Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimkerim Structured version   Visualization version   GIF version

Theorem dimkerim 31111
Description: Given a linear map 𝐹 between vector spaces 𝑉 and 𝑈, the dimension of the vector space 𝑉 is the sum of the dimension of 𝐹 's kernel and the dimension of 𝐹's image. Second part of theorem 5.3 in [Lang] p. 141 This can also be described as the Rank-nullity theorem, (dim‘𝐼) being the rank of 𝐹 (the dimension of its image), and (dim‘𝐾) its nullity (the dimension of its kernel). (Contributed by Thierry Arnoux, 17-May-2023.)
Hypotheses
Ref Expression
dimkerim.0 0 = (0g𝑈)
dimkerim.k 𝐾 = (𝑉s (𝐹 “ { 0 }))
dimkerim.i 𝐼 = (𝑈s ran 𝐹)
Assertion
Ref Expression
dimkerim ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))

Proof of Theorem dimkerim
Dummy variables 𝑏 𝑢 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dimkerim.0 . . . . 5 0 = (0g𝑈)
2 dimkerim.k . . . . 5 𝐾 = (𝑉s (𝐹 “ { 0 }))
31, 2kerlmhm 31106 . . . 4 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐾 ∈ LVec)
4 eqid 2798 . . . . 5 (LBasis‘𝐾) = (LBasis‘𝐾)
54lbsex 19930 . . . 4 (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅)
63, 5syl 17 . . 3 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (LBasis‘𝐾) ≠ ∅)
7 n0 4260 . . 3 ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (LBasis‘𝐾))
86, 7sylib 221 . 2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → ∃𝑤 𝑤 ∈ (LBasis‘𝐾))
9 simpllr 775 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ∈ (LBasis‘𝐾))
10 vex 3444 . . . . . . 7 𝑏 ∈ V
1110difexi 5196 . . . . . 6 (𝑏𝑤) ∈ V
1211a1i 11 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ V)
13 disjdif 4379 . . . . . 6 (𝑤 ∩ (𝑏𝑤)) = ∅
1413a1i 11 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∩ (𝑏𝑤)) = ∅)
15 hashunx 13743 . . . . 5 ((𝑤 ∈ (LBasis‘𝐾) ∧ (𝑏𝑤) ∈ V ∧ (𝑤 ∩ (𝑏𝑤)) = ∅) → (♯‘(𝑤 ∪ (𝑏𝑤))) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
169, 12, 14, 15syl3anc 1368 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (♯‘(𝑤 ∪ (𝑏𝑤))) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
17 simp-4l 782 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ LVec)
18 simpr 488 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤𝑏)
19 undif 4388 . . . . . . 7 (𝑤𝑏 ↔ (𝑤 ∪ (𝑏𝑤)) = 𝑏)
2018, 19sylib 221 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∪ (𝑏𝑤)) = 𝑏)
21 simplr 768 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ∈ (LBasis‘𝑉))
2220, 21eqeltrd 2890 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑤 ∪ (𝑏𝑤)) ∈ (LBasis‘𝑉))
23 eqid 2798 . . . . . 6 (LBasis‘𝑉) = (LBasis‘𝑉)
2423dimval 31089 . . . . 5 ((𝑉 ∈ LVec ∧ (𝑤 ∪ (𝑏𝑤)) ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘(𝑤 ∪ (𝑏𝑤))))
2517, 22, 24syl2anc 587 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝑉) = (♯‘(𝑤 ∪ (𝑏𝑤))))
263ad3antrrr 729 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐾 ∈ LVec)
274dimval 31089 . . . . . 6 ((𝐾 ∈ LVec ∧ 𝑤 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑤))
2826, 9, 27syl2anc 587 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐾) = (♯‘𝑤))
29 dimkerim.i . . . . . . . . 9 𝐼 = (𝑈s ran 𝐹)
3029imlmhm 31107 . . . . . . . 8 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐼 ∈ LVec)
3130ad3antrrr 729 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐼 ∈ LVec)
32 simp-4r 783 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 ∈ (𝑉 LMHom 𝑈))
33 lmhmlmod2 19797 . . . . . . . . . . 11 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝑈 ∈ LMod)
3432, 33syl 17 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑈 ∈ LMod)
35 lmhmrnlss 19815 . . . . . . . . . . 11 (𝐹 ∈ (𝑉 LMHom 𝑈) → ran 𝐹 ∈ (LSubSp‘𝑈))
3632, 35syl 17 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran 𝐹 ∈ (LSubSp‘𝑈))
37 df-ima 5532 . . . . . . . . . . 11 (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))
38 imassrn 5907 . . . . . . . . . . . 12 (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹
3938a1i 11 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹)
4037, 39eqsstrrid 3964 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹)
41 lveclmod 19871 . . . . . . . . . . . . 13 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
4241ad4antr 731 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ LMod)
4323lbslinds 20522 . . . . . . . . . . . . . . 15 (LBasis‘𝑉) ⊆ (LIndS‘𝑉)
4443, 21sseldi 3913 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ∈ (LIndS‘𝑉))
