Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindflem1 Structured version   Visualization version   GIF version

Theorem matunitlindflem1 34277
Description: One direction of matunitlindf 34279. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindflem1 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))

Proof of Theorem matunitlindflem1
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑖 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfld 19224 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
21simplbi 490 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
3 drngring 19222 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
42, 3syl 17 . . 3 (𝑅 ∈ Field → 𝑅 ∈ Ring)
5 eqid 2772 . . . . . . . . 9 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
65frlmlmod 20585 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑅 freeLMod 𝐼) ∈ LMod)
76adantlr 702 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑅 freeLMod 𝐼) ∈ LMod)
8 simpr 477 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → 𝐼 ∈ (Fin ∖ {∅}))
9 eldifi 3989 . . . . . . . . . 10 (𝐼 ∈ (Fin ∖ {∅}) → 𝐼 ∈ Fin)
10 eqid 2772 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
115, 10frlmfibas 20598 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
129, 11sylan2 583 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
13 fvex 6506 . . . . . . . . . 10 (Base‘𝑅) ∈ V
14 curf 34259 . . . . . . . . . 10 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ (Base‘𝑅) ∈ V) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚 𝐼))
1513, 14mp3an3 1429 . . . . . . . . 9 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚 𝐼))
16 feq3 6321 . . . . . . . . . 10 (((Base‘𝑅) ↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))))
1716biimpa 469 . . . . . . . . 9 ((((Base‘𝑅) ↑𝑚 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑𝑚 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
1812, 15, 17syl2an 586 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}))) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
1918anandirs 666 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
20 eqid 2772 . . . . . . . 8 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
21 eqid 2772 . . . . . . . 8 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
22 eqid 2772 . . . . . . . 8 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
23 eqid 2772 . . . . . . . 8 (0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼))
24 eqid 2772 . . . . . . . 8 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
25 eqid 2772 . . . . . . . 8 (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))
2620, 21, 22, 23, 24, 25islindf4 20674 . . . . . . 7 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
277, 8, 19, 26syl3anc 1351 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
285frlmsca 20589 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
2928fvoveq1d 6992 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (Base‘(𝑅 freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
3012, 29eqtrd 2808 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
3130adantlr 702 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
32 elmapi 8220 . . . . . . . . . 10 (𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼) → 𝑓:𝐼⟶(Base‘𝑅))
33 ffn 6338 . . . . . . . . . . . . . . 15 (𝑓:𝐼⟶(Base‘𝑅) → 𝑓 Fn 𝐼)
3433adantl 474 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑓 Fn 𝐼)
3519ffnd 6339 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀 Fn 𝐼)
3635adantr 473 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼)
37 simplr 756 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ (Fin ∖ {∅}))
38 inidm 4077 . . . . . . . . . . . . . 14 (𝐼𝐼) = 𝐼
39 eqidd 2773 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑓𝑛) = (𝑓𝑛))
40 eqidd 2773 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) = (curry 𝑀𝑛))
4134, 36, 37, 37, 38, 39, 40offval 7228 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛𝐼 ↦ ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛))))
42 simpllr 763 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → 𝐼 ∈ (Fin ∖ {∅}))
43 ffvelrn 6668 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
4443adantll 701 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
4519ffvelrnda 6670 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼)))
4645adantlr 702 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼)))
47 eqid 2772 . . . . . . . . . . . . . . . 16 (.r𝑅) = (.r𝑅)
485, 20, 10, 42, 44, 46, 22, 47frlmvscafval 20602 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛)) = ((𝐼 × {(𝑓𝑛)}) ∘𝑓 (.r𝑅)(curry 𝑀𝑛)))
49 fvex 6506 . . . . . . . . . . . . . . . . 17 (𝑓𝑛) ∈ V
50 fnconstg 6390 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ∈ V → (𝐼 × {(𝑓𝑛)}) Fn 𝐼)
5149, 50mp1i 13 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝐼 × {(𝑓𝑛)}) Fn 𝐼)
5215ffvelrnda 6670 . . . . . . . . . . . . . . . . . . 19 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ ((Base‘𝑅) ↑𝑚 𝐼))
53 elmapfn 8221 . . . . . . . . . . . . . . . . . . 19 ((curry 𝑀𝑛) ∈ ((Base‘𝑅) ↑𝑚 𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5452, 53syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5554adantlll 705 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5655adantlr 702 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5749fvconst2 6787 . . . . . . . . . . . . . . . . 17 (𝑘𝐼 → ((𝐼 × {(𝑓𝑛)})‘𝑘) = (𝑓𝑛))
5857adantl 474 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((𝐼 × {(𝑓𝑛)})‘𝑘) = (𝑓𝑛))
59 ffn 6338 . . . . . . . . . . . . . . . . . . . 20 (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 Fn (𝐼 × 𝐼))
