Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem2 Structured version   Visualization version   GIF version

Theorem smflimlem2 44194
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem2.1 𝑍 = (ℤ𝑀)
smflimlem2.2 (𝜑𝑆 ∈ SAlg)
smflimlem2.3 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem2.4 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem2.5 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem2.6 (𝜑𝐴 ∈ ℝ)
smflimlem2.7 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem2.8 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem2.9 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem2.10 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ (𝐷𝐼))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛   𝐴,𝑠,𝑘,𝑚   𝐶,𝑟   𝐷,𝑘,𝑚,𝑛   𝑛,𝐹,𝑥   𝐹,𝑠,𝑥   𝑘,𝐺,𝑚,𝑛   𝐻,𝑠   𝑥,𝐼   𝑃,𝑟   𝑆,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥   𝑘,𝑟,𝑚,𝜑
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑥,𝑟)   𝐶(𝑥,𝑘,𝑚,𝑛,𝑠)   𝐷(𝑥,𝑠,𝑟)   𝑃(𝑥,𝑘,𝑚,𝑛,𝑠)   𝑆(𝑥,𝑘,𝑚,𝑛,𝑟)   𝐹(𝑘,𝑚,𝑟)   𝐺(𝑥,𝑠,𝑟)   𝐻(𝑥,𝑘,𝑚,𝑛,𝑟)   𝐼(𝑘,𝑚,𝑛,𝑠,𝑟)   𝑀(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem2
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimlem2.4 . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
2 nfrab1 3310 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
31, 2nfcxfr 2904 . . . 4 𝑥𝐷
43ssrab2f 42555 . . 3 {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐷
54a1i 11 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐷)
6 simpllr 772 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥𝐷)
7 ssrab2 4009 . . . . . . . . . . . . . . 15 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
81, 7eqsstri 3951 . . . . . . . . . . . . . 14 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
98sseli 3913 . . . . . . . . . . . . 13 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
10 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
1110iineq1d 42529 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
1211cbviunv 4966 . . . . . . . . . . . . . . 15 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
1312eleq2i 2830 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
14 eliun 4925 . . . . . . . . . . . . . 14 (𝑥 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ↔ ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
1513, 14bitri 274 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
169, 15sylib 217 . . . . . . . . . . . 12 (𝑥𝐷 → ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
176, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
18 nfv 1918 . . . . . . . . . . . . . . . . . 18 𝑚((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴)
19 nfv 1918 . . . . . . . . . . . . . . . . . 18 𝑚 𝑘 ∈ ℕ
2018, 19nfan 1903 . . . . . . . . . . . . . . . . 17 𝑚(((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ)
21 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑚 𝑖𝑍
2220, 21nfan 1903 . . . . . . . . . . . . . . . 16 𝑚((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍)
23 nfcv 2906 . . . . . . . . . . . . . . . . 17 𝑚𝑥
24 nfii1 4956 . . . . . . . . . . . . . . . . 17 𝑚 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
2523, 24nfel 2920 . . . . . . . . . . . . . . . 16 𝑚 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
2622, 25nfan 1903 . . . . . . . . . . . . . . 15 𝑚(((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
27 nfmpt1 5178 . . . . . . . . . . . . . . 15 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
28 eqid 2738 . . . . . . . . . . . . . . 15 (ℤ𝑖) = (ℤ𝑖)
29 uzssz 12532 . . . . . . . . . . . . . . . . . 18 (ℤ𝑀) ⊆ ℤ
30 smflimlem2.1 . . . . . . . . . . . . . . . . . . . 20 𝑍 = (ℤ𝑀)
3130eleq2i 2830 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
3231biimpi 215 . . . . . . . . . . . . . . . . . 18 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
3329, 32sselid 3915 . . . . . . . . . . . . . . . . 17 (𝑖𝑍𝑖 ∈ ℤ)
34 uzid 12526 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 𝑖 ∈ (ℤ𝑖))
3533, 34syl 17 . . . . . . . . . . . . . . . 16 (𝑖𝑍𝑖 ∈ (ℤ𝑖))
3635ad2antlr 723 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑖 ∈ (ℤ𝑖))
37 simplll 771 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → (𝜑𝑥𝐷))
3837simpld 494 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝜑)
39 uzss 12534 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
4032, 39syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝑍 → (ℤ𝑖) ⊆ (ℤ𝑀))
4140, 30sseqtrrdi 3968 . . . . . . . . . . . . . . . . . . . 20 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
4241sselda 3917 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑍𝑚 ∈ (ℤ𝑖)) → 𝑚𝑍)
4342ad4ant24 750 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑚𝑍)
44 eliinid 42550 . . . . . . . . . . . . . . . . . . 19 ((𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
4544adantll 710 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
46 eqidd 2739 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
47 fvexd 6771 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
4846, 47fvmpt2d 6870 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
49483adant3 1130 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
50 smflimlem2.2 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆 ∈ SAlg)
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
52 smflimlem2.3 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5352ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
54 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 dom (𝐹𝑚) = dom (𝐹𝑚)
5551, 53, 54smff 44155 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
56553adant3 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
57 simp3 1136 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → 𝑥 ∈ dom (𝐹𝑚))
5856, 57ffvelrnd 6944 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
5949, 58eqeltrd 2839 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6038, 43, 45, 59syl3anc 1369 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6160adantl3r 746 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6261adantl3r 746 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
631eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
6463biimpi 215 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
65 rabidim2 42541 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
