Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindflem1 Structured version   Visualization version   GIF version

Theorem matunitlindflem1 35773
Description: One direction of matunitlindf 35775. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindflem1 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))

Proof of Theorem matunitlindflem1
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑖 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfld 20000 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
21simplbi 498 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
3 drngring 19998 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
42, 3syl 17 . . 3 (𝑅 ∈ Field → 𝑅 ∈ Ring)
5 eqid 2738 . . . . . . . . 9 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
65frlmlmod 20956 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑅 freeLMod 𝐼) ∈ LMod)
76adantlr 712 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑅 freeLMod 𝐼) ∈ LMod)
8 simpr 485 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → 𝐼 ∈ (Fin ∖ {∅}))
9 eldifi 4061 . . . . . . . . . 10 (𝐼 ∈ (Fin ∖ {∅}) → 𝐼 ∈ Fin)
10 eqid 2738 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
115, 10frlmfibas 20969 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
129, 11sylan2 593 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
13 fvex 6787 . . . . . . . . . 10 (Base‘𝑅) ∈ V
14 curf 35755 . . . . . . . . . 10 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ (Base‘𝑅) ∈ V) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
1513, 14mp3an3 1449 . . . . . . . . 9 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
16 feq3 6583 . . . . . . . . . 10 (((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))))
1716biimpa 477 . . . . . . . . 9 ((((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
1812, 15, 17syl2an 596 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}))) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
1918anandirs 676 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
20 eqid 2738 . . . . . . . 8 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
21 eqid 2738 . . . . . . . 8 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
22 eqid 2738 . . . . . . . 8 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
23 eqid 2738 . . . . . . . 8 (0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼))
24 eqid 2738 . . . . . . . 8 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
25 eqid 2738 . . . . . . . 8 (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))
2620, 21, 22, 23, 24, 25islindf4 21045 . . . . . . 7 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
277, 8, 19, 26syl3anc 1370 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
285frlmsca 20960 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
2928fvoveq1d 7297 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (Base‘(𝑅 freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
3012, 29eqtrd 2778 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑m 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
3130adantlr 712 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑m 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
32 elmapi 8637 . . . . . . . . . 10 (𝑓 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑓:𝐼⟶(Base‘𝑅))
33 ffn 6600 . . . . . . . . . . . . . . 15 (𝑓:𝐼⟶(Base‘𝑅) → 𝑓 Fn 𝐼)
3433adantl 482 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑓 Fn 𝐼)
3519ffnd 6601 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀 Fn 𝐼)
3635adantr 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼)
37 simplr 766 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ (Fin ∖ {∅}))
38 inidm 4152 . . . . . . . . . . . . . 14 (𝐼𝐼) = 𝐼
39 eqidd 2739 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑓𝑛) = (𝑓𝑛))
40 eqidd 2739 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) = (curry 𝑀𝑛))
4134, 36, 37, 37, 38, 39, 40offval 7542 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛𝐼 ↦ ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛))))
42 simpllr 773 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → 𝐼 ∈ (Fin ∖ {∅}))
43 ffvelrn 6959 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
4443adantll 711 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
4519ffvelrnda 6961 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼)))
4645adantlr 712 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼)))
47 eqid 2738 . . . . . . . . . . . . . . . 16 (.r𝑅) = (.r𝑅)
485, 20, 10, 42, 44, 46, 22, 47frlmvscafval 20973 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛)) = ((𝐼 × {(𝑓𝑛)}) ∘f (.r𝑅)(curry 𝑀𝑛)))
49 fvex 6787 . . . . . . . . . . . . . . . . 17 (𝑓𝑛) ∈ V
50 fnconstg 6662 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ∈ V → (𝐼 × {(𝑓𝑛)}) Fn 𝐼)
5149, 50mp1i 13 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝐼 × {(𝑓𝑛)}) Fn 𝐼)
5215ffvelrnda 6961 . . . . . . . . . . . . . . . . . . 19 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ ((Base‘𝑅) ↑m 𝐼))
53 elmapfn 8653 . . . . . . . . . . . . . . . . . . 19 ((curry 𝑀𝑛) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5452, 53syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5554adantlll 715 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5655adantlr 712 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5749fvconst2 7079 . . . . . . . . . . . . . . . . 17 (𝑘𝐼 → ((𝐼 × {(𝑓𝑛)})‘𝑘) = (𝑓𝑛))
5857adantl 482 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((𝐼 × {(𝑓𝑛)})‘𝑘) = (𝑓𝑛))
59 ffn 6600 . . . . . . . . . . . . . . . . . . . 20 (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 Fn (𝐼 × 𝐼))
6059anim2i 617 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
6160ancoms 459 . . . . . . . . . . . . . . . . . 18 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
6261ad4ant23 750 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
63 curfv 35757 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑛𝐼𝑘𝐼) ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
64633exp1 1351 . . . . . . . . . . . . . . . . . . 19 (𝑀 Fn (𝐼 × 𝐼) → (𝑛𝐼 → (𝑘𝐼 → (𝐼 ∈ (Fin ∖ {∅}) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘)))))
6564com4r 94 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (Fin ∖ {∅}) → (𝑀 Fn (𝐼 × 𝐼) → (𝑛𝐼 → (𝑘𝐼 → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘)))))
6665imp41 426 . . . . . . . . . . . . . . . . 17 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
6762, 66sylanl1 677 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
6851, 56, 42, 42, 38, 58, 67offval 7542 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝐼 × {(𝑓𝑛)}) ∘f (.r𝑅)(curry 𝑀𝑛)) = (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
6948, 68eqtrd 2778 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛)) = (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