6059anim2i 607 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
6160ancoms 451 . . . . . . . . . . . . . . . . . 18 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
6261ad4ant23 740 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
63 curfv 34261 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑛𝐼𝑘𝐼) ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
64633exp1 1332 . . . . . . . . . . . . . . . . . . 19 (𝑀 Fn (𝐼 × 𝐼) → (𝑛𝐼 → (𝑘𝐼 → (𝐼 ∈ (Fin ∖ {∅}) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘)))))
6564com4r 94 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (Fin ∖ {∅}) → (𝑀 Fn (𝐼 × 𝐼) → (𝑛𝐼 → (𝑘𝐼 → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘)))))
6665imp41 418 . . . . . . . . . . . . . . . . 17 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
6762, 66sylanl1 667 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
6851, 56, 42, 42, 38, 58, 67offval 7228 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝐼 × {(𝑓𝑛)}) ∘𝑓 (.r𝑅)(curry 𝑀𝑛)) = (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
6948, 68eqtrd 2808 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛)) = (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
7069mpteq2dva 5016 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛𝐼 ↦ ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛))) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
7141, 70eqtrd 2808 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
7271oveq2d 6986 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
73 simplll 762 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
74 simp-4l 770 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
7543ad4ant23 740 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
76 fovrn 7128 . . . . . . . . . . . . . . . . 17 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛𝐼𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
7776ad5ant245 1341 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
7810, 47ringcl 19024 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑓𝑛) ∈ (Base‘𝑅) ∧ (𝑛𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
7974, 75, 77, 78syl3anc 1351 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
8079fmpttd 6696 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))
8180adantllr 706 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))
82 elmapg 8211 . . . . . . . . . . . . . . . . 17 (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8313, 82mpan 677 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8483adantl 474 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8512eleq2d 2845 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8684, 85bitr3d 273 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8786ad5ant13 744 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8881, 87mpbid 224 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼)))
89 mptexg 6804 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V)
9089ralrimivw 3127 . . . . . . . . . . . . . . 15 (𝐼 ∈ (Fin ∖ {∅}) → ∀𝑛𝐼 (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V)
91 eqid 2772 . . . . . . . . . . . . . . . 16 (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
9291fnmpt 6312 . . . . . . . . . . . . . . 15 (∀𝑛𝐼 (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
9390, 92syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
94 fvexd 6508 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) → (0g‘(𝑅 freeLMod 𝐼)) ∈ V)
9593, 9, 94fndmfifsupp 8633 . . . . . . . . . . . . 13 (𝐼 ∈ (Fin ∖ {∅}) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
9695ad2antlr 714 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
975, 20, 23, 37, 37, 73, 88, 96frlmgsum 20608 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
9872, 97eqtr2d 2809 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
9932, 98sylan2 583 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
100 eqid 2772 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1015, 100frlm0 20590 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 × {(0g𝑅)}) = (0g‘(𝑅 freeLMod 𝐼)))
102101ad4ant13 738 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → (𝐼 × {(0g𝑅)}) = (0g‘(𝑅 freeLMod 𝐼)))
10399, 102eqeq12d 2787 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ ((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼))))
10428fveq2d 6497 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (0g𝑅) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼))))
105104sneqd 4447 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → {(0g𝑅)} = {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})
106105xpeq2d 5430 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 × {(0g𝑅)}) = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))
107106eqeq2d 2782 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑓 = (𝐼 × {(0g𝑅)}) ↔ 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))
108107ad4ant13 738 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → (𝑓 = (𝐼 × {(0g𝑅)}) ↔ 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))
109103, 108imbi12d 337 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})) ↔ (((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
11031, 109raleqbidva 3359 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (∀𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓𝑓 ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
11127, 110bitr4d 274 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)}))))
112111notbid 310 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)}))))