45 difssd 4060 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ 𝑏)
46 lindsss 20513 . . . . . . . . . . . . . 14 ((𝑉 ∈ LMod ∧ 𝑏 ∈ (LIndS‘𝑉) ∧ (𝑏𝑤) ⊆ 𝑏) → (𝑏𝑤) ∈ (LIndS‘𝑉))
4742, 44, 45, 46syl3anc 1368 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LIndS‘𝑉))
48 eqid 2798 . . . . . . . . . . . . . 14 (Base‘𝑉) = (Base‘𝑉)
4948linds1 20499 . . . . . . . . . . . . 13 ((𝑏𝑤) ∈ (LIndS‘𝑉) → (𝑏𝑤) ⊆ (Base‘𝑉))
5047, 49syl 17 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ (Base‘𝑉))
51 eqid 2798 . . . . . . . . . . . . 13 (LSubSp‘𝑉) = (LSubSp‘𝑉)
52 eqid 2798 . . . . . . . . . . . . 13 (LSpan‘𝑉) = (LSpan‘𝑉)
5348, 51, 52lspcl 19741 . . . . . . . . . . . 12 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
5442, 50, 53syl2anc 587 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
55 eqid 2798 . . . . . . . . . . . 12 (𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) = (𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))
5651, 55reslmhm 19817 . . . . . . . . . . 11 ((𝐹 ∈ (𝑉 LMHom 𝑈) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈))
5732, 54, 56syl2anc 587 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈))
58 eqid 2798 . . . . . . . . . . . 12 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5929, 58reslmhm2b 19819 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼)))
6059biimpa 480 . . . . . . . . . 10 (((𝑈 ∈ LMod ∧ ran 𝐹 ∈ (LSubSp‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) ∧ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝑈)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼))
6134, 36, 40, 57, 60syl31anc 1370 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼))
62 lmghm 19796 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
6362ad4antlr 732 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
6448, 23lbsss 19842 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ (LBasis‘𝑉) → 𝑏 ⊆ (Base‘𝑉))
6521, 64syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑏 ⊆ (Base‘𝑉))
6645, 65sstrd 3925 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ (Base‘𝑉))
6742, 66, 53syl2anc 587 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉))
6851lsssubg 19722 . . . . . . . . . . . . . . . . 17 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉))
6942, 67, 68syl2anc 587 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉))
7055resghm 18366 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (𝑉 GrpHom 𝑈) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (SubGrp‘𝑉)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈))
7163, 69, 70syl2anc 587 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈))
72 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝑈) = (Base‘𝑈)
7348, 72lmhmf 19799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
7473ad4antlr 732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
7574ffnd 6488 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝐹 Fn (Base‘𝑉))
7648, 52lspssv 19748 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
7742, 66, 76syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
78 fnssres 6442 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 Fn (Base‘𝑉) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)))
7975, 77, 78syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)))
80 fniniseg 6807 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)) → (𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) ↔ (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 )))
8180biimpa 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) Fn ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 ))
8279, 81sylan 583 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 ))
8382simpld 498 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
8475adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝐹 Fn (Base‘𝑉))
8577adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
8685, 83sseldd 3916 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (Base‘𝑉))
8783fvresd 6665 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = (𝐹𝑥))
8882simprd 499 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘𝑥) = 0 )
8987, 88eqtr3d 2835 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (𝐹𝑥) = 0 )
90 fniniseg 6807 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn (Base‘𝑉) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑉) ∧ (𝐹𝑥) = 0 )))
