| 124 | 116, 48, 52 | 0ellsp 33389 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑉 ∈ LMod ∧ (𝑏 ∖ 𝑤) ⊆ (Base‘𝑉)) → (0g‘𝑉) ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) |
| 125 | 42, 66, 124 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (0g‘𝑉) ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) |
| 126 | | fvexd 6896 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘(0g‘𝑉)) ∈ V) |
| 127 | 125 | fvresd 6901 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘(0g‘𝑉)) = (𝐹‘(0g‘𝑉))) |
| 128 | 116, 1 | ghmid 19210 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 ∈ (𝑉 GrpHom 𝑈) → (𝐹‘(0g‘𝑉)) = 0 ) |
| 129 | 62, 128 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹‘(0g‘𝑉)) = 0 ) |
| 130 | 129 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹‘(0g‘𝑉)) = 0 ) |
| 131 | 127, 130 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘(0g‘𝑉)) = 0 ) |
| 132 | | elsng 4620 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘(0g‘𝑉)) ∈ V → (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘(0g‘𝑉)) ∈ { 0 } ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘(0g‘𝑉)) = 0 )) |
| 133 | 132 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘(0g‘𝑉)) ∈ V ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘(0g‘𝑉)) = 0 ) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘(0g‘𝑉)) ∈ { 0 }) |
| 134 | 126, 131,
133 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))‘(0g‘𝑉)) ∈ { 0 }) |
| 135 | 78, 125, 134 | elpreimad 7054 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (0g‘𝑉) ∈ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) |
| 136 | 135 | snssd 4790 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → {(0g‘𝑉)} ⊆ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 })) |
| 137 | 123, 136 | eqssd 3981 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 }) =
{(0g‘𝑉)}) |
| 138 | | lmodgrp 20829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑉 ∈ LMod → 𝑉 ∈ Grp) |
| 139 | | grpmnd 18928 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑉 ∈ Grp → 𝑉 ∈ Mnd) |
| 140 | 42, 138, 139 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝑉 ∈ Mnd) |
| 141 | 55, 48, 116 | ress0g 18745 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑉 ∈ Mnd ∧
(0g‘𝑉)
∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∧ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ⊆ (Base‘𝑉)) → (0g‘𝑉) = (0g‘(𝑉 ↾s
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))) |
| 142 | 140, 125,
77, 141 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (0g‘𝑉) = (0g‘(𝑉 ↾s
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))) |
| 143 | 142 | sneqd 4618 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → {(0g‘𝑉)} =
{(0g‘(𝑉
↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))}) |
| 144 | 137, 143 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 }) =
{(0g‘(𝑉
↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))}) |
| 145 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘(𝑉
↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) = (Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 146 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) = (0g‘(𝑉 ↾s
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 147 | 145, 72, 146, 1 | kerf1ghm 19235 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) GrpHom 𝑈) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):(Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))–1-1→(Base‘𝑈) ↔ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 }) =
{(0g‘(𝑉
↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))})) |
| 148 | 147 | biimpar 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) GrpHom 𝑈) ∧ (◡(𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ { 0 }) =
{(0g‘(𝑉
↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))}) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):(Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))–1-1→(Base‘𝑈)) |
| 149 | 71, 144, 148 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):(Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))–1-1→(Base‘𝑈)) |
| 150 | | eqidd 2737 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) = (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 151 | 55, 48 | ressbas2 17264 |
. . . . . . . . . . . . . . . 16
