Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem2 Structured version   Visualization version   GIF version

Theorem smflimlem2 44007
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves one-side of the double inclusion for the proof that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem2.1 𝑍 = (ℤ𝑀)
smflimlem2.2 (𝜑𝑆 ∈ SAlg)
smflimlem2.3 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem2.4 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem2.5 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem2.6 (𝜑𝐴 ∈ ℝ)
smflimlem2.7 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem2.8 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem2.9 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem2.10 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
Assertion
Ref Expression
smflimlem2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ (𝐷𝐼))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛   𝐴,𝑠,𝑘,𝑚   𝐶,𝑟   𝐷,𝑘,𝑚,𝑛   𝑛,𝐹,𝑥   𝐹,𝑠,𝑥   𝑘,𝐺,𝑚,𝑛   𝐻,𝑠   𝑥,𝐼   𝑃,𝑟   𝑆,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥   𝑘,𝑟,𝑚,𝜑
Allowed substitution hints:   𝜑(𝑠)   𝐴(𝑥,𝑟)   𝐶(𝑥,𝑘,𝑚,𝑛,𝑠)   𝐷(𝑥,𝑠,𝑟)   𝑃(𝑥,𝑘,𝑚,𝑛,𝑠)   𝑆(𝑥,𝑘,𝑚,𝑛,𝑟)   𝐹(𝑘,𝑚,𝑟)   𝐺(𝑥,𝑠,𝑟)   𝐻(𝑥,𝑘,𝑚,𝑛,𝑟)   𝐼(𝑘,𝑚,𝑛,𝑠,𝑟)   𝑀(𝑥,𝑘,𝑚,𝑛,𝑠,𝑟)   𝑍(𝑠,𝑟)

Proof of Theorem smflimlem2
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimlem2.4 . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
2 nfrab1 3308 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
31, 2nfcxfr 2903 . . . 4 𝑥𝐷
43ssrab2f 42367 . . 3 {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐷
54a1i 11 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐷)
6 simpllr 776 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥𝐷)
7 ssrab2 4007 . . . . . . . . . . . . . . 15 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
81, 7eqsstri 3949 . . . . . . . . . . . . . 14 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
98sseli 3910 . . . . . . . . . . . . 13 (𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
10 fveq2 6735 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
1110iineq1d 42341 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
1211cbviunv 4963 . . . . . . . . . . . . . . 15 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
1312eleq2i 2830 . . . . . . . . . . . . . 14 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
14 eliun 4922 . . . . . . . . . . . . . 14 (𝑥 𝑖𝑍 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ↔ ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
1513, 14bitri 278 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
169, 15sylib 221 . . . . . . . . . . . 12 (𝑥𝐷 → ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
176, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
18 nfv 1922 . . . . . . . . . . . . . . . . . 18 𝑚((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴)
19 nfv 1922 . . . . . . . . . . . . . . . . . 18 𝑚 𝑘 ∈ ℕ
2018, 19nfan 1907 . . . . . . . . . . . . . . . . 17 𝑚(((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ)
21 nfv 1922 . . . . . . . . . . . . . . . . 17 𝑚 𝑖𝑍
2220, 21nfan 1907 . . . . . . . . . . . . . . . 16 𝑚((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍)
23 nfcv 2905 . . . . . . . . . . . . . . . . 17 𝑚𝑥
24 nfii1 4953 . . . . . . . . . . . . . . . . 17 𝑚 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
2523, 24nfel 2919 . . . . . . . . . . . . . . . 16 𝑚 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)
2622, 25nfan 1907 . . . . . . . . . . . . . . 15 𝑚(((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
27 nfmpt1 5167 . . . . . . . . . . . . . . 15 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
28 eqid 2738 . . . . . . . . . . . . . . 15 (ℤ𝑖) = (ℤ𝑖)
29 uzssz 12483 . . . . . . . . . . . . . . . . . 18 (ℤ𝑀) ⊆ ℤ
30 smflimlem2.1 . . . . . . . . . . . . . . . . . . . 20 𝑍 = (ℤ𝑀)
3130eleq2i 2830 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
3231biimpi 219 . . . . . . . . . . . . . . . . . 18 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
3329, 32sseldi 3913 . . . . . . . . . . . . . . . . 17 (𝑖𝑍𝑖 ∈ ℤ)
34 uzid 12477 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℤ → 𝑖 ∈ (ℤ𝑖))
3533, 34syl 17 . . . . . . . . . . . . . . . 16 (𝑖𝑍𝑖 ∈ (ℤ𝑖))
3635ad2antlr 727 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑖 ∈ (ℤ𝑖))
37 simplll 775 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → (𝜑𝑥𝐷))
3837simpld 498 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝜑)
39 uzss 12485 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
4032, 39syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝑍 → (ℤ𝑖) ⊆ (ℤ𝑀))
4140, 30sseqtrrdi 3966 . . . . . . . . . . . . . . . . . . . 20 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
4241sselda 3915 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑍𝑚 ∈ (ℤ𝑖)) → 𝑚𝑍)
4342ad4ant24 754 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑚𝑍)
44 eliinid 42362 . . . . . . . . . . . . . . . . . . 19 ((𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
4544adantll 714 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
46 eqidd 2739 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
47 fvexd 6750 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
4846, 47fvmpt2d 6849 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
49483adant3 1134 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
50 smflimlem2.2 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆 ∈ SAlg)