113 rexanali 3205 . . . 4 (∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})))
114112, 113syl6bbr 281 . . 3 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)}))))
1154, 114sylanl1 667 . 2 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)}))))
116 fconstfv 6795 . . . . . . . . . . . 12 (𝑓:𝐼⟶{(0g𝑅)} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)))
117 fvex 6506 . . . . . . . . . . . . 13 (0g𝑅) ∈ V
118117fconst2 6788 . . . . . . . . . . . 12 (𝑓:𝐼⟶{(0g𝑅)} ↔ 𝑓 = (𝐼 × {(0g𝑅)}))
119116, 118sylbb1 229 . . . . . . . . . . 11 ((𝑓 Fn 𝐼 ∧ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)) → 𝑓 = (𝐼 × {(0g𝑅)}))
120119ex 405 . . . . . . . . . 10 (𝑓 Fn 𝐼 → (∀𝑖𝐼 (𝑓𝑖) = (0g𝑅) → 𝑓 = (𝐼 × {(0g𝑅)})))
121120con3d 150 . . . . . . . . 9 (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)))
122 df-ne 2962 . . . . . . . . . . 11 ((𝑓𝑖) ≠ (0g𝑅) ↔ ¬ (𝑓𝑖) = (0g𝑅))
123122rexbii 3188 . . . . . . . . . 10 (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) ↔ ∃𝑖𝐼 ¬ (𝑓𝑖) = (0g𝑅))
124 rexnal 3179 . . . . . . . . . 10 (∃𝑖𝐼 ¬ (𝑓𝑖) = (0g𝑅) ↔ ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅))
125123, 124bitri 267 . . . . . . . . 9 (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) ↔ ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅))
126121, 125syl6ibr 244 . . . . . . . 8 (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
12733, 126syl 17 . . . . . . 7 (𝑓:𝐼⟶(Base‘𝑅) → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
128127adantl 474 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
129 neldifsn 4593 . . . . . . . . . . 11 ¬ 𝑖 ∈ (𝐼 ∖ {𝑖})
130 difss 3994 . . . . . . . . . . 11 (𝐼 ∖ {𝑖}) ⊆ 𝐼
131 diffi 8537 . . . . . . . . . . . . 13 (𝐼 ∈ Fin → (𝐼 ∖ {𝑖}) ∈ Fin)
132131ad4antlr 720 . . . . . . . . . . . 12 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → (𝐼 ∖ {𝑖}) ∈ Fin)
133 eleq2 2848 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → (𝑖𝑦𝑖 ∈ ∅))
134133notbid 310 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ ∅))
135 sseq1 3878 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (𝑦𝐼 ↔ ∅ ⊆ 𝐼))
136134, 135anbi12d 621 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)))
137136anbi2d 619 . . . . . . . . . . . . . 14 (𝑦 = ∅ → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼))))
138 mpteq1 5009 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = ∅ → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ ∅ ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
139 mpt0 6314 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ∅ ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = ∅
140138, 139syl6eq 2824 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = ∅ → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = ∅)
141140oveq2d 6986 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ∅ → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg ∅))
142100gsum0 17736 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg ∅) = (0g𝑅)
143141, 142syl6eq 2824 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ∅ → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (0g𝑅))
144143oveq1d 6985 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)))
145144ifeq1d 4362 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
146145mpoeq3dv 7045 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
147146fveq2d 6497 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
148147eqeq2d 2782 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
149137, 148imbi12d 337 . . . . . . . . . . . . 13 (𝑦 = ∅ → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
150 elequ2 2062 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑖𝑦𝑖𝑥))
151150notbid 310 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (¬ 𝑖𝑦 ↔ ¬ 𝑖𝑥))
152 sseq1 3878 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑦𝐼𝑥𝐼))
153151, 152anbi12d 621 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖𝑥𝑥𝐼)))
154153anbi2d 619 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼))))
155 mpteq1 5009 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
156155oveq2d 6986 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
157156oveq1d 6985 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
158157ifeq1d 4362 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
159158mpoeq3dv 7045 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
160159fveq2d 6497 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
161160eqeq2d 2782 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
162154, 161imbi12d 337 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
163 eleq2 2848 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑖𝑦𝑖 ∈ (𝑥 ∪ {𝑧})))
164163notbid 310 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ (𝑥 ∪ {𝑧})))
165 sseq1 3878 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
166164, 165anbi12d 621 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 ∪ {𝑧}) → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)))
167166anbi2d 619 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 ∪ {𝑧}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))))
168 mpteq1 5009 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
169168oveq2d 6986 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
170169oveq1d 6985 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
171170ifeq1d 4362 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 ∪ {𝑧}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
172171mpoeq3dv 7045 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
173172fveq2d 6497 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