67 climdm 15191 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6866, 67sylib 217 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6968adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7069, 67sylibr 233 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
7170, 67sylib 217 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
72 nfcv 2906 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
73 smflimlem2.5 . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
74 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → 𝑥𝐷)
753, 72, 73, 74fnlimfv 43094 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (𝐺𝑥) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7675eqcomd 2744 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (𝐺𝑥))
7771, 76breqtrd 5096 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ (𝐺𝑥))
7877ad4antr 728 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ (𝐺𝑥))
79 smflimlem2.6 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ)
8079ad5antr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝐴 ∈ ℝ)
81 simp-4r 780 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (𝐺𝑥) ≤ 𝐴)
82 simpllr 772 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑘 ∈ ℕ)
83 nnrecrp 42815 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
8482, 83syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (1 / 𝑘) ∈ ℝ+)
8526, 27, 28, 36, 62, 78, 80, 81, 84climleltrp 43107 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))))
86 simp-6l 783 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
87 simplr 765 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑖𝑍)
8887adantr 480 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑖𝑍)
89 simplr 765 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
90 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛 ∈ (ℤ𝑖))
91 nfv 1918 . . . . . . . . . . . . . . . . . . 19 𝑚𝜑
9291, 21, 25nf3an 1905 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
93 nfv 1918 . . . . . . . . . . . . . . . . . 18 𝑚 𝑛 ∈ (ℤ𝑖)
9492, 93nfan 1903 . . . . . . . . . . . . . . . . 17 𝑚((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖))
95 simpll 763 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)))
9628uztrn2 12530 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ𝑖) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑖))
9796adantll 710 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑖))
98 simpll2 1211 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑖𝑍)
99 simplr 765 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑚 ∈ (ℤ𝑖))
10098, 99, 42syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑚𝑍)
101 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))
102 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚𝑍𝑚𝑍)
103 fvexd 6771 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚𝑍 → ((𝐹𝑚)‘𝑥) ∈ V)
104 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
105104fvmpt2 6868 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑍 ∧ ((𝐹𝑚)‘𝑥) ∈ V) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
106102, 103, 105syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
107106eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚𝑍 → ((𝐹𝑚)‘𝑥) = ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚))
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) = ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚))
109 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))
110108, 109eqbrtrd 5092 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
111100, 101, 110syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
112443ad2antl3 1185 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
113112adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ dom (𝐹𝑚))
114 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
115113, 114jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))))
116 rabid 3304 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))))
117115, 116sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
118111, 117syldan 590 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
119118adantrl 712 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ (((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
120119ex 412 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12195, 97, 120syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12294, 121ralimdaa 3140 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → (∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12386, 88, 89, 90, 122syl31anc 1371 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → (∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
124123reximdva 3202 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12585, 124mpd 15 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
126 ssrexv 3984 . . . . . . . . . . . . . . 15 ((ℤ𝑖) ⊆ 𝑍 → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12741, 126syl 17 . . . . . . . . . . . . . 14 (𝑖𝑍 → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
128127ad2antlr 723 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
129125, 128mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
130129rexlimdva2 3215 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → (∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
13117, 130mpd 15 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
132 nfv 1918 . . . . . . . . . . . . . . . 16 𝑚(𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍)
133 nfra1 3142 . . . . . . . . . . . . . . . 16 𝑚𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}
134132, 133nfan 1903 . . . . . . . . . . . . . . 15 𝑚((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
135 simpll1 1210 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
136 simpll2 1211 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
13730uztrn2 12530 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
138137ssd 42519 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
139138sselda 3917 . . . . . . . . . . . . . . . . . . . 20 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
140139adantll 710 . . . . . . . . . . . . . . . . . . 19 (((𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1411403adantl1 1164 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
142141adantlr 711 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
143 rspa 3130 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
144143adantll 710 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
145 simp1 1134 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝜑)