9190biimpar 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 Fn (Base‘𝑉) ∧ (𝑥 ∈ (Base‘𝑉) ∧ (𝐹𝑥) = 0 )) → 𝑥 ∈ (𝐹 “ { 0 }))
9284, 86, 89, 91syl12anc 835 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (𝐹 “ { 0 }))
9383, 92elind 4121 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })))
94 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LBasis‘𝐾))
95 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Base‘𝐾) = (Base‘𝐾)
96 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (LSpan‘𝐾) = (LSpan‘𝐾)
9795, 4, 96lbssp 19844 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (LBasis‘𝐾) → ((LSpan‘𝐾)‘𝑤) = (Base‘𝐾))
9894, 97syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝐾)‘𝑤) = (Base‘𝐾))
9941ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑉 ∈ LMod)
100 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹 “ { 0 }) = (𝐹 “ { 0 })
101100, 1, 51lmhmkerlss 19816 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉))
102101ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉))
10395, 4lbsss 19842 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ (LBasis‘𝐾) → 𝑤 ⊆ (Base‘𝐾))
10494, 103syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ⊆ (Base‘𝐾))
105 cnvimass 5916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹 “ { 0 }) ⊆ dom 𝐹
106105, 73fssdm 6504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) ⊆ (Base‘𝑉))
1072, 48ressbas2 16547 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹 “ { 0 }) ⊆ (Base‘𝑉) → (𝐹 “ { 0 }) = (Base‘𝐾))
108106, 107syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹 “ { 0 }) = (Base‘𝐾))
109108ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝐹 “ { 0 }) = (Base‘𝐾))
110104, 109sseqtrrd 3956 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ⊆ (𝐹 “ { 0 }))
1112, 52, 96, 51lsslsp 19780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) → ((LSpan‘𝑉)‘𝑤) = ((LSpan‘𝐾)‘𝑤))
11299, 102, 110, 111syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝑉)‘𝑤) = ((LSpan‘𝐾)‘𝑤))
11398, 112, 1093eqtr4d 2843 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
114113ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
115114ineq2d 4139 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })))
116 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . 24 (0g𝑉) = (0g𝑉)
11723, 52, 116lbsdiflsp0 31110 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = {(0g𝑉)})
118117ad5ant145 1366 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ ((LSpan‘𝑉)‘𝑤)) = {(0g𝑉)})
119115, 118eqtr3d 2835 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })) = {(0g𝑉)})
120119adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → (((LSpan‘𝑉)‘(𝑏𝑤)) ∩ (𝐹 “ { 0 })) = {(0g𝑉)})
12193, 120eleqtrd 2892 . . . . . . . . . . . . . . . . . . 19 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 })) → 𝑥 ∈ {(0g𝑉)})
122121ex 416 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑥 ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) → 𝑥 ∈ {(0g𝑉)}))
123122ssrdv 3921 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) ⊆ {(0g𝑉)})
124116, 48, 520ellsp 30985 . . . . . . . . . . . . . . . . . . . 20 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
12542, 66, 124syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
126 fvexd 6660 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V)
127125fvresd 6665 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = (𝐹‘(0g𝑉)))
128116, 1ghmid 18356 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (𝑉 GrpHom 𝑈) → (𝐹‘(0g𝑉)) = 0 )
12962, 128syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (𝑉 LMHom 𝑈) → (𝐹‘(0g𝑉)) = 0 )
130129ad4antlr 732 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹‘(0g𝑉)) = 0 )
131127, 130eqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 )
132 elsng 4539 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V → (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 } ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 ))
133132biimpar 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ V ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) = 0 ) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 })
134126, 131, 133syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤)))‘(0g𝑉)) ∈ { 0 })
13579, 125, 134elpreimad 6806 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) ∈ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }))