⊢
(((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ⊆ (Base‘𝑉) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) = (Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))) |
| 152 | 77, 151 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) = (Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))) |
| 153 | | eqidd 2737 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (Base‘𝑈) = (Base‘𝑈)) |
| 154 | 150, 152,
153 | f1eq123d 6815 |
. . . . . . . . . . . . . 14
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1→(Base‘𝑈) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):(Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))–1-1→(Base‘𝑈))) |
| 155 | 149, 154 | mpbird 257 |
. . . . . . . . . . . . 13
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1→(Base‘𝑈)) |
| 156 | | f1ssr 6785 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1→(Base‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ⊆ ran 𝐹) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1→ran 𝐹) |
| 157 | 155, 40, 156 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1→ran 𝐹) |
| 158 | | f1f1orn 6834 |
. . . . . . . . . . . 12
⊢ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1→ran 𝐹 → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1-onto→ran
(𝐹 ↾
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 159 | 157, 158 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1-onto→ran
(𝐹 ↾
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 160 | | simp-4r 783 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → (𝐹‘𝑥) = 𝑦) |
| 161 | 75 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝐹 Fn (Base‘𝑉)) |
| 162 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) |
| 163 | 113 | ad8antr 740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → ((LSpan‘𝑉)‘𝑤) = (◡𝐹 “ { 0 })) |
| 164 | 162, 163 | eleqtrd 2837 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝑢 ∈ (◡𝐹 “ { 0 })) |
| 165 | | fniniseg 7055 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 Fn (Base‘𝑉) → (𝑢 ∈ (◡𝐹 “ { 0 }) ↔ (𝑢 ∈ (Base‘𝑉) ∧ (𝐹‘𝑢) = 0 ))) |
| 166 | 165 | simplbda 499 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 Fn (Base‘𝑉) ∧ 𝑢 ∈ (◡𝐹 “ { 0 })) → (𝐹‘𝑢) = 0 ) |
| 167 | 161, 164,
166 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → (𝐹‘𝑢) = 0 ) |
| 168 | 167 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → ((𝐹‘𝑢)(+g‘𝑈)(𝐹‘𝑣)) = ( 0 (+g‘𝑈)(𝐹‘𝑣))) |
| 169 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝑥 = (𝑢(+g‘𝑉)𝑣)) |
| 170 | 169 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → (𝐹‘𝑥) = (𝐹‘(𝑢(+g‘𝑉)𝑣))) |
| 171 | 63 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝐹 ∈ (𝑉 GrpHom 𝑈)) |
| 172 | 48, 52 | lspss 20946 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑉 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑉) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ ((LSpan‘𝑉)‘𝑏)) |
| 173 | 42, 65, 18, 172 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ ((LSpan‘𝑉)‘𝑏)) |
| 174 | 48, 23, 52 | lbssp 21042 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑏 ∈ (LBasis‘𝑉) → ((LSpan‘𝑉)‘𝑏) = (Base‘𝑉)) |
| 175 | 21, 174 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘𝑏) = (Base‘𝑉)) |
| 176 | 173, 175 | sseqtrd 4000 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉)) |
| 177 | 176 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉)) |
| 178 | 177 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉)) |
| 179 | 178, 162 | sseldd 3964 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝑢 ∈ (Base‘𝑉)) |
| 180 | 77 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ⊆ (Base‘𝑉)) |
| 181 | 180 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ⊆ (Base‘𝑉)) |
| 182 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) |
| 183 | 181, 182 | sseldd 3964 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝑣 ∈ (Base‘𝑉)) |
| 184 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(+g‘𝑉) = (+g‘𝑉) |
| 185 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(+g‘𝑈) = (+g‘𝑈) |
| 186 | 48, 184, 185 | ghmlin 19209 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 ∈ (𝑉 GrpHom 𝑈) ∧ 𝑢 ∈ (Base‘𝑉) ∧ 𝑣 ∈ (Base‘𝑉)) → (𝐹‘(𝑢(+g‘𝑉)𝑣)) = ((𝐹‘𝑢)(+g‘𝑈)(𝐹‘𝑣))) |
| 187 | 171, 179,
183, 186 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → (𝐹‘(𝑢(+g‘𝑉)𝑣)) = ((𝐹‘𝑢)(+g‘𝑈)(𝐹‘𝑣))) |