146 simp3 1136 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑚𝑍)
147 simp2 1135 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑘 ∈ ℕ)
148 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
149148, 50rabexd 5252 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
150149ralrimivw 3108 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
151150ralrimivw 3108 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
1521513ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
153 smflimlem2.7 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
154153elrnmpoid 42656 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚𝑍𝑘 ∈ ℕ ∧ ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) ∈ ran 𝑃)
155146, 147, 152, 154syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ∈ ran 𝑃)
156 ovex 7288 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚𝑃𝑘) ∈ V
157 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → (𝑟 ∈ ran 𝑃 ↔ (𝑚𝑃𝑘) ∈ ran 𝑃))
158157anbi2d 628 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 = (𝑚𝑃𝑘) → ((𝜑𝑟 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃)))
159 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → (𝐶𝑟) = (𝐶‘(𝑚𝑃𝑘)))
160 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → 𝑟 = (𝑚𝑃𝑘))
161159, 160eleq12d 2833 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 = (𝑚𝑃𝑘) → ((𝐶𝑟) ∈ 𝑟 ↔ (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)))
162158, 161imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 = (𝑚𝑃𝑘) → (((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟) ↔ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))))
163 smflimlem2.10 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
164156, 162, 163vtocl 3488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
165145, 155, 164syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
166 fvexd 6771 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ V)
167 smflimlem2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
168167ovmpt4g 7398 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑍𝑘 ∈ ℕ ∧ (𝐶‘(𝑚𝑃𝑘)) ∈ V) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
169146, 147, 166, 168syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
170169eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) = (𝑚𝐻𝑘))
171145, 149syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
172153ovmpt4g 7398 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚𝑍𝑘 ∈ ℕ ∧ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
173146, 147, 171, 172syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
174170, 173eleq12d 2833 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ((𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘) ↔ (𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}))
175165, 174mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
176 ineq1 4136 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑚𝐻𝑘) → (𝑠 ∩ dom (𝐹𝑚)) = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)))
177176eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑚𝐻𝑘) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
178177elrab 3617 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ↔ ((𝑚𝐻𝑘) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
179175, 178sylib 217 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ((𝑚𝐻𝑘) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
180179simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)))
181 inss1 4159 . . . . . . . . . . . . . . . . . . . 20 ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)) ⊆ (𝑚𝐻𝑘)
182180, 181eqsstrdi 3971 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ⊆ (𝑚𝐻𝑘))
183182adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ⊆ (𝑚𝐻𝑘))
184 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
185183, 184sseldd 3918 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 ∈ (𝑚𝐻𝑘))
186135, 136, 142, 144, 185syl31anc 1371 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ (𝑚𝐻𝑘))
187186ex 412 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → (𝑚 ∈ (ℤ𝑛) → 𝑥 ∈ (𝑚𝐻𝑘)))
188134, 187ralrimi 3139 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘))
189 vex 3426 . . . . . . . . . . . . . . 15 𝑥 ∈ V
190 eliin 4926 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘)))
191189, 190ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘))
192188, 191sylibr 233 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
193192ex 412 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
194193ad5ant145 1367 . . . . . . . . . . 11 (((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
195194reximdva 3202 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
196131, 195mpd 15 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
197 eliun 4925 . . . . . . . . 9 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
198196, 197sylibr 233 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
199198ralrimiva 3107 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
200 eliin 4926 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
201189, 200ax-mp 5 . . . . . . 7 (𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
202199, 201sylibr 233 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → 𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
203 smflimlem2.9 . . . . . 6 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
204202, 203eleqtrrdi 2850 . . . . 5 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → 𝑥𝐼)
205204ex 412 . . . 4 ((𝜑𝑥𝐷) → ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
206205ralrimiva 3107 . . 3 (𝜑 → ∀𝑥𝐷 ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
207 rabss 4001 . . 3 ({𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐼 ↔ ∀𝑥𝐷 ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
208206, 207sylibr 233 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐼)
2095, 208ssind 4163 1 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ (𝐷𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  wss 3883   ciun 4921   ciin 4922   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cle 10941   / cdiv 11562  cn 11903  cz 12249  cuz 12511  +crp 12659  cli 15121  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ioo 13012  df-ico 13014  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-smblfn 44124
This theorem is referenced by:  smflimlem5  44197
  Copyright terms: Public domain W3C validator