Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem2 Structured version   Visualization version   GIF version

Theorem smflimlem2 46787
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem2.1 𝑍 = (ℤ𝑀)
smflimlem2.2 (𝜑𝑆 ∈ SAlg)
smflimlem2.3 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem2.4 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem2.5 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem2.6 (𝜑𝐴 ∈ ℝ)
smflimlem2.7 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem2.8 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem2.9 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem2.10 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ (𝐷𝐼))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛   𝐴,𝑠,𝑘,𝑚   𝐶,𝑟   𝐷,𝑘,𝑚,𝑛   𝑛,𝐹,𝑥   𝐹,𝑠,𝑥   𝑘,𝐺,𝑚,𝑛   𝐻,𝑠   𝑥,𝐼   𝑃,𝑟   𝑆,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥   𝑘,𝑟,𝑚,𝜑
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑥,𝑟)   𝐶(𝑥,𝑘,𝑚,𝑛,𝑠)   𝐷(𝑥,𝑠,𝑟)   𝑃(𝑥,𝑘,𝑚,𝑛,𝑠)   𝑆(𝑥,𝑘,𝑚,𝑛,𝑟)   𝐹(𝑘,𝑚,𝑟)   𝐺(𝑥,𝑠,𝑟)   𝐻(𝑥,𝑘,𝑚,𝑛,𝑟)   𝐼(𝑘,𝑚,𝑛,𝑠,𝑟)   𝑀(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem2
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimlem2.4 . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
2 nfrab1 3457 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
31, 2nfcxfr 2903 . . . 4 𝑥𝐷
43ssrab2f 45122 . . 3 {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐷
54a1i 11 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐷)
6 simpllr 776 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥𝐷)
7 ssrab2 4080 . . . . . . . . . . . . . . 15 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
81, 7eqsstri 4030 . . . . . . . . . . . . . 14 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
98sseli 3979 . . . . . . . . . . . . 13 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
10 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
1110iineq1d 45095 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
1211cbviunv 5040 . . . . . . . . . . . . . . 15 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
1312eleq2i 2833 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
14 eliun 4995 . . . . . . . . . . . . . 14 (𝑥 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ↔ ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
1513, 14bitri 275 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
169, 15sylib 218 . . . . . . . . . . . 12 (𝑥𝐷 → ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
176, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
18 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑚((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴)
19 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑚 𝑘 ∈ ℕ
2018, 19nfan 1899 . . . . . . . . . . . . . . . . 17 𝑚(((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ)
21 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑚 𝑖𝑍
2220, 21nfan 1899 . . . . . . . . . . . . . . . 16 𝑚((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍)
23 nfcv 2905 . . . . . . . . . . . . . . . . 17 𝑚𝑥
24 nfii1 5029 . . . . . . . . . . . . . . . . 17 𝑚 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
2523, 24nfel 2920 . . . . . . . . . . . . . . . 16 𝑚 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
2622, 25nfan 1899 . . . . . . . . . . . . . . 15 𝑚(((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
27 nfmpt1 5250 . . . . . . . . . . . . . . 15 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
28 eqid 2737 . . . . . . . . . . . . . . 15 (ℤ𝑖) = (ℤ𝑖)
29 uzssz 12899 . . . . . . . . . . . . . . . . . 18 (ℤ𝑀) ⊆ ℤ
30 smflimlem2.1 . . . . . . . . . . . . . . . . . . . 20 𝑍 = (ℤ𝑀)
3130eleq2i 2833 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
3231biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
3329, 32sselid 3981 . . . . . . . . . . . . . . . . 17 (𝑖𝑍𝑖 ∈ ℤ)
34 uzid 12893 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 𝑖 ∈ (ℤ𝑖))
3533, 34syl 17 . . . . . . . . . . . . . . . 16 (𝑖𝑍𝑖 ∈ (ℤ𝑖))
3635ad2antlr 727 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑖 ∈ (ℤ𝑖))
37 simplll 775 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → (𝜑𝑥𝐷))
3837simpld 494 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝜑)
39 uzss 12901 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
4032, 39syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝑍 → (ℤ𝑖) ⊆ (ℤ𝑀))
4140, 30sseqtrrdi 4025 . . . . . . . . . . . . . . . . . . . 20 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
4241sselda 3983 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑍𝑚 ∈ (ℤ𝑖)) → 𝑚𝑍)
4342ad4ant24 754 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑚𝑍)
44 eliinid 45116 . . . . . . . . . . . . . . . . . . 19 ((𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
4544adantll 714 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
46 eqidd 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
47 fvexd 6921 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
4846, 47fvmpt2d 7029 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
49483adant3 1133 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
50 smflimlem2.2 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆 ∈ SAlg)
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
52 smflimlem2.3 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5352ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
54 eqid 2737 . . . . . . . . . . . . . . . . . . . . . 22 dom (𝐹𝑚) = dom (𝐹𝑚)
5551, 53, 54smff 46747 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
56553adant3 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
57 simp3 1139 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → 𝑥 ∈ dom (𝐹𝑚))
5856, 57ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
5949, 58eqeltrd 2841 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6038, 43, 45, 59syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6160adantl3r 750 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6261adantl3r 750 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
631eleq2i 2833 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
6463biimpi 216 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
65 rabidim2 45107 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