174173eqeq2d 2782 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 ∪ {𝑧}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
175167, 174imbi12d 337 . . . . . . . . . . . . 13 (𝑦 = (𝑥 ∪ {𝑧}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
176 eleq2 2848 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑖𝑦𝑖 ∈ (𝐼 ∖ {𝑖})))
177176notbid 310 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ (𝐼 ∖ {𝑖})))
178 sseq1 3878 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑦𝐼 ↔ (𝐼 ∖ {𝑖}) ⊆ 𝐼))
179177, 178anbi12d 621 . . . . . . . . . . . . . . 15 (𝑦 = (𝐼 ∖ {𝑖}) → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)))
180179anbi2d 619 . . . . . . . . . . . . . 14 (𝑦 = (𝐼 ∖ {𝑖}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼))))
181 mpteq1 5009 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
182181oveq2d 6986 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
183182oveq1d 6985 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐼 ∖ {𝑖}) → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
184183ifeq1d 4362 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐼 ∖ {𝑖}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
185184mpoeq3dv 7045 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
186185fveq2d 6497 . . . . . . . . . . . . . . 15 (𝑦 = (𝐼 ∖ {𝑖}) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
187186eqeq2d 2782 . . . . . . . . . . . . . 14 (𝑦 = (𝐼 ∖ {𝑖}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
188180, 187imbi12d 337 . . . . . . . . . . . . 13 (𝑦 = (𝐼 ∖ {𝑖}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
189 fnov 7092 . . . . . . . . . . . . . . . . . 18 (𝑀 Fn (𝐼 × 𝐼) ↔ 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
19059, 189sylib 210 . . . . . . . . . . . . . . . . 17 (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
191190adantl 474 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
192 ringgrp 19015 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1934, 192syl 17 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Field → 𝑅 ∈ Grp)
194 oveq1 6977 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘))
195194equcoms 1976 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘))
196195oveq2d 6986 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)) = ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)))
197 simp1l 1177 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → 𝑅 ∈ Grp)
198 fovrn 7128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
1991983adant1l 1156 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
200 eqid 2772 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑅) = (+g𝑅)
20110, 200, 100grplid 17911 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Grp ∧ (𝑗𝑀𝑘) ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
202197, 199, 201syl2anc 576 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
203196, 202sylan9eqr 2830 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) ∧ 𝑗 = 𝑖) → ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)) = (𝑗𝑀𝑘))
204 eqidd 2773 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) ∧ ¬ 𝑗 = 𝑖) → (𝑗𝑀𝑘) = (𝑗𝑀𝑘))
205203, 204ifeqda 4379 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
206205mpoeq3dva 7043 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
207193, 206sylan 572 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
208191, 207eqtr4d 2811 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
209208fveq2d 6497 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
210209ad4antr 719 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
211 elun1 4037 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝑥𝑖 ∈ (𝑥 ∪ {𝑧}))
212211con3i 152 . . . . . . . . . . . . . . . . . . . 20 𝑖 ∈ (𝑥 ∪ {𝑧}) → ¬ 𝑖𝑥)
213 ssun1 4033 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ⊆ (𝑥 ∪ {𝑧})
214 sstr 3862 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥𝐼)
215213, 214mpan 677 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼)
216212, 215anim12i 603 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (¬ 𝑖𝑥𝑥𝐼))
217216anim2i 607 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)))
218217adantr 473 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)))
219 velsn 4451 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧)
220 elun2 4038 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ {𝑧} → 𝑖 ∈ (𝑥 ∪ {𝑧}))
221219, 220sylbir 227 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑧𝑖 ∈ (𝑥 ∪ {𝑧}))
222221necon3bi 2987 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ (𝑥 ∪ {𝑧}) → 𝑖𝑧)
223222anim1i 605 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
224 ringcmn 19044 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2254, 224syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Field → 𝑅 ∈ CMnd)
226225ad7antr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
227 simplr 756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin)
228215adantl 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥𝐼)
229 ssfi 8525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → 𝑥 ∈ Fin)
230227, 228, 229syl2an 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin)
231230ad5ant13 744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑥 ∈ Fin)
232215sselda 3854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑛𝑥) → 𝑛𝐼)
233232adantll 701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑛𝑥) → 𝑛𝐼)
234233ad4ant24 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → 𝑛𝐼)
2354ad6antr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → 𝑅 ∈ Ring)
2362ad2antrr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing)