| 188 | 170, 187 | eqtr2d 2772 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → ((𝐹‘𝑢)(+g‘𝑈)(𝐹‘𝑣)) = (𝐹‘𝑥)) |
| 189 | | lmhmlvec2 33664 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec) |
| 190 | 189 | lvecgrpd 21071 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ Grp) |
| 191 | 190 | ad9antr 742 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝑈 ∈ Grp) |
| 192 | 74 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈)) |
| 193 | 192, 183 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → (𝐹‘𝑣) ∈ (Base‘𝑈)) |
| 194 | 72, 185, 1, 191, 193 | grplidd 18957 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → ( 0 (+g‘𝑈)(𝐹‘𝑣)) = (𝐹‘𝑣)) |
| 195 | 168, 188,
194 | 3eqtr3d 2779 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → (𝐹‘𝑥) = (𝐹‘𝑣)) |
| 196 | 160, 195 | eqtr3d 2773 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝑦 = (𝐹‘𝑣)) |
| 197 | 161, 183,
182 | fnfvimad 7231 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → (𝐹‘𝑣) ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 198 | 196, 197 | eqeltrd 2835 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ 𝑥 = (𝑢(+g‘𝑉)𝑣)) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 199 | | simp-7l 788 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) → 𝑉 ∈ LVec) |
| 200 | | simplr 768 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) → 𝑥 ∈ (Base‘𝑉)) |
| 201 | 109 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝑤 ⊆ (◡𝐹 “ { 0 })) |
| 202 | 105 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (◡𝐹 “ { 0 }) ⊆
(Base‘𝑉)) |
| 203 | 201, 202 | sstrd 3974 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → 𝑤 ⊆ (Base‘𝑉)) |
| 204 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(LSSum‘𝑉) =
(LSSum‘𝑉) |
| 205 | 48, 52, 204 | lsmsp2 21050 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑉 ∈ LMod ∧ 𝑤 ⊆ (Base‘𝑉) ∧ (𝑏 ∖ 𝑤) ⊆ (Base‘𝑉)) → (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) = ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏 ∖ 𝑤)))) |
| 206 | 42, 203, 66, 205 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) = ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏 ∖ 𝑤)))) |
| 207 | 20 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏 ∖ 𝑤))) = ((LSpan‘𝑉)‘𝑏)) |
| 208 | 206, 207,
175 | 3eqtrrd 2776 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (Base‘𝑉) = (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 209 | 208 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) → (Base‘𝑉) = (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 210 | 200, 209 | eleqtrd 2837 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) → 𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 211 | 48, 184, 204 | lsmelvalx 19626 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑉 ∈ LVec ∧
((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉) ∧ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ⊆ (Base‘𝑉)) → (𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ↔ ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))𝑥 = (𝑢(+g‘𝑉)𝑣))) |
| 212 | 211 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑉 ∈ LVec ∧
((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉) ∧ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ⊆ (Base‘𝑉)) ∧ 𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) → ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))𝑥 = (𝑢(+g‘𝑉)𝑣)) |
| 213 | 199, 177,
180, 210, 212 | syl31anc 1375 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) → ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))𝑥 = (𝑢(+g‘𝑉)𝑣)) |
| 214 | 198, 213 | r19.29vva 3205 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑉 ∈
LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 215 | | fvelrnb 6944 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn (Base‘𝑉) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝑉)(𝐹‘𝑥) = 𝑦)) |
| 216 | 215 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn (Base‘𝑉) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ (Base‘𝑉)(𝐹‘𝑥) = 𝑦) |
| 217 | 75, 216 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ (Base‘𝑉)(𝐹‘𝑥) = 𝑦) |
| 218 | 214, 217 | r19.29a 3149 |
. . . . . . . . . . . . . 14
⊢
((((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 219 | 39, 218 | eqelssd 3985 |