67 climdm 15590 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6866, 67sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6968adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7069, 67sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
7170, 67sylib 218 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
72 nfcv 2905 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
73 smflimlem2.5 . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
74 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → 𝑥𝐷)
753, 72, 73, 74fnlimfv 45678 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (𝐺𝑥) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7675eqcomd 2743 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (𝐺𝑥))
7771, 76breqtrd 5169 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ (𝐺𝑥))
7877ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ (𝐺𝑥))
79 smflimlem2.6 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ)
8079ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝐴 ∈ ℝ)
81 simp-4r 784 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (𝐺𝑥) ≤ 𝐴)
82 simpllr 776 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑘 ∈ ℕ)
83 nnrecrp 45397 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
8482, 83syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (1 / 𝑘) ∈ ℝ+)
8526, 27, 28, 36, 62, 78, 80, 81, 84climleltrp 45691 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))))
86 simp-6l 787 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
87 simplr 769 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑖𝑍)
8887adantr 480 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑖𝑍)
89 simplr 769 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
90 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛 ∈ (ℤ𝑖))
91 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑚𝜑
9291, 21, 25nf3an 1901 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
93 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑚 𝑛 ∈ (ℤ𝑖)
9492, 93nfan 1899 . . . . . . . . . . . . . . . . 17 𝑚((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖))
95 simpll 767 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)))
9628uztrn2 12897 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ𝑖) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑖))
9796adantll 714 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑖))
98 simpll2 1214 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑖𝑍)
99 simplr 769 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑚 ∈ (ℤ𝑖))
10098, 99, 42syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑚𝑍)
101 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))
102 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚𝑍𝑚𝑍)
103 fvexd 6921 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚𝑍 → ((𝐹𝑚)‘𝑥) ∈ V)
104 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
105104fvmpt2 7027 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑍 ∧ ((𝐹𝑚)‘𝑥) ∈ V) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
106102, 103, 105syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
107106eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚𝑍 → ((𝐹𝑚)‘𝑥) = ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚))
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) = ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚))
109 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))
110108, 109eqbrtrd 5165 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
111100, 101, 110syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
112443ad2antl3 1188 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
113112adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ dom (𝐹𝑚))
114 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
115113, 114jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))))
116 rabid 3458 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))))
117115, 116sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
118111, 117syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
119118adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ (((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
120119ex 412 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12195, 97, 120syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12294, 121ralimdaa 3260 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → (∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12386, 88, 89, 90, 122syl31anc 1375 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → (∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
124123reximdva 3168 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12585, 124mpd 15 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
126 ssrexv 4053 . . . . . . . . . . . . . . 15 ((ℤ𝑖) ⊆ 𝑍 → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12741, 126syl 17 . . . . . . . . . . . . . 14 (𝑖𝑍 → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
128127ad2antlr 727 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
129125, 128mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
130129rexlimdva2 3157 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → (∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
13117, 130mpd 15 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
132 nfv 1914 . . . . . . . . . . . . . . . 16 𝑚(𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍)
133 nfra1 3284 . . . . . . . . . . . . . . . 16 𝑚𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}
134132, 133nfan 1899 . . . . . . . . . . . . . . 15 𝑚((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
135 simpll1 1213 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
136 simpll2 1214 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
13730uztrn2 12897 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
138137ssd 45085 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
139138sselda 3983 . . . . . . . . . . . . . . . . . . . 20 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
140139adantll 714 . . . . . . . . . . . . . . . . . . 19 (((𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1411403adantl1 1167 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
142141adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
143 rspa 3248 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
144143adantll 714 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
145 simp1 1137 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝜑)