5150adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
52 smflimlem2.3 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5352ffvelrnda 6922 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
54 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 dom (𝐹𝑚) = dom (𝐹𝑚)
5551, 53, 54smff 43968 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
56553adant3 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
57 simp3 1140 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → 𝑥 ∈ dom (𝐹𝑚))
5856, 57ffvelrnd 6923 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
5949, 58eqeltrd 2839 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍𝑥 ∈ dom (𝐹𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6038, 43, 45, 59syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥𝐷) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6160adantl3r 750 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
6261adantl3r 750 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ)
631eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
6463biimpi 219 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
65 rabidim2 42353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
67 climdm 15139 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6866, 67sylib 221 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6968adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7069, 67sylibr 237 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ )
7170, 67sylib 221 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
72 nfcv 2905 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
73 smflimlem2.5 . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
74 simpr 488 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → 𝑥𝐷)
753, 72, 73, 74fnlimfv 42907 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (𝐺𝑥) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7675eqcomd 2744 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (𝐺𝑥))
7771, 76breqtrd 5093 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ (𝐺𝑥))
7877ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ⇝ (𝐺𝑥))
79 smflimlem2.6 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ)
8079ad5antr 734 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝐴 ∈ ℝ)
81 simp-4r 784 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (𝐺𝑥) ≤ 𝐴)
82 simpllr 776 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑘 ∈ ℕ)
83 nnrecrp 42626 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
8482, 83syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (1 / 𝑘) ∈ ℝ+)
8526, 27, 28, 36, 62, 78, 80, 81, 84climleltrp 42920 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))))
86 simp-6l 787 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝜑)
87 simplr 769 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → 𝑖𝑍)
8887adantr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑖𝑍)
89 simplr 769 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
90 simpr 488 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → 𝑛 ∈ (ℤ𝑖))
91 nfv 1922 . . . . . . . . . . . . . . . . . . 19 𝑚𝜑
9291, 21, 25nf3an 1909 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
93 nfv 1922 . . . . . . . . . . . . . . . . . 18 𝑚 𝑛 ∈ (ℤ𝑖)
9492, 93nfan 1907 . . . . . . . . . . . . . . . . 17 𝑚((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖))
95 simpll 767 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)))
9628uztrn2 12481 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ𝑖) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑖))
9796adantll 714 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑖))
98 simpll2 1215 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑖𝑍)
99 simplr 769 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑚 ∈ (ℤ𝑖))
10098, 99, 42syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑚𝑍)
101 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))
102 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚𝑍𝑚𝑍)
103 fvexd 6750 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚𝑍 → ((𝐹𝑚)‘𝑥) ∈ V)
104 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
105104fvmpt2 6847 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑍 ∧ ((𝐹𝑚)‘𝑥) ∈ V) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
106102, 103, 105syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) = ((𝐹𝑚)‘𝑥))
107106eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚𝑍 → ((𝐹𝑚)‘𝑥) = ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚))
108107adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) = ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚))
109 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))
110108, 109eqbrtrd 5089 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚𝑍 ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
111100, 101, 110syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
112443ad2antl3 1189 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → 𝑥 ∈ dom (𝐹𝑚))
113112adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ dom (𝐹𝑚))
114 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)))
115113, 114jca 515 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))))
116 rabid 3302 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ↔ (𝑥 ∈ dom (𝐹𝑚) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))))
117115, 116sylibr 237 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
