Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem2 Structured version   Visualization version   GIF version

Theorem smflimlem2 43041
 Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem2.1 𝑍 = (ℤ𝑀)
smflimlem2.2 (𝜑𝑆 ∈ SAlg)
smflimlem2.3 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem2.4 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem2.5 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem2.6 (𝜑𝐴 ∈ ℝ)
smflimlem2.7 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem2.8 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem2.9 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem2.10 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ (𝐷𝐼))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛   𝐴,𝑠,𝑘,𝑚   𝐶,𝑟   𝐷,𝑘,𝑚,𝑛   𝑛,𝐹,𝑥   𝐹,𝑠,𝑥   𝑘,𝐺,𝑚,𝑛   𝐻,𝑠   𝑥,𝐼   𝑃,𝑟   𝑆,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥   𝑘,𝑟,𝑚,𝜑
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑥,𝑟)   𝐶(𝑥,𝑘,𝑚,𝑛,𝑠)   𝐷(𝑥,𝑠,𝑟)   𝑃(𝑥,𝑘,𝑚,𝑛,𝑠)   𝑆(𝑥,𝑘,𝑚,𝑛,𝑟)   𝐹(𝑘,𝑚,𝑟)   𝐺(𝑥,𝑠,𝑟)   𝐻(𝑥,𝑘,𝑚,𝑛,𝑟)   𝐼(𝑘,𝑚,𝑛,𝑠,𝑟)   𝑀(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem2
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimlem2.4 . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
2 nfrab1 3385 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
31, 2nfcxfr 2975 . . . 4 𝑥𝐷
43ssrab2f 41376 . . 3 {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐷
54a1i 11 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐷)
6 simpllr 774 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥𝐷)
7 ssrab2 4056 . . . . . . . . . . . . . . 15 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
81, 7eqsstri 4001 . . . . . . . . . . . . . 14 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
98sseli 3963 . . . . . . . . . . . . 13 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
10 fveq2 6665 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
1110iineq1d 41349 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
1211cbviunv 4958 . . . . . . . . . . . . . . 15 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
1312eleq2i 2904 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
14 eliun 4916 . . . . . . . . . . . . . 14 (𝑥 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ↔ ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
1513, 14bitri 277 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
169, 15sylib 220 . . . . . . . . . . . 12 (𝑥𝐷 → ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
176, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
18 nfv 1911 . . . . . . . . . . . . . . . . . 18 𝑚((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴)
19 nfv 1911 . . . . . . . . . . . . . . . . . 18 𝑚 𝑘 ∈ ℕ
2018, 19nfan 1896 . . . . . . . . . . . . . . . . 17 𝑚(((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ)
21 nfv 1911 . . . . . . . . . . . . . . . . 17 𝑚 𝑖𝑍
2220, 21nfan 1896 . . . . . . . . . . . . . . . 16 𝑚((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍)
23 nfcv 2977 . . . . . . . . . . . . . . . . 17 𝑚𝑥
24 nfii1 4947 . . . . . . . . . . . . . . . . 17 𝑚 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
2523, 24nfel 2992 . . . . . . . . . . . . . . . 16 𝑚 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
2622, 25nfan 1896 . . . . . . . . . . . . . . 15 𝑚(((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
27 nfmpt1 5157 . . . . . . . . . . . . . . 15 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
28 eqid 2821 . . . . . . . . . . . . . . 15 (ℤ𝑖) = (ℤ𝑖)
29 uzssz 12258 . . . . . . . . . . . . . . . . . 18 (ℤ𝑀) ⊆ ℤ
30 smflimlem2.1 . . . . . . . . . . . . . . . . . . . 20 𝑍 = (ℤ𝑀)
3130eleq2i 2904 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
3231biimpi 218 . . . . . . . . . . . . . . . . . 18 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
3329, 32sseldi 3965 . . . . . . . . . . . . . . . . 17 (𝑖𝑍𝑖 ∈ ℤ)
34 uzid 12252 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 𝑖 ∈ (ℤ𝑖))
3533, 34syl 17 . . . . . . . . . . . . . . . 16 (𝑖𝑍𝑖 ∈ (ℤ𝑖))
3635ad2antlr 725 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑖 ∈ (ℤ𝑖))
37 simplll 773 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → (𝜑𝑥𝐷))
3837simpld 497 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝜑)
39 uzss 12259 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
4032, 39syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝑍 → (ℤ𝑖) ⊆ (ℤ𝑀))
4140, 30sseqtrrdi 4018 . . . . . . . . . . . . . . . . . . . 20 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
4241sselda 3967 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑍𝑚 ∈ (ℤ𝑖)) → 𝑚𝑍)
4342ad4ant24 752 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑚𝑍)
44 eliinid 41370 . . . . . . . . . . . . . . . . . . 19 ((𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
4544adantll 712 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
46 eqidd 2822 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
47 fvexd 6680 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
4846, 47fvmpt2d 6776 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
49483adant3 1128 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
50 smflimlem2.2 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆 ∈ SAlg)
5150adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
52 smflimlem2.3 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5352ffvelrnda 6846 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
54 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 dom (𝐹𝑚) = dom (𝐹𝑚)
5551, 53, 54smff 43002 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
56553adant3 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
57 simp3 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → 𝑥 ∈ dom (𝐹𝑚))
5856, 57ffvelrnd 6847 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
5949, 58eqeltrd 2913 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6038, 43, 45, 59syl3anc 1367 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6160adantl3r 748 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6261adantl3r 748 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
631eleq2i 2904 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
6463biimpi 218 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
65 rabidim2 41361 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
67 climdm 14905 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6866, 67sylib 220 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6968adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7069, 67sylibr 236 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
