Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem2 Structured version   Visualization version   GIF version

Theorem smflimlem2 46754
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem2.1 𝑍 = (ℤ𝑀)
smflimlem2.2 (𝜑𝑆 ∈ SAlg)
smflimlem2.3 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem2.4 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem2.5 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem2.6 (𝜑𝐴 ∈ ℝ)
smflimlem2.7 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem2.8 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem2.9 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem2.10 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ (𝐷𝐼))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛   𝐴,𝑠,𝑘,𝑚   𝐶,𝑟   𝐷,𝑘,𝑚,𝑛   𝑛,𝐹,𝑥   𝐹,𝑠,𝑥   𝑘,𝐺,𝑚,𝑛   𝐻,𝑠   𝑥,𝐼   𝑃,𝑟   𝑆,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥   𝑘,𝑟,𝑚,𝜑
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑥,𝑟)   𝐶(𝑥,𝑘,𝑚,𝑛,𝑠)   𝐷(𝑥,𝑠,𝑟)   𝑃(𝑥,𝑘,𝑚,𝑛,𝑠)   𝑆(𝑥,𝑘,𝑚,𝑛,𝑟)   𝐹(𝑘,𝑚,𝑟)   𝐺(𝑥,𝑠,𝑟)   𝐻(𝑥,𝑘,𝑚,𝑛,𝑟)   𝐼(𝑘,𝑚,𝑛,𝑠,𝑟)   𝑀(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem2
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimlem2.4 . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
2 nfrab1 3417 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
31, 2nfcxfr 2889 . . . 4 𝑥𝐷
43ssrab2f 45095 . . 3 {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐷
54a1i 11 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐷)
6 simpllr 775 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥𝐷)
7 ssrab2 4033 . . . . . . . . . . . . . . 15 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
81, 7eqsstri 3984 . . . . . . . . . . . . . 14 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
98sseli 3933 . . . . . . . . . . . . 13 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
10 fveq2 6826 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
1110iineq1d 45068 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
1211cbviunv 4992 . . . . . . . . . . . . . . 15 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
1312eleq2i 2820 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
14 eliun 4948 . . . . . . . . . . . . . 14 (𝑥 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ↔ ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
1513, 14bitri 275 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
169, 15sylib 218 . . . . . . . . . . . 12 (𝑥𝐷 → ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
176, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
18 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑚((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴)
19 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑚 𝑘 ∈ ℕ
2018, 19nfan 1899 . . . . . . . . . . . . . . . . 17 𝑚(((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ)
21 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑚 𝑖𝑍
2220, 21nfan 1899 . . . . . . . . . . . . . . . 16 𝑚((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍)
23 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑚𝑥
24 nfii1 4982 . . . . . . . . . . . . . . . . 17 𝑚 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
2523, 24nfel 2906 . . . . . . . . . . . . . . . 16 𝑚 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
2622, 25nfan 1899 . . . . . . . . . . . . . . 15 𝑚(((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
27 nfmpt1 5194 . . . . . . . . . . . . . . 15 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
28 eqid 2729 . . . . . . . . . . . . . . 15 (ℤ𝑖) = (ℤ𝑖)
29 uzssz 12774 . . . . . . . . . . . . . . . . . 18 (ℤ𝑀) ⊆ ℤ
30 smflimlem2.1 . . . . . . . . . . . . . . . . . . . 20 𝑍 = (ℤ𝑀)
3130eleq2i 2820 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
3231biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
3329, 32sselid 3935 . . . . . . . . . . . . . . . . 17 (𝑖𝑍𝑖 ∈ ℤ)
34 uzid 12768 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 𝑖 ∈ (ℤ𝑖))
3533, 34syl 17 . . . . . . . . . . . . . . . 16 (𝑖𝑍𝑖 ∈ (ℤ𝑖))
3635ad2antlr 727 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑖 ∈ (ℤ𝑖))
37 simplll 774 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → (𝜑𝑥𝐷))
3837simpld 494 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝜑)
39 uzss 12776 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
4032, 39syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝑍 → (ℤ𝑖) ⊆ (ℤ𝑀))
4140, 30sseqtrrdi 3979 . . . . . . . . . . . . . . . . . . . 20 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
4241sselda 3937 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑍𝑚 ∈ (ℤ𝑖)) → 𝑚𝑍)
4342ad4ant24 754 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑚𝑍)
44 eliinid 45089 . . . . . . . . . . . . . . . . . . 19 ((𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
4544adantll 714 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
46 eqidd 2730 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
47 fvexd 6841 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
4846, 47fvmpt2d 6947 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
49483adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
50 smflimlem2.2 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆 ∈ SAlg)
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
52 smflimlem2.3 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5352ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
54 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 dom (𝐹𝑚) = dom (𝐹𝑚)
5551, 53, 54smff 46714 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
56553adant3 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
57 simp3 1138 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → 𝑥 ∈ dom (𝐹𝑚))
5856, 57ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
5949, 58eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6038, 43, 45, 59syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6160adantl3r 750 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6261adantl3r 750 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
631eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
6463biimpi 216 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
65 rabidim2 45080 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
67 climdm 15479 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6866, 67sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6968adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7069, 67sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