118111, 117syldan 594 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
119118adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) ∧ (((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘)))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
120119ex 416 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑖)) → ((((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12195, 97, 120syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12294, 121ralimdaa 3139 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝑍𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → (∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12386, 88, 89, 90, 122syl31anc 1375 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) ∧ 𝑛 ∈ (ℤ𝑖)) → (∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
124123reximdva 3201 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)(((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) ∈ ℝ ∧ ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))‘𝑚) < (𝐴 + (1 / 𝑘))) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12585, 124mpd 15 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
126 ssrexv 3982 . . . . . . . . . . . . . . 15 ((ℤ𝑖) ⊆ 𝑍 → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
12741, 126syl 17 . . . . . . . . . . . . . 14 (𝑖𝑍 → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
128127ad2antlr 727 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → (∃𝑛 ∈ (ℤ𝑖)∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
129125, 128mpd 15 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑖𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚)) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
130129rexlimdva2 3214 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → (∃𝑖𝑍 𝑥 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}))
13117, 130mpd 15 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
132 nfv 1922 . . . . . . . . . . . . . . . 16 𝑚(𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍)
133 nfra1 3141 . . . . . . . . . . . . . . . 16 𝑚𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}
134132, 133nfan 1907 . . . . . . . . . . . . . . 15 𝑚((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
135 simpll1 1214 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
136 simpll2 1215 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
13730uztrn2 12481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
138137ssd 42331 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
139138sselda 3915 . . . . . . . . . . . . . . . . . . . 20 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
140139adantll 714 . . . . . . . . . . . . . . . . . . 19 (((𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1411403adantl1 1168 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
142141adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
143 rspa 3129 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
144143adantll 714 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
145 simp1 1138 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝜑)
146 simp3 1140 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑚𝑍)
147 simp2 1139 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → 𝑘 ∈ ℕ)
148 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
149148, 50rabexd 5240 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
150149ralrimivw 3107 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
151150ralrimivw 3107 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
1521513ad2ant1 1135 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
153 smflimlem2.7 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
154153elrnmpoid 42468 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚𝑍𝑘 ∈ ℕ ∧ ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) ∈ ran 𝑃)
155146, 147, 152, 154syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) ∈ ran 𝑃)
156 ovex 7264 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚𝑃𝑘) ∈ V
157 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → (𝑟 ∈ ran 𝑃 ↔ (𝑚𝑃𝑘) ∈ ran 𝑃))
158157anbi2d 632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 = (𝑚𝑃𝑘) → ((𝜑𝑟 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃)))
159 fveq2 6735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → (𝐶𝑟) = (𝐶‘(𝑚𝑃𝑘)))
160 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 = (𝑚𝑃𝑘) → 𝑟 = (𝑚𝑃𝑘))
161159, 160eleq12d 2833 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑟 = (𝑚𝑃𝑘) → ((𝐶𝑟) ∈ 𝑟 ↔ (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘)))
162158, 161imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 = (𝑚𝑃𝑘) → (((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟) ↔ ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))))
163 smflimlem2.10 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑟 ∈ ran 𝑃) → (𝐶𝑟) ∈ 𝑟)
164156, 162, 163vtocl 3486 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑚𝑃𝑘) ∈ ran 𝑃) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
165145, 155, 164syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘))
166 fvexd 6750 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) ∈ V)
167 smflimlem2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
168167ovmpt4g 7374 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑍𝑘 ∈ ℕ ∧ (𝐶‘(𝑚𝑃𝑘)) ∈ V) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
169146, 147, 166, 168syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) = (𝐶‘(𝑚𝑃𝑘)))