146 simp3 1139 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑚𝑍)
147 simp2 1138 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑘 ∈ ℕ)
148 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
149148, 50rabexd 5340 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
150149ralrimivw 3150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
151150ralrimivw 3150 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
1521513ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
153 smflimlem2.7 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
154153elrnmpoid 45233 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚𝑍𝑘 ∈ ℕ ∧ ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) ∈ ran 𝑃)
155146, 147, 152, 154syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ∈ ran 𝑃)
156 ovex 7464 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚𝑃𝑘) ∈ V
157 eleq1 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → (𝑟 ∈ ran 𝑃 ↔ (𝑚𝑃𝑘) ∈ ran 𝑃))
158157anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 = (𝑚𝑃𝑘) → ((𝜑𝑟 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃)))
159 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → (𝐶𝑟) = (𝐶‘(𝑚𝑃𝑘)))
160 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → 𝑟 = (𝑚𝑃𝑘))
161159, 160eleq12d 2835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 = (𝑚𝑃𝑘) → ((𝐶𝑟) ∈ 𝑟 ↔ (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)))
162158, 161imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 = (𝑚𝑃𝑘) → (((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟) ↔ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))))
163 smflimlem2.10 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
164156, 162, 163vtocl 3558 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
165145, 155, 164syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
166 fvexd 6921 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ V)
167 smflimlem2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
168167ovmpt4g 7580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑍𝑘 ∈ ℕ ∧ (𝐶‘(𝑚𝑃𝑘)) ∈ V) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
169146, 147, 166, 168syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
170169eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) = (𝑚𝐻𝑘))
171145, 149syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
172153ovmpt4g 7580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚𝑍𝑘 ∈ ℕ ∧ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
173146, 147, 171, 172syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
174170, 173eleq12d 2835 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ((𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘) ↔ (𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}))
175165, 174mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
176 ineq1 4213 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑚𝐻𝑘) → (𝑠 ∩ dom (𝐹𝑚)) = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)))
177176eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑚𝐻𝑘) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
178177elrab 3692 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ↔ ((𝑚𝐻𝑘) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
179175, 178sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ((𝑚𝐻𝑘) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
180179simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)))
181 inss1 4237 . . . . . . . . . . . . . . . . . . . 20 ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)) ⊆ (𝑚𝐻𝑘)
182180, 181eqsstrdi 4028 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ⊆ (𝑚𝐻𝑘))
183182adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ⊆ (𝑚𝐻𝑘))
184 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
185183, 184sseldd 3984 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 ∈ (𝑚𝐻𝑘))
186135, 136, 142, 144, 185syl31anc 1375 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ (𝑚𝐻𝑘))
187186ex 412 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → (𝑚 ∈ (ℤ𝑛) → 𝑥 ∈ (𝑚𝐻𝑘)))
188134, 187ralrimi 3257 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘))
189 vex 3484 . . . . . . . . . . . . . . 15 𝑥 ∈ V
190 eliin 4996 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘)))
191189, 190ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘))
192188, 191sylibr 234 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
193192ex 412 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
194193ad5ant145 1371 . . . . . . . . . . 11 (((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
195194reximdva 3168 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
196131, 195mpd 15 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
197 eliun 4995 . . . . . . . . 9 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
198196, 197sylibr 234 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
199198ralrimiva 3146 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
200 eliin 4996 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
201189, 200ax-mp 5 . . . . . . 7 (𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
202199, 201sylibr 234 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → 𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
203 smflimlem2.9 . . . . . 6 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
204202, 203eleqtrrdi 2852 . . . . 5 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → 𝑥𝐼)
205204ex 412 . . . 4 ((𝜑𝑥𝐷) → ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
206205ralrimiva 3146 . . 3 (𝜑 → ∀𝑥𝐷 ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
207 rabss 4072 . . 3 ({𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐼 ↔ ∀𝑥𝐷 ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
208206, 207sylibr 234 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐼)
2095, 208ssind 4241 1 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ (𝐷𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cin 3950  wss 3951   ciun 4991   ciin 4992   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296   / cdiv 11920  cn 12266  cz 12613  cuz 12878  +crp 13034  cli 15520  SAlgcsalg 46323  SMblFncsmblfn 46710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ioo 13391  df-ico 13393  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-smblfn 46711
This theorem is referenced by:  smflimlem5  46790
  Copyright terms: Public domain W3C validator