136135snssd 4702 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → {(0g𝑉)} ⊆ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }))
137123, 136eqssd 3932 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g𝑉)})
138 lmodgrp 19634 . . . . . . . . . . . . . . . . . . 19 (𝑉 ∈ LMod → 𝑉 ∈ Grp)
139 grpmnd 18102 . . . . . . . . . . . . . . . . . . 19 (𝑉 ∈ Grp → 𝑉 ∈ Mnd)
14042, 138, 1393syl 18 . . . . . . . . . . . . . . . . . 18 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑉 ∈ Mnd)
14155, 48, 116ress0g 17931 . . . . . . . . . . . . . . . . . 18 ((𝑉 ∈ Mnd ∧ (0g𝑉) ∈ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) → (0g𝑉) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
142140, 125, 77, 141syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (0g𝑉) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
143142sneqd 4537 . . . . . . . . . . . . . . . 16 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → {(0g𝑉)} = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))})
144137, 143eqtrd 2833 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))})
145 eqid 2798 . . . . . . . . . . . . . . . . 17 (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
146 eqid 2798 . . . . . . . . . . . . . . . . 17 (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
147145, 72, 146, 1kerf1ghm 19491 . . . . . . . . . . . . . . . 16 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈) ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))}))
148147biimpar 481 . . . . . . . . . . . . . . 15 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) GrpHom 𝑈) ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ { 0 }) = {(0g‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))}) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈))
14971, 144, 148syl2anc 587 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈))
150 eqidd 2799 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) = (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
15155, 48ressbas2 16547 . . . . . . . . . . . . . . . 16 (((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
15277, 151syl 17 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
153 eqidd 2799 . . . . . . . . . . . . . . 15 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (Base‘𝑈) = (Base‘𝑈))
154150, 152, 153f1eq123d 6583 . . . . . . . . . . . . . 14 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1→(Base‘𝑈)))
155149, 154mpbird 260 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈))
156 f1ssr 6556 . . . . . . . . . . . . 13 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→(Base‘𝑈) ∧ ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ⊆ ran 𝐹) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹)
157155, 40, 156syl2anc 587 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹)
158 f1f1orn 6601 . . . . . . . . . . . 12 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
159157, 158syl 17 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))))
160 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = 𝑦)
16175ad6antr 735 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹 Fn (Base‘𝑉))
162 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ ((LSpan‘𝑉)‘𝑤))
163113ad8antr 739 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘𝑤) = (𝐹 “ { 0 }))
164162, 163eleqtrd 2892 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ (𝐹 “ { 0 }))
165 fniniseg 6807 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 Fn (Base‘𝑉) → (𝑢 ∈ (𝐹 “ { 0 }) ↔ (𝑢 ∈ (Base‘𝑉) ∧ (𝐹𝑢) = 0 )))
166165simplbda 503 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 Fn (Base‘𝑉) ∧ 𝑢 ∈ (𝐹 “ { 0 })) → (𝐹𝑢) = 0 )
167161, 164, 166syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑢) = 0 )
168167oveq1d 7150 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((𝐹𝑢)(+g𝑈)(𝐹𝑣)) = ( 0 (+g𝑈)(𝐹𝑣)))
169 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑥 = (𝑢(+g𝑉)𝑣))
170169fveq2d 6649 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = (𝐹‘(𝑢(+g𝑉)𝑣)))
17163ad6antr 735 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹 ∈ (𝑉 GrpHom 𝑈))
17248, 52lspss 19749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ∈ LMod ∧ 𝑏 ⊆ (Base‘𝑉) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ ((LSpan‘𝑉)‘𝑏))
17342, 65, 18, 172syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ ((LSpan‘𝑉)‘𝑏))
17448, 23, 52lbssp 19844 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 ∈ (LBasis‘𝑉) → ((LSpan‘𝑉)‘𝑏) = (Base‘𝑉))