237 ffvelrn 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼) → (𝑓𝑖) ∈ (Base‘𝑅))
238237anim2i 607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ DivRing ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
239238anassrs 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
240 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (invr𝑅) = (invr𝑅)
24110, 100, 240drnginvrcl 19232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
2422413expa 1098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
243239, 242sylan 572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
244243anasss 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
245236, 244sylanl1 667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
246245ad2antrr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
24743ad5ant25 749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
248 simp-4r 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
249763expa 1098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
250249an32s 639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
251248, 250sylanl1 667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
252235, 247, 251, 78syl3anc 1351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
25310, 47ringcl 19024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
254235, 246, 252, 253syl3anc 1351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
255254adantllr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
256234, 255syldan 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
257256adantllr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
258 vex 3412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑧 ∈ V
259258a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑧 ∈ V)
260 simplr 756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ¬ 𝑧𝑥)
261 ssun2 4034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {𝑧} ⊆ (𝑥 ∪ {𝑧})
262 sstr 3862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (({𝑧} ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → {𝑧} ⊆ 𝐼)
263261, 262mpan 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → {𝑧} ⊆ 𝐼)
264258snss 4586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧𝐼 ↔ {𝑧} ⊆ 𝐼)
265263, 264sylibr 226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑧𝐼)
266265adantl 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑧𝐼)
2674ad6antr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
2684ad5antr 721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → 𝑅 ∈ Ring)
269245adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
270 ffvelrn 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑧𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
271270ad4ant24 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
27210, 47ringcl 19024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑧) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
273268, 269, 271, 272syl3anc 1351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
274273adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
275 fovrn 7128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
2762753expa 1098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
277248, 276sylanl1 667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
27810, 47ringcl 19024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅)) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
279267, 274, 277, 278syl3anc 1351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
280266, 279sylanl2 668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
281280adantlr 702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
282 fveq2 6493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 = 𝑧 → (𝑓𝑛) = (𝑓𝑧))
283 oveq1 6977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 = 𝑧 → (𝑛𝑀𝑘) = (𝑧𝑀𝑘))
284282, 283oveq12d 6988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 = 𝑧 → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) = ((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘)))
285284oveq2d 6986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 𝑧 → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
286245ad2antrr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
287270ad5ant24 748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
28810, 47ringass 19027 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑧) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
289267, 286, 287, 277, 288syl13anc 1352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
290289eqcomd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
291266, 290sylanl2 668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
292285, 291sylan9eqr 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑧) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
293292adantllr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑧) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
29410, 200, 226, 231, 257, 259, 260, 281, 293gsumunsnd 18821 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
295294oveq1d 6985 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)))
296 ringabl 19043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
2974, 296syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Field → 𝑅 ∈ Abel)
298297ad6antr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Abel)
299225ad6antr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
300 vex 3412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑥 ∈ V
301300a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑥 ∈ V)
302 ssel2 3849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥𝐼𝑛𝑥) → 𝑛𝐼)