170169eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝐶‘(𝑚𝑃𝑘)) = (𝑚𝐻𝑘))
171145, 149syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
172153ovmpt4g 7374 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚𝑍𝑘 ∈ ℕ ∧ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
173146, 147, 171, 172syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝑃𝑘) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
174170, 173eleq12d 2833 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ((𝐶‘(𝑚𝑃𝑘)) ∈ (𝑚𝑃𝑘) ↔ (𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}))
175165, 174mpbid 235 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → (𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
176 ineq1 4134 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = (𝑚𝐻𝑘) → (𝑠 ∩ dom (𝐹𝑚)) = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)))
177176eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑚𝐻𝑘) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
178177elrab 3614 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚𝐻𝑘) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ↔ ((𝑚𝐻𝑘) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
179175, 178sylib 221 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → ((𝑚𝐻𝑘) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚))))
180179simprd 499 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)))
181 inss1 4157 . . . . . . . . . . . . . . . . . . . 20 ((𝑚𝐻𝑘) ∩ dom (𝐹𝑚)) ⊆ (𝑚𝐻𝑘)
182180, 181eqsstrdi 3969 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ⊆ (𝑚𝐻𝑘))
183182adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ⊆ (𝑚𝐻𝑘))
184 simpr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))})
185183, 184sseldd 3916 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ ∧ 𝑚𝑍) ∧ 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 ∈ (𝑚𝐻𝑘))
186135, 136, 142, 144, 185syl31anc 1375 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥 ∈ (𝑚𝐻𝑘))
187186ex 416 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → (𝑚 ∈ (ℤ𝑛) → 𝑥 ∈ (𝑚𝐻𝑘)))
188134, 187ralrimi 3138 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘))
189 vex 3424 . . . . . . . . . . . . . . 15 𝑥 ∈ V
190 eliin 4923 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘)))
191189, 190ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ (𝑚𝐻𝑘))
192188, 191sylibr 237 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) ∧ ∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))}) → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
193192ex 416 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ ∧ 𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
194193ad5ant145 1371 . . . . . . . . . . 11 (((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
195194reximdva 3201 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑥 ∈ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
196131, 195mpd 15 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
197 eliun 4922 . . . . . . . . 9 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
198196, 197sylibr 237 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
199198ralrimiva 3106 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
200 eliin 4923 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)))
201189, 200ax-mp 5 . . . . . . 7 (𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) ↔ ∀𝑘 ∈ ℕ 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
202199, 201sylibr 237 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → 𝑥 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘))
203 smflimlem2.9 . . . . . 6 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
204202, 203eleqtrrdi 2850 . . . . 5 (((𝜑𝑥𝐷) ∧ (𝐺𝑥) ≤ 𝐴) → 𝑥𝐼)
205204ex 416 . . . 4 ((𝜑𝑥𝐷) → ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
206205ralrimiva 3106 . . 3 (𝜑 → ∀𝑥𝐷 ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
207 rabss 3999 . . 3 ({𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐼 ↔ ∀𝑥𝐷 ((𝐺𝑥) ≤ 𝐴𝑥𝐼))
208206, 207sylibr 237 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ 𝐼)
2095, 208ssind 4161 1 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ⊆ (𝐷𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2111  wral 3062  wrex 3063  {crab 3066  Vcvv 3420  cin 3879  wss 3880   ciun 4918   ciin 4919   class class class wbr 5067  cmpt 5149  dom cdm 5565  ran crn 5566  wf 6393  cfv 6397  (class class class)co 7231  cmpo 7233  cr 10752  1c1 10754   + caddc 10756   < clt 10891  cle 10892   / cdiv 11513  cn 11854  cz 12200  cuz 12462  +crp 12610  cli 15069  SAlgcsalg 43552  SMblFncsmblfn 43936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830  ax-pre-sup 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-iun 4920  df-iin 4921  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-1st 7779  df-2nd 7780  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-er 8411  df-pm 8531  df-en 8647  df-dom 8648  df-sdom 8649  df-sup 9082  df-inf 9083  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-div 11514  df-nn 11855  df-2 11917  df-3 11918  df-n0 12115  df-z 12201  df-uz 12463  df-rp 12611  df-ioo 12963  df-ico 12965  df-fl 13391  df-seq 13599  df-exp 13660  df-cj 14686  df-re 14687  df-im 14688  df-sqrt 14822  df-abs 14823  df-clim 15073  df-rlim 15074  df-smblfn 43937
This theorem is referenced by:  smflimlem5  44010
  Copyright terms: Public domain W3C validator