17521, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑏) = (Base‘𝑉))
176173, 175sseqtrd 3955 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
177176ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
178177ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉))
179178, 162sseldd 3916 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑢 ∈ (Base‘𝑉))
18077ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
181180ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
182 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤)))
183181, 182sseldd 3916 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑣 ∈ (Base‘𝑉))
184 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑉) = (+g𝑉)
185 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑈) = (+g𝑈)
18648, 184, 185ghmlin 18355 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (𝑉 GrpHom 𝑈) ∧ 𝑢 ∈ (Base‘𝑉) ∧ 𝑣 ∈ (Base‘𝑉)) → (𝐹‘(𝑢(+g𝑉)𝑣)) = ((𝐹𝑢)(+g𝑈)(𝐹𝑣)))
187171, 179, 183, 186syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹‘(𝑢(+g𝑉)𝑣)) = ((𝐹𝑢)(+g𝑈)(𝐹𝑣)))
188170, 187eqtr2d 2834 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ((𝐹𝑢)(+g𝑈)(𝐹𝑣)) = (𝐹𝑥))
189 lmhmlvec2 31105 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)
190 lveclmod 19871 . . . . . . . . . . . . . . . . . . . . . 22 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
191 lmodgrp 19634 . . . . . . . . . . . . . . . . . . . . . 22 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
192189, 190, 1913syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ Grp)
193192ad9antr 741 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑈 ∈ Grp)
19474ad6antr 735 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝐹:(Base‘𝑉)⟶(Base‘𝑈))
195194, 183ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑣) ∈ (Base‘𝑈))
19672, 185, 1grplid 18125 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Grp ∧ (𝐹𝑣) ∈ (Base‘𝑈)) → ( 0 (+g𝑈)(𝐹𝑣)) = (𝐹𝑣))
197193, 195, 196syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → ( 0 (+g𝑈)(𝐹𝑣)) = (𝐹𝑣))
198168, 188, 1973eqtr3d 2841 . . . . . . . . . . . . . . . . . 18 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑥) = (𝐹𝑣))
199160, 198eqtr3d 2835 . . . . . . . . . . . . . . . . 17 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑦 = (𝐹𝑣))
200161, 183, 182fnfvimad 6974 . . . . . . . . . . . . . . . . 17 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → (𝐹𝑣) ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
201199, 200eqeltrd 2890 . . . . . . . . . . . . . . . 16 (((((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) ∧ 𝑢 ∈ ((LSpan‘𝑉)‘𝑤)) ∧ 𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ 𝑥 = (𝑢(+g𝑉)𝑣)) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
202 simp-7l 788 . . . . . . . . . . . . . . . . 17 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑉 ∈ LVec)
203 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (Base‘𝑉))
204110ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ⊆ (𝐹 “ { 0 }))
205106ad4antlr 732 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ { 0 }) ⊆ (Base‘𝑉))
206204, 205sstrd 3925 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → 𝑤 ⊆ (Base‘𝑉))
207 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (LSSum‘𝑉) = (LSSum‘𝑉)
20848, 52, 207lsmsp2 19852 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ LMod ∧ 𝑤 ⊆ (Base‘𝑉) ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) = ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))))
20942, 206, 66, 208syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) = ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))))
21020fveq2d 6649 . . . . . . . . . . . . . . . . . . . 20 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑤 ∪ (𝑏𝑤))) = ((LSpan‘𝑉)‘𝑏))
211209, 210, 1753eqtrrd 2838 . . . . . . . . . . . . . . . . . . 19 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (Base‘𝑉) = (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
212211ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → (Base‘𝑉) = (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
213203, 212eleqtrd 2892 . . . . . . . . . . . . . . . . 17 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))))
21448, 184, 207lsmelvalx 18757 . . . . . . . . . . . . . . . . . 18 ((𝑉 ∈ LVec ∧ ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) → (𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤))) ↔ ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣)))