. . . . . . . . . . . . 13
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 “ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) = ran 𝐹) |
| 220 | 37, 219 | eqtr3id 2785 |
. . . . . . . . . . . 12
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) = ran 𝐹) |
| 221 | 220 | f1oeq3d 6820 |
. . . . . . . . . . 11
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1-onto→ran
(𝐹 ↾
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1-onto→ran
𝐹)) |
| 222 | 159, 221 | mpbid 232 |
. . . . . . . . . 10
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1-onto→ran
𝐹) |
| 223 | 42, 50, 76 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ⊆ (Base‘𝑉)) |
| 224 | 223, 151 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) = (Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))) |
| 225 | | frn 6718 |
. . . . . . . . . . . 12
⊢ (𝐹:(Base‘𝑉)⟶(Base‘𝑈) → ran 𝐹 ⊆ (Base‘𝑈)) |
| 226 | 29, 72 | ressbas2 17264 |
. . . . . . . . . . . 12
⊢ (ran
𝐹 ⊆ (Base‘𝑈) → ran 𝐹 = (Base‘𝐼)) |
| 227 | 32, 73, 225, 226 | 4syl 19 |
. . . . . . . . . . 11
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ran 𝐹 = (Base‘𝐼)) |
| 228 | 150, 224,
227 | f1oeq123d 6817 |
. . . . . . . . . 10
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1-onto→ran
𝐹 ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):(Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))–1-1-onto→(Base‘𝐼))) |
| 229 | 222, 228 | mpbid 232 |
. . . . . . . . 9
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):(Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))–1-1-onto→(Base‘𝐼)) |
| 230 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝐼) =
(Base‘𝐼) |
| 231 | 145, 230 | islmim 21025 |
. . . . . . . . 9
⊢ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) LMIso 𝐼) ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) LMHom 𝐼) ∧ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):(Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))–1-1-onto→(Base‘𝐼))) |
| 232 | 61, 229, 231 | sylanbrc 583 |
. . . . . . . 8
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) LMIso 𝐼)) |
| 233 | 48, 52 | lspssid 20947 |
. . . . . . . . . . 11
⊢ ((𝑉 ∈ LMod ∧ (𝑏 ∖ 𝑤) ⊆ (Base‘𝑉)) → (𝑏 ∖ 𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) |
| 234 | 42, 50, 233 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑏 ∖ 𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) |
| 235 | 51, 55 | lsslinds 21796 |
. . . . . . . . . . 11
⊢ ((𝑉 ∈ LMod ∧
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏 ∖ 𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) → ((𝑏 ∖ 𝑤) ∈ (LIndS‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) ↔ (𝑏 ∖ 𝑤) ∈ (LIndS‘𝑉))) |
| 236 | 235 | biimpar 477 |
. . . . . . . . . 10
⊢ (((𝑉 ∈ LMod ∧
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏 ∖ 𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∧ (𝑏 ∖ 𝑤) ∈ (LIndS‘𝑉)) → (𝑏 ∖ 𝑤) ∈ (LIndS‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))) |
| 237 | 42, 67, 234, 47, 236 | syl31anc 1375 |
. . . . . . . . 9
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑏 ∖ 𝑤) ∈ (LIndS‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))) |
| 238 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(LSpan‘(𝑉
↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) = (LSpan‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 239 | 55, 52, 238, 51 | lsslsp 20977 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ LMod ∧
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏 ∖ 𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) → ((LSpan‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))‘(𝑏 ∖ 𝑤)) = ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) |
| 240 | 239 | eqcomd 2742 |
. . . . . . . . . . 11
⊢ ((𝑉 ∈ LMod ∧
((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏 ∖ 𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) = ((LSpan‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))‘(𝑏 ∖ 𝑤))) |
| 241 | 42, 54, 234, 240 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) = ((LSpan‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))‘(𝑏 ∖ 𝑤))) |
| 242 | 241, 224 | eqtr3d 2773 |
. . . . . . . . 9
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((LSpan‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))‘(𝑏 ∖ 𝑤)) = (Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))) |