7170, 67sylib 218 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
72 nfcv 2891 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
73 smflimlem2.5 . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
74 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → 𝑥𝐷)
753, 72, 73, 74fnlimfv 45645 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (𝐺𝑥) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7675eqcomd 2735 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (𝐺𝑥))
7771, 76breqtrd 5121 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ (𝐺𝑥))
7877ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ (𝐺𝑥))
79 smflimlem2.6 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ)
8079ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝐴 ∈ ℝ)
81 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (𝐺𝑥) ≤ 𝐴)
82 simpllr 775 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑘 ∈ ℕ)
83 nnrecrp 45366 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
8482, 83syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (1 / 𝑘) ∈ ℝ+)
8526, 27, 28, 36, 62, 78, 80, 81, 84climleltrp 45658 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))))
86 simp-6l 786 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
87 simplr 768 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑖𝑍)
8887adantr 480 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑖𝑍)
89 simplr 768 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
90 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛 ∈ (ℤ𝑖))
91 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑚𝜑
9291, 21, 25nf3an 1901 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
93 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑚 𝑛 ∈ (ℤ𝑖)
9492, 93nfan 1899 . . . . . . . . . . . . . . . . 17 𝑚((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖))
95 simpll 766 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)))
9628uztrn2 12772 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ𝑖) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑖))
9796adantll 714 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑖))
98 simpll2 1214 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑖𝑍)
99 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑚 ∈ (ℤ𝑖))
10098, 99, 42syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑚𝑍)
101 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))
102 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚𝑍𝑚𝑍)
103 fvexd 6841 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚𝑍 → ((𝐹𝑚)‘𝑥) ∈ V)
104 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
105104fvmpt2 6945 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑍 ∧ ((𝐹𝑚)‘𝑥) ∈ V) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
106102, 103, 105syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
107106eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚𝑍 → ((𝐹𝑚)‘𝑥) = ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚))
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) = ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚))
109 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))
110108, 109eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
111100, 101, 110syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
112443ad2antl3 1188 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
113112adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ dom (𝐹𝑚))
114 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
115113, 114jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))))
116 rabid 3418 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))))
117115, 116sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
118111, 117syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
119118adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ (((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
120119ex 412 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12195, 97, 120syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12294, 121ralimdaa 3230 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → (∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12386, 88, 89, 90, 122syl31anc 1375 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → (∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
124123reximdva 3142 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12585, 124mpd 15 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
126 ssrexv 4007 . . . . . . . . . . . . . . 15 ((ℤ𝑖) ⊆ 𝑍 → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12741, 126syl 17 . . . . . . . . . . . . . 14 (𝑖𝑍 → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
128127ad2antlr 727 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
129125, 128mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
130129rexlimdva2 3132 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → (∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
13117, 130mpd 15 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
132 nfv 1914 . . . . . . . . . . . . . . . 16 𝑚(𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍)
133 nfra1 3253 . . . . . . . . . . . . . . . 16 𝑚𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}
134132, 133nfan 1899 . . . . . . . . . . . . . . 15 𝑚((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
135 simpll1 1213 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
136 simpll2 1214 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
13730uztrn2 12772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
138137ssd 45058 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
139138sselda 3937 . . . . . . . . . . . . . . . . . . . 20 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
140139adantll 714 . . . . . . . . . . . . . . . . . . 19 (((𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1411403adantl1 1167 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
142141adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
143 rspa 3218 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
144143adantll 714 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
145 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝜑)
146 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑚𝑍)
147 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑘 ∈ ℕ)