303302, 254sylan2 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑥𝐼𝑛𝑥)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
304303anassrs 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑥𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
305304fmpttd 6696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅))
306305an32s 639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅))
307 ovex 7002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V
308 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
309307, 308fnmpti 6315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝑥
310309a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝑥)
311 fvexd 6508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (0g𝑅) ∈ V)
312310, 229, 311fndmfifsupp 8633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
313312adantll 701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
314313ad5ant14 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
31510, 100, 299, 301, 306, 314gsumcl 18779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅))
316215, 315sylanl2 668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅))
317265, 279sylanl2 668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
318 simpllr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
319 simpl 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅)) → 𝑖𝐼)
320318, 319anim12i 603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
321320adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
322 fovrn 7128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
3233223expa 1098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
324321, 323sylan 572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
32510, 200, 298, 316, 317, 324abl32 18677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
326325adantlrl 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
327326adantlr 702 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
328295, 327eqtrd 2808 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
329328ifeq1d 4362 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))
3303293adant2 1111 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))
331330mpoeq3dva 7043 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))
332331fveq2d 6497 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
333 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
3341simprbi 489 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ Field → 𝑅 ∈ CRing)
335334ad5antr 721 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ CRing)
336 simp-4r 771 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼 ∈ Fin)
337193ad6antr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Grp)
338320adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
339338, 323sylan 572 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
34010, 200grpcl 17889 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Grp ∧ (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
341337, 315, 339, 340syl3anc 1351 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
342228, 341sylanl2 668 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
343248, 266anim12i 603 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼))
344343, 276sylan 572 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
345 simp-5r 773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
346345, 198syl3an1 1143 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
347266, 273sylan2 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
348 simplrl 764 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖𝐼)
349265ad2antll 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧𝐼)
350 simprl 758 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖𝑧)
351333, 10, 200, 47, 335, 336, 342, 344, 346, 347, 348, 349, 350mdetero 20913 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
352351adantr 473 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
353332, 352eqtrd 2808 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
354 iftrue 4350 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑧𝑀𝑘))
355 oveq1 6977 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑧 → (𝑗𝑀𝑘) = (𝑧𝑀𝑘))
356354, 355eqtr4d 2811 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
357 iffalse 4353 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
358356, 357pm2.61i 177 . . . . . . . . . . . . . . . . . . . . . . . 24 if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘)
359 ifeq2 4349 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
360358, 359mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
361360mpoeq3ia 7044 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
362361fveq2i 6496 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
363 ifeq2 4349 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
364358, 363mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
365364mpoeq3ia 7044 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
366365fveq2i 6496 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
367353, 362, 3663eqtr3g 2831 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
368223, 367sylanl2 668 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
369368eqeq2d 2782 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
370369biimprd 240 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
371218, 370embantd 59 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
372371expcom 406 . . . . . . . . . . . . . . 15 𝑧𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