7170, 67sylib 220 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
72 nfcv 2977 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
73 smflimlem2.5 . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
74 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → 𝑥𝐷)
753, 72, 73, 74fnlimfv 41936 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (𝐺𝑥) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7675eqcomd 2827 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (𝐺𝑥))
7771, 76breqtrd 5085 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ (𝐺𝑥))
7877ad4antr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ (𝐺𝑥))
79 smflimlem2.6 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ)
8079ad5antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝐴 ∈ ℝ)
81 simp-4r 782 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (𝐺𝑥) ≤ 𝐴)
82 simpllr 774 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑘 ∈ ℕ)
83 nnrecrp 41648 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
8482, 83syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (1 / 𝑘) ∈ ℝ+)
8526, 27, 28, 36, 62, 78, 80, 81, 84climleltrp 41949 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))))
86 simp-6l 785 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
87 simplr 767 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑖𝑍)
8887adantr 483 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑖𝑍)
89 simplr 767 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
90 simpr 487 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛 ∈ (ℤ𝑖))
91 nfv 1911 . . . . . . . . . . . . . . . . . . 19 𝑚𝜑
9291, 21, 25nf3an 1898 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
93 nfv 1911 . . . . . . . . . . . . . . . . . 18 𝑚 𝑛 ∈ (ℤ𝑖)
9492, 93nfan 1896 . . . . . . . . . . . . . . . . 17 𝑚((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖))
95 simpll 765 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)))
9628uztrn2 12256 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ𝑖) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑖))
9796adantll 712 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑖))
98 simpll2 1209 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑖𝑍)
99 simplr 767 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑚 ∈ (ℤ𝑖))
10098, 99, 42syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑚𝑍)
101 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))
102 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚𝑍𝑚𝑍)
103 fvexd 6680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚𝑍 → ((𝐹𝑚)‘𝑥) ∈ V)
104 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
105104fvmpt2 6774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑍 ∧ ((𝐹𝑚)‘𝑥) ∈ V) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
106102, 103, 105syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
107106eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚𝑍 → ((𝐹𝑚)‘𝑥) = ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚))
108107adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) = ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚))
109 simpr 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))
110108, 109eqbrtrd 5081 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
111100, 101, 110syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
112443ad2antl3 1183 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
113112adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ dom (𝐹𝑚))
114 simpr 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
115113, 114jca 514 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))))
116 rabid 3379 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))))
117115, 116sylibr 236 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
118111, 117syldan 593 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
119118adantrl 714 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ (((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
120119ex 415 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12195, 97, 120syl2anc 586 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12294, 121ralimdaa 3217 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → (∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12386, 88, 89, 90, 122syl31anc 1369 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → (∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
124123reximdva 3274 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12585, 124mpd 15 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
126 ssrexv 4034 . . . . . . . . . . . . . . 15 ((ℤ𝑖) ⊆ 𝑍 → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12741, 126syl 17 . . . . . . . . . . . . . 14 (𝑖𝑍 → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
128127ad2antlr 725 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
129125, 128mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
130129rexlimdva2 3287 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → (∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
13117, 130mpd 15 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
132 nfv 1911 . . . . . . . . . . . . . . . 16 𝑚(𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍)
133 nfra1 3219 . . . . . . . . . . . . . . . 16 𝑚𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}
134132, 133nfan 1896 . . . . . . . . . . . . . . 15 𝑚((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
135 simpll1 1208 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
136 simpll2 1209 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
13730uztrn2 12256 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
138137ssd 41337 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
139138sselda 3967 . . . . . . . . . . . . . . . . . . . 20 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
140139adantll 712 . . . . . . . . . . . . . . . . . . 19 (((𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1411403adantl1 1162 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
142141adantlr 713 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
143 rspa 3206 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
144143adantll 712 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
145 simp1 1132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝜑)
146 simp3 1134 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑚𝑍)
147 simp2 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑘 ∈ ℕ)