215214biimpa 480 . . . . . . . . . . . . . . . . 17 (((𝑉 ∈ LVec ∧ ((LSpan‘𝑉)‘𝑤) ⊆ (Base‘𝑉) ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉)) ∧ 𝑥 ∈ (((LSpan‘𝑉)‘𝑤)(LSSum‘𝑉)((LSpan‘𝑉)‘(𝑏𝑤)))) → ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣))
216202, 177, 180, 213, 215syl31anc 1370 . . . . . . . . . . . . . . . 16 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → ∃𝑢 ∈ ((LSpan‘𝑉)‘𝑤)∃𝑣 ∈ ((LSpan‘𝑉)‘(𝑏𝑤))𝑥 = (𝑢(+g𝑉)𝑣))
217201, 216r19.29vva 3292 . . . . . . . . . . . . . . 15 ((((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑥 ∈ (Base‘𝑉)) ∧ (𝐹𝑥) = 𝑦) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
218 fvelrnb 6701 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝑉) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦))
219218biimpa 480 . . . . . . . . . . . . . . . 16 ((𝐹 Fn (Base‘𝑉) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦)
22075, 219sylan 583 . . . . . . . . . . . . . . 15 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ (Base‘𝑉)(𝐹𝑥) = 𝑦)
221217, 220r19.29a 3248 . . . . . . . . . . . . . 14 ((((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))))
22239, 221eqelssd 3936 . . . . . . . . . . . . 13 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 “ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran 𝐹)
22337, 222syl5eqr 2847 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) = ran 𝐹)
224223f1oeq3d 6587 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹))
225159, 224mpbid 235 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹)
22642, 50, 76syl2anc 587 . . . . . . . . . . . 12 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) ⊆ (Base‘𝑉))
227226, 151syl 17 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
228 frn 6493 . . . . . . . . . . . . 13 (𝐹:(Base‘𝑉)⟶(Base‘𝑈) → ran 𝐹 ⊆ (Base‘𝑈))
22929, 72ressbas2 16547 . . . . . . . . . . . . 13 (ran 𝐹 ⊆ (Base‘𝑈) → ran 𝐹 = (Base‘𝐼))
23073, 228, 2293syl 18 . . . . . . . . . . . 12 (𝐹 ∈ (𝑉 LMHom 𝑈) → ran 𝐹 = (Base‘𝐼))
23132, 230syl 17 . . . . . . . . . . 11 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ran 𝐹 = (Base‘𝐼))
232150, 227, 231f1oeq123d 6585 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1-onto→ran 𝐹 ↔ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼)))
233225, 232mpbid 235 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼))
234 eqid 2798 . . . . . . . . . 10 (Base‘𝐼) = (Base‘𝐼)
235145, 234islmim 19827 . . . . . . . . 9 ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼) ↔ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMHom 𝐼) ∧ (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):(Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))–1-1-onto→(Base‘𝐼)))
23661, 233, 235sylanbrc 586 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼))
23748, 52lspssid 19750 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ (𝑏𝑤) ⊆ (Base‘𝑉)) → (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)))
23842, 50, 237syl2anc 587 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)))
23951, 55lsslinds 20520 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) → ((𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ↔ (𝑏𝑤) ∈ (LIndS‘𝑉)))
240239biimpar 481 . . . . . . . . . 10 (((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → (𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
24142, 67, 238, 47, 240syl31anc 1370 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
242 eqid 2798 . . . . . . . . . . . 12 (LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
24355, 52, 242, 51lsslsp 19780 . . . . . . . . . . 11 ((𝑉 ∈ LMod ∧ ((LSpan‘𝑉)‘(𝑏𝑤)) ∈ (LSubSp‘𝑉) ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤))) → ((LSpan‘𝑉)‘(𝑏𝑤)) = ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)))
24442, 54, 238, 243syl3anc 1368 . . . . . . . . . 10 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘𝑉)‘(𝑏𝑤)) = ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)))
245244, 227eqtr3d 2835 . . . . . . . . 9 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
246 eqid 2798 . . . . . . . . . 10 (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) = (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))