| 243 | | eqid 2736 |
. . . . . . . . . 10
⊢
(LBasis‘(𝑉
↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) = (LBasis‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) |
| 244 | 145, 243,
238 | islbs4 21797 |
. . . . . . . . 9
⊢ ((𝑏 ∖ 𝑤) ∈ (LBasis‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) ↔ ((𝑏 ∖ 𝑤) ∈ (LIndS‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))) ∧ ((LSpan‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))‘(𝑏 ∖ 𝑤)) = (Base‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)))))) |
| 245 | 237, 242,
244 | sylanbrc 583 |
. . . . . . . 8
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (𝑏 ∖ 𝑤) ∈ (LBasis‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))) |
| 246 | | eqid 2736 |
. . . . . . . . 9
⊢
(LBasis‘𝐼) =
(LBasis‘𝐼) |
| 247 | 243, 246 | lmimlbs 21801 |
. . . . . . . 8
⊢ (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) ∈ ((𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) LMIso 𝐼) ∧ (𝑏 ∖ 𝑤) ∈ (LBasis‘(𝑉 ↾s ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))))) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ (𝑏 ∖ 𝑤)) ∈ (LBasis‘𝐼)) |
| 248 | 232, 245,
247 | syl2anc 584 |
. . . . . . 7
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ (𝑏 ∖ 𝑤)) ∈ (LBasis‘𝐼)) |
| 249 | 246 | dimval 33645 |
. . . . . . 7
⊢ ((𝐼 ∈ LVec ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ (𝑏 ∖ 𝑤)) ∈ (LBasis‘𝐼)) → (dim‘𝐼) = (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ (𝑏 ∖ 𝑤)))) |
| 250 | 31, 248, 249 | syl2anc 584 |
. . . . . 6
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (dim‘𝐼) = (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ (𝑏 ∖ 𝑤)))) |
| 251 | | f1imaeng 9033 |
. . . . . . . 8
⊢ (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1→ran 𝐹 ∧ (𝑏 ∖ 𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∧ (𝑏 ∖ 𝑤) ∈ (LIndS‘𝑉)) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ (𝑏 ∖ 𝑤)) ≈ (𝑏 ∖ 𝑤)) |
| 252 | | hasheni 14371 |
. . . . . . . 8
⊢ (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ (𝑏 ∖ 𝑤)) ≈ (𝑏 ∖ 𝑤) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ (𝑏 ∖ 𝑤))) = (♯‘(𝑏 ∖ 𝑤))) |
| 253 | 251, 252 | syl 17 |
. . . . . . 7
⊢ (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))):((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))–1-1→ran 𝐹 ∧ (𝑏 ∖ 𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤)) ∧ (𝑏 ∖ 𝑤) ∈ (LIndS‘𝑉)) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ (𝑏 ∖ 𝑤))) = (♯‘(𝑏 ∖ 𝑤))) |
| 254 | 157, 234,
47, 253 | syl3anc 1373 |
. . . . . 6
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏 ∖ 𝑤))) “ (𝑏 ∖ 𝑤))) = (♯‘(𝑏 ∖ 𝑤))) |
| 255 | 250, 254 | eqtrd 2771 |
. . . . 5
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (dim‘𝐼) = (♯‘(𝑏 ∖ 𝑤))) |
| 256 | 28, 255 | oveq12d 7428 |
. . . 4
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → ((dim‘𝐾) +𝑒 (dim‘𝐼)) = ((♯‘𝑤) +𝑒
(♯‘(𝑏 ∖
𝑤)))) |
| 257 | 16, 25, 256 | 3eqtr4d 2781 |
. . 3
⊢
(((((𝑉 ∈ LVec
∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤 ⊆ 𝑏) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼))) |
| 258 | 4 | lbslinds 21798 |
. . . . . 6
⊢
(LBasis‘𝐾)
⊆ (LIndS‘𝐾) |
| 259 | 258, 93 | sselid 3961 |
. . . . 5
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LIndS‘𝐾)) |
| 260 | 51, 2 | lsslinds 21796 |
. . . . . 6
⊢ ((𝑉 ∈ LMod ∧ (◡𝐹 “ { 0 }) ∈
(LSubSp‘𝑉) ∧
𝑤 ⊆ (◡𝐹 “ { 0 })) → (𝑤 ∈ (LIndS‘𝐾) ↔ 𝑤 ∈ (LIndS‘𝑉))) |
| 261 | 260 | biimpa 476 |
. . . . 5
⊢ (((𝑉 ∈ LMod ∧ (◡𝐹 “ { 0 }) ∈
(LSubSp‘𝑉) ∧
𝑤 ⊆ (◡𝐹 “ { 0 })) ∧ 𝑤 ∈ (LIndS‘𝐾)) → 𝑤 ∈ (LIndS‘𝑉)) |
| 262 | 98, 101, 109, 259, 261 | syl31anc 1375 |
. . . 4
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LIndS‘𝑉)) |
| 263 | 23 | islinds4 21800 |
. . . . 5
⊢ (𝑉 ∈ LVec → (𝑤 ∈ (LIndS‘𝑉) ↔ ∃𝑏 ∈ (LBasis‘𝑉)𝑤 ⊆ 𝑏)) |
| 264 | 263 | ad2antrr 726 |
. . . 4
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝑤 ∈ (LIndS‘𝑉) ↔ ∃𝑏 ∈ (LBasis‘𝑉)𝑤 ⊆ 𝑏)) |
| 265 | 262, 264 | mpbid 232 |
. . 3
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ∃𝑏 ∈ (LBasis‘𝑉)𝑤 ⊆ 𝑏) |
| 266 | 257, 265 | r19.29a 3149 |
. 2
⊢ (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼))) |
| 267 | 8, 266 | exlimddv 1935 |
1
⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼))) |