148 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
149148, 50rabexd 5229 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
150149ralrimivw 3183 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
151150ralrimivw 3183 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
1521513ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
153 smflimlem2.7 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
154153elrnmpoid 41486 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚𝑍𝑘 ∈ ℕ ∧ ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) ∈ ran 𝑃)
155146, 147, 152, 154syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ∈ ran 𝑃)
156 ovex 7183 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚𝑃𝑘) ∈ V
157 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → (𝑟 ∈ ran 𝑃 ↔ (𝑚𝑃𝑘) ∈ ran 𝑃))
158157anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 = (𝑚𝑃𝑘) → ((𝜑𝑟 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃)))
159 fveq2 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → (𝐶𝑟) = (𝐶‘(𝑚𝑃𝑘)))
160 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → 𝑟 = (𝑚𝑃𝑘))
161159, 160eleq12d 2907 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 = (𝑚𝑃𝑘) → ((𝐶𝑟) ∈ 𝑟 ↔ (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)))
162158, 161imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 = (𝑚𝑃𝑘) → (((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟) ↔ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))))
163 smflimlem2.10 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
164156, 162, 163vtocl 3560 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
165145, 155, 164syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
166 fvexd 6680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ V)
167 smflimlem2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
168167ovmpt4g 7291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑍𝑘 ∈ ℕ ∧ (𝐶‘(𝑚𝑃𝑘)) ∈ V) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
169146, 147, 166, 168syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
170169eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) = (𝑚𝐻𝑘))
171145, 149syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
172153ovmpt4g 7291 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚𝑍𝑘 ∈ ℕ ∧ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
173146, 147, 171, 172syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
174170, 173eleq12d 2907 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ((𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘) ↔ (𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}))
175165, 174mpbid 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
176 ineq1 4181 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑚𝐻𝑘) → (𝑠 ∩ dom (𝐹𝑚)) = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)))
177176eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑚𝐻𝑘) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
178177elrab 3680 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ↔ ((𝑚𝐻𝑘) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
179175, 178sylib 220 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ((𝑚𝐻𝑘) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
180179simprd 498 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)))
181 inss1 4205 . . . . . . . . . . . . . . . . . . . 20 ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)) ⊆ (𝑚𝐻𝑘)
182180, 181eqsstrdi 4021 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ⊆ (𝑚𝐻𝑘))
183182adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ⊆ (𝑚𝐻𝑘))
184 simpr 487 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
185183, 184sseldd 3968 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 ∈ (𝑚𝐻𝑘))
186135, 136, 142, 144, 185syl31anc 1369 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ (𝑚𝐻𝑘))
187186ex 415 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → (𝑚 ∈ (ℤ𝑛) → 𝑥 ∈ (𝑚𝐻𝑘)))
188134, 187ralrimi 3216 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘))
189 vex 3498 . . . . . . . . . . . . . . 15 𝑥 ∈ V
190 eliin 4917 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘)))
191189, 190ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘))
192188, 191sylibr 236 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
193192ex 415 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
194193ad5ant145 1365 . . . . . . . . . . 11 (((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
195194reximdva 3274 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
196131, 195mpd 15 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
197 eliun 4916 . . . . . . . . 9 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
198196, 197sylibr 236 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
199198ralrimiva 3182 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
200 eliin 4917 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
201189, 200ax-mp 5 . . . . . . 7 (𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
202199, 201sylibr 236 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → 𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
203 smflimlem2.9 . . . . . 6 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
204202, 203eleqtrrdi 2924 . . . . 5 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → 𝑥𝐼)
205204ex 415 . . . 4 ((𝜑𝑥𝐷) → ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
206205ralrimiva 3182 . . 3 (𝜑 → ∀𝑥𝐷 ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
207 rabss 4048 . . 3 ({𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐼 ↔ ∀𝑥𝐷 ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
208206, 207sylibr 236 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐼)
2095, 208ssind 4209 1 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ (𝐷𝐼))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110  ∀wral 3138  ∃wrex 3139  {crab 3142  Vcvv 3495   ∩ cin 3935   ⊆ wss 3936  ∪ ciun 4912  ∩ ciin 4913   class class class wbr 5059   ↦ cmpt 5139  dom cdm 5550  ran crn 5551  ⟶wf 6346  ‘cfv 6350  (class class class)co 7150   ∈ cmpo 7152  ℝcr 10530  1c1 10532   + caddc 10534   < clt 10669   ≤ cle 10670   / cdiv 11291  ℕcn 11632  ℤcz 11975  ℤ≥cuz 12237  ℝ+crp 12383   ⇝ cli 14835  SAlgcsalg 42586  SMblFncsmblfn 42970 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ioo 12736  df-ico 12738  df-fl 13156  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-smblfn 42971 This theorem is referenced by:  smflimlem5  43044
 Copyright terms: Public domain W3C validator