247145, 246, 242islbs4 20521 . . . . . . . . 9 ((𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ↔ ((𝑏𝑤) ∈ (LIndS‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))) ∧ ((LSpan‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))‘(𝑏𝑤)) = (Base‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))))
248241, 245, 247sylanbrc 586 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤)))))
249 eqid 2798 . . . . . . . . 9 (LBasis‘𝐼) = (LBasis‘𝐼)
250246, 249lmimlbs 20525 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) ∈ ((𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))) LMIso 𝐼) ∧ (𝑏𝑤) ∈ (LBasis‘(𝑉s ((LSpan‘𝑉)‘(𝑏𝑤))))) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼))
251236, 248, 250syl2anc 587 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼))
252249dimval 31089 . . . . . . 7 ((𝐼 ∈ LVec ∧ ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ∈ (LBasis‘𝐼)) → (dim‘𝐼) = (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))))
25331, 251, 252syl2anc 587 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐼) = (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))))
254 f1imaeng 8552 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → ((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ≈ (𝑏𝑤))
255 hasheni 13704 . . . . . . . 8 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤)) ≈ (𝑏𝑤) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
256254, 255syl 17 . . . . . . 7 (((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))):((LSpan‘𝑉)‘(𝑏𝑤))–1-1→ran 𝐹 ∧ (𝑏𝑤) ⊆ ((LSpan‘𝑉)‘(𝑏𝑤)) ∧ (𝑏𝑤) ∈ (LIndS‘𝑉)) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
257157, 238, 47, 256syl3anc 1368 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (♯‘((𝐹 ↾ ((LSpan‘𝑉)‘(𝑏𝑤))) “ (𝑏𝑤))) = (♯‘(𝑏𝑤)))
258253, 257eqtrd 2833 . . . . 5 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝐼) = (♯‘(𝑏𝑤)))
25928, 258oveq12d 7153 . . . 4 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → ((dim‘𝐾) +𝑒 (dim‘𝐼)) = ((♯‘𝑤) +𝑒 (♯‘(𝑏𝑤))))
26016, 25, 2593eqtr4d 2843 . . 3 (((((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) ∧ 𝑏 ∈ (LBasis‘𝑉)) ∧ 𝑤𝑏) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
2614lbslinds 20522 . . . . . 6 (LBasis‘𝐾) ⊆ (LIndS‘𝐾)
262261, 94sseldi 3913 . . . . 5 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LIndS‘𝐾))
26351, 2lsslinds 20520 . . . . . 6 ((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) → (𝑤 ∈ (LIndS‘𝐾) ↔ 𝑤 ∈ (LIndS‘𝑉)))
264263biimpa 480 . . . . 5 (((𝑉 ∈ LMod ∧ (𝐹 “ { 0 }) ∈ (LSubSp‘𝑉) ∧ 𝑤 ⊆ (𝐹 “ { 0 })) ∧ 𝑤 ∈ (LIndS‘𝐾)) → 𝑤 ∈ (LIndS‘𝑉))
26599, 102, 110, 262, 264syl31anc 1370 . . . 4 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → 𝑤 ∈ (LIndS‘𝑉))
26623islinds4 20524 . . . . 5 (𝑉 ∈ LVec → (𝑤 ∈ (LIndS‘𝑉) ↔ ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏))
267266ad2antrr 725 . . . 4 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (𝑤 ∈ (LIndS‘𝑉) ↔ ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏))
268265, 267mpbid 235 . . 3 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → ∃𝑏 ∈ (LBasis‘𝑉)𝑤𝑏)
269260, 268r19.29a 3248 . 2 (((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) ∧ 𝑤 ∈ (LBasis‘𝐾)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
2708, 269exlimddv 1936 1 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525   class class class wbr 5030  ccnv 5518  ran crn 5520  cres 5521  cima 5522   Fn wfn 6319  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cen 8489   +𝑒 cxad 12493  chash 13686  Basecbs 16475  s cress 16476  +gcplusg 16557  0gc0g 16705  Mndcmnd 17903  Grpcgrp 18095  SubGrpcsubg 18265   GrpHom cghm 18347  LSSumclsm 18751  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736   LMHom clmhm 19784   LMIso clmim 19785  LBasisclbs 19839  LVecclvec 19867  LIndSclinds 20494  dimcldim 31087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-rpss 7429  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-r1 9177  df-rank 9178  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-xadd 12496  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ocomp 16578  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-mri 16851  df-acs 16852  df-proset 17530  df-drs 17531  df-poset 17548  df-ipo 17754  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lmim 19788  df-lbs 19840  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-nzr 20024  df-dsmm 20421  df-frlm 20436  df-uvc 20472  df-lindf 20495  df-linds 20496  df-dim 31088
This theorem is referenced by:  qusdimsum  31112
  Copyright terms: Public domain W3C validator