373372com23 86 . . . . . . . . . . . . . 14 𝑧𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
374373adantl 474 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
375149, 162, 175, 188, 210, 374findcard2s 8546 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑖}) ∈ Fin → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
376132, 375mpcom 38 . . . . . . . . . . 11 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
377129, 130, 376mpanr12 692 . . . . . . . . . 10 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
378377adantlr 702 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
379 eqid 2772 . . . . . . . . . . . 12 𝐼 = 𝐼
380 fconstmpt 5457 . . . . . . . . . . . . . . . . 17 (𝐼 × {(0g𝑅)}) = (𝑘𝐼 ↦ (0g𝑅))
381380eqeq2i 2784 . . . . . . . . . . . . . . . 16 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)))
382 ovex 7002 . . . . . . . . . . . . . . . . . 18 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V
383382rgenw 3094 . . . . . . . . . . . . . . . . 17 𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V
384 mpteqb 6607 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V → ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)))
385383, 384ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅))
386381, 385bitri 267 . . . . . . . . . . . . . . 15 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅))
387225ad5antr 721 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
388 simp-4r 771 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝐼 ∈ Fin)
389 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
390307, 389fnmpti 6315 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼
391390a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
392 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
393 fvexd 6508 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (0g𝑅) ∈ V)
394391, 392, 393fndmfifsupp 8633 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ Fin → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
395394ad4antlr 720 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
396 simplrl 764 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑖𝐼)
397320, 323sylan 572 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
398 fveq2 6493 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
399 oveq1 6977 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑖 → (𝑛𝑀𝑘) = (𝑖𝑀𝑘))
400398, 399oveq12d 6988 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑖 → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) = ((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘)))
401400oveq2d 6986 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
402 simpll 754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ Field)
4032, 237anim12i 603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ Field ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
404403anassrs 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
405 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (1r𝑅) = (1r𝑅)
40610, 100, 47, 405, 240drnginvrl 19234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
4074063expa 1098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
408404, 407sylan 572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
409408anasss 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
410409oveq1d 6985 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
411402, 410sylanl1 667 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
412411adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
4134ad5antr 721 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
414245adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
415237ad2ant2lr 735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑓𝑖) ∈ (Base‘𝑅))
416415adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑓𝑖) ∈ (Base‘𝑅))
41710, 47ringass 19027 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
418413, 414, 416, 397, 417syl13anc 1352 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
4194adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
4204193ad2ant1 1113 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → 𝑅 ∈ Ring)
4213223adant1l 1156 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
42210, 47, 405ringlidm 19034 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
423420, 421, 422syl2anc 576 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
424423ad5ant145 1349 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
425424adantlrr 708 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
426412, 418, 4253eqtr3d 2816 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))) = (𝑖𝑀𝑘))
427401, 426sylan9eqr 2830 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑖) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (𝑖𝑀𝑘))
42810, 200, 387, 388, 395, 254, 396, 397, 427gsumdifsnd 18824 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
429 ovex 7002 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ V
430 eqid 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))
431429, 430fnmpti 6315 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) Fn 𝐼
432431a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) Fn 𝐼)
433432, 392, 393fndmfifsupp 8633 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ Fin → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) finSupp (0g𝑅))
434433ad4antlr 720 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) finSupp (0g𝑅))
43510, 100, 200, 47, 413, 388, 414, 252, 434gsummulc2 19070 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
436428, 435eqtr3d 2810 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