148 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
149148, 50rabexd 5282 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
150149ralrimivw 3125 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
151150ralrimivw 3125 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
1521513ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
153 smflimlem2.7 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
154153elrnmpoid 45206 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚𝑍𝑘 ∈ ℕ ∧ ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) ∈ ran 𝑃)
155146, 147, 152, 154syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ∈ ran 𝑃)
156 ovex 7386 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚𝑃𝑘) ∈ V
157 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → (𝑟 ∈ ran 𝑃 ↔ (𝑚𝑃𝑘) ∈ ran 𝑃))
158157anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 = (𝑚𝑃𝑘) → ((𝜑𝑟 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃)))
159 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → (𝐶𝑟) = (𝐶‘(𝑚𝑃𝑘)))
160 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → 𝑟 = (𝑚𝑃𝑘))
161159, 160eleq12d 2822 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 = (𝑚𝑃𝑘) → ((𝐶𝑟) ∈ 𝑟 ↔ (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)))
162158, 161imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 = (𝑚𝑃𝑘) → (((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟) ↔ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))))
163 smflimlem2.10 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
164156, 162, 163vtocl 3515 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
165145, 155, 164syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
166 fvexd 6841 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ V)
167 smflimlem2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
168167ovmpt4g 7500 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑍𝑘 ∈ ℕ ∧ (𝐶‘(𝑚𝑃𝑘)) ∈ V) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
169146, 147, 166, 168syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
170169eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) = (𝑚𝐻𝑘))
171145, 149syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
172153ovmpt4g 7500 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚𝑍𝑘 ∈ ℕ ∧ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
173146, 147, 171, 172syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
174170, 173eleq12d 2822 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ((𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘) ↔ (𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}))
175165, 174mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
176 ineq1 4166 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑚𝐻𝑘) → (𝑠 ∩ dom (𝐹𝑚)) = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)))
177176eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑚𝐻𝑘) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
178177elrab 3650 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ↔ ((𝑚𝐻𝑘) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
179175, 178sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ((𝑚𝐻𝑘) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
180179simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)))
181 inss1 4190 . . . . . . . . . . . . . . . . . . . 20 ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)) ⊆ (𝑚𝐻𝑘)
182180, 181eqsstrdi 3982 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ⊆ (𝑚𝐻𝑘))
183182adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ⊆ (𝑚𝐻𝑘))
184 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
185183, 184sseldd 3938 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 ∈ (𝑚𝐻𝑘))
186135, 136, 142, 144, 185syl31anc 1375 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ (𝑚𝐻𝑘))
187186ex 412 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → (𝑚 ∈ (ℤ𝑛) → 𝑥 ∈ (𝑚𝐻𝑘)))
188134, 187ralrimi 3227 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘))
189 vex 3442 . . . . . . . . . . . . . . 15 𝑥 ∈ V
190 eliin 4949 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘)))
191189, 190ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘))
192188, 191sylibr 234 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
193192ex 412 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
194193ad5ant145 1371 . . . . . . . . . . 11 (((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
195194reximdva 3142 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
196131, 195mpd 15 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
197 eliun 4948 . . . . . . . . 9 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
198196, 197sylibr 234 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
199198ralrimiva 3121 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
200 eliin 4949 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
201189, 200ax-mp 5 . . . . . . 7 (𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
202199, 201sylibr 234 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → 𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
203 smflimlem2.9 . . . . . 6 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
204202, 203eleqtrrdi 2839 . . . . 5 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → 𝑥𝐼)
205204ex 412 . . . 4 ((𝜑𝑥𝐷) → ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
206205ralrimiva 3121 . . 3 (𝜑 → ∀𝑥𝐷 ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
207 rabss 4025 . . 3 ({𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐼 ↔ ∀𝑥𝐷 ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
208206, 207sylibr 234 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐼)
2095, 208ssind 4194 1 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ (𝐷𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cin 3904  wss 3905   ciun 4944   ciin 4945   class class class wbr 5095  cmpt 5176  dom cdm 5623  ran crn 5624  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  cr 11027  1c1 11029   + caddc 11031   < clt 11168  cle 11169   / cdiv 11795  cn 12146  cz 12489  cuz 12753  +crp 12911  cli 15409  SAlgcsalg 46290  SMblFncsmblfn 46677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ioo 13270  df-ico 13272  df-fl 13714  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-smblfn 46678
This theorem is referenced by:  smflimlem5  46757
  Copyright terms: Public domain W3C validator