437436adantr 473 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
438 oveq2 6978 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)))
439438adantl 474 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)))
4404ad4antr 719 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑅 ∈ Ring)
44110, 47, 100ringrz 19051 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
442440, 245, 441syl2anc 576 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
443442ad2antrr 713 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
444437, 439, 4433eqtrd 2812 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (0g𝑅))
445444ifeq1d 4362 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
446445ex 405 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
447446ralimdva 3121 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
448447imp 398 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
449386, 448sylan2b 584 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
450449, 379jctil 512 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
451450ralrimivw 3127 . . . . . . . . . . . 12 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → ∀𝑗𝐼 (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
452 mpoeq123 7038 . . . . . . . . . . . 12 ((𝐼 = 𝐼 ∧ ∀𝑗𝐼 (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
453379, 451, 452sylancr 578 . . . . . . . . . . 11 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
454453an32s 639 . . . . . . . . . 10 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
455454fveq2d 6497 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))))
456334ad3antrrr 717 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑅 ∈ CRing)
457 simplr 756 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝐼 ∈ Fin)
458 simpllr 763 . . . . . . . . . . . 12 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
459458, 198syl3an1 1143 . . . . . . . . . . 11 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
460 simprl 758 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑖𝐼)
461333, 10, 100, 456, 457, 459, 460mdetr0 20908 . . . . . . . . . 10 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) = (0g𝑅))
462461ad4ant14 739 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) = (0g𝑅))
463378, 455, 4623eqtrd 2812 . . . . . . . 8 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅))
464463rexlimdvaa 3224 . . . . . . 7 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
465464expimpd 446 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
466128, 465sylan2d 595 . . . . 5 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
46732, 466sylan2 583 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
468467rexlimdva 3223 . . 3 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → (∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
4699, 468sylan2 583 . 2 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (∃𝑓 ∈ ((Base‘𝑅) ↑𝑚 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
470115, 469sylbid 232 1 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  wral 3082  wrex 3083  Vcvv 3409  cdif 3822  cun 3823  wss 3825  c0 4173  ifcif 4344  {csn 4435   class class class wbr 4923  cmpt 5002   × cxp 5398   Fn wfn 6177  wf 6178  cfv 6182  (class class class)co 6970  cmpo 6972  𝑓 cof 7219  curry ccur 7727  𝑚 cmap 8198  Fincfn 8298   finSupp cfsupp 8620  Basecbs 16329  +gcplusg 16411  .rcmulr 16412  Scalarcsca 16414   ·𝑠 cvsca 16415  0gc0g 16559   Σg cgsu 16560  Grpcgrp 17881  CMndccmn 18656  Abelcabl 18657  1rcur 18964  Ringcrg 19010  CRingccrg 19011  invrcinvr 19134  DivRingcdr 19215  Fieldcfield 19216  LModclmod 19346   freeLMod cfrlm 20582   LIndF clindf 20640   maDet cmdat 20887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-addf 10406  ax-mulf 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-xor 1489  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-ot 4444  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-tpos 7688  df-cur 7729  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-pm 8201  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-sup 8693  df-oi 8761  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-xnn0 11773  df-z 11787  df-dec 11905  df-uz 12052  df-rp 12198  df-fz 12702  df-fzo 12843  df-seq 13178  df-exp 13238  df-hash 13499  df-word 13663  df-lsw 13716  df-concat 13724  df-s1 13749  df-substr 13794  df-pfx 13843  df-splice 13950  df-reverse 13968  df-s2 14062  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-starv 16426  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-unif 16434  df-hom 16435  df-cco 16436  df-0g 16561  df-gsum 16562  df-prds 16567  df-pws 16569  df-mre 16705  df-mrc 16706  df-acs 16708  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-mhm 17793  df-submnd 17794  df-grp 17884  df-minusg 17885  df-sbg 17886  df-mulg 18002  df-subg 18050  df-ghm 18117  df-gim 18160  df-cntz 18208  df-oppg 18235  df-symg 18257  df-pmtr 18321  df-psgn 18370  df-evpm 18371  df-cmn 18658  df-abl 18659  df-mgp 18953  df-ur 18965  df-ring 19012  df-cring 19013  df-oppr 19086  df-dvdsr 19104  df-unit 19105  df-invr 19135  df-dvr 19146  df-rnghom 19180  df-drng 19217  df-field 19218  df-subrg 19246  df-lmod 19348  df-lss 19416  df-lsp 19456  df-lmhm 19506  df-lbs 19559  df-sra 19656  df-rgmod 19657  df-nzr 19742  df-cnfld 20238  df-zring 20310  df-zrh 20343  df-dsmm 20568  df-frlm 20583  df-uvc 20619  df-lindf 20642  df-mat 20711  df-mdet 20888
This theorem is referenced by:  matunitlindf  34279
  Copyright terms: Public domain W3C validator