7069mpteq2dva 5174 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛𝐼 ↦ ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛))) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
7141, 70eqtrd 2778 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
7271oveq2d 7291 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
73 simplll 772 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
74 simp-4l 780 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
7543ad4ant23 750 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
76 fovrn 7442 . . . . . . . . . . . . . . . . 17 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛𝐼𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
7776ad5ant245 1360 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
7810, 47ringcl 19800 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑓𝑛) ∈ (Base‘𝑅) ∧ (𝑛𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
7974, 75, 77, 78syl3anc 1370 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
8079fmpttd 6989 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))
8180adantllr 716 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))
82 elmapg 8628 . . . . . . . . . . . . . . . . 17 (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8313, 82mpan 687 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8483adantl 482 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8512eleq2d 2824 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8684, 85bitr3d 280 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8786ad5ant13 754 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8881, 87mpbid 231 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼)))
89 mptexg 7097 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V)
9089ralrimivw 3104 . . . . . . . . . . . . . . 15 (𝐼 ∈ (Fin ∖ {∅}) → ∀𝑛𝐼 (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V)
91 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
9291fnmpt 6573 . . . . . . . . . . . . . . 15 (∀𝑛𝐼 (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
9390, 92syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
94 fvexd 6789 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) → (0g‘(𝑅 freeLMod 𝐼)) ∈ V)
9593, 9, 94fndmfifsupp 9141 . . . . . . . . . . . . 13 (𝐼 ∈ (Fin ∖ {∅}) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
9695ad2antlr 724 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
975, 20, 23, 37, 37, 73, 88, 96frlmgsum 20979 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
9872, 97eqtr2d 2779 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
9932, 98sylan2 593 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
100 eqid 2738 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1015, 100frlm0 20961 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 × {(0g𝑅)}) = (0g‘(𝑅 freeLMod 𝐼)))
102101ad4ant13 748 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝐼 × {(0g𝑅)}) = (0g‘(𝑅 freeLMod 𝐼)))
10399, 102eqeq12d 2754 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼))))
10428fveq2d 6778 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (0g𝑅) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼))))
105104sneqd 4573 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → {(0g𝑅)} = {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})
106105xpeq2d 5619 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 × {(0g𝑅)}) = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))
107106eqeq2d 2749 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑓 = (𝐼 × {(0g𝑅)}) ↔ 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))
108107ad4ant13 748 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑓 = (𝐼 × {(0g𝑅)}) ↔ 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))
109103, 108imbi12d 345 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})) ↔ (((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
11031, 109raleqbidva 3354 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
11127, 110bitr4d 281 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)}))))
112111notbid 318 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)}))))
113 rexanali 3192 . . . 4 (∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})))
114112, 113bitr4di 289 . . 3 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)}))))
1154, 114sylanl1 677 . 2 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)}))))
116 fconstfv 7088 . . . . . . . . . . . 12 (𝑓:𝐼⟶{(0g𝑅)} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)))
117 fvex 6787 . . . . . . . . . . . . 13 (0g𝑅) ∈ V
118117fconst2 7080 . . . . . . . . . . . 12 (𝑓:𝐼⟶{(0g𝑅)} ↔ 𝑓 = (𝐼 × {(0g𝑅)}))
119116, 118sylbb1 236 . . . . . . . . . . 11 ((𝑓 Fn 𝐼 ∧ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)) → 𝑓 = (𝐼 × {(0g𝑅)}))
120119ex 413 . . . . . . . . . 10 (𝑓 Fn 𝐼 → (∀𝑖𝐼 (𝑓𝑖) = (0g𝑅) → 𝑓 = (𝐼 × {(0g𝑅)})))
121120con3d 152 . . . . . . . . 9 (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)))
122 df-ne 2944 . . . . . . . . . . 11 ((𝑓𝑖) ≠ (0g𝑅) ↔ ¬ (𝑓𝑖) = (0g𝑅))
123122rexbii 3181 . . . . . . . . . 10 (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) ↔ ∃𝑖𝐼 ¬ (𝑓𝑖) = (0g𝑅))
124 rexnal 3169 . . . . . . . . . 10 (∃𝑖𝐼 ¬ (𝑓𝑖) = (0g𝑅) ↔ ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅))
125123, 124bitri 274 . . . . . . . . 9 (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) ↔ ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅))
126121, 125syl6ibr 251 . . . . . . . 8 (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
12733, 126syl 17 . . . . . . 7 (𝑓:𝐼⟶(Base‘𝑅) → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
128127adantl 482 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
129 neldifsn 4725 . . . . . . . . . . 11 ¬ 𝑖 ∈ (𝐼 ∖ {𝑖})
130 difss 4066 . . . . . . . . . . 11 (𝐼 ∖ {𝑖}) ⊆ 𝐼
131 diffi 8962 . . . . . . . . . . . . 13 (𝐼 ∈ Fin → (𝐼 ∖ {𝑖}) ∈ Fin)
132131ad4antlr 730 . . . . . . . . . . . 12 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → (𝐼 ∖ {𝑖}) ∈ Fin)
133 eleq2 2827 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → (𝑖𝑦𝑖 ∈ ∅))
134133notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ ∅))
135 sseq1 3946 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (𝑦𝐼 ↔ ∅ ⊆ 𝐼))
136134, 135anbi12d 631 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)))
137136anbi2d 629 . . . . . . . . . . . . . 14 (𝑦 = ∅ → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼))))
138 mpteq1 5167 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = ∅ → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ ∅ ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
139 mpt0 6575 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ∅ ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = ∅
140138, 139eqtrdi 2794 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = ∅ → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = ∅)
141140oveq2d 7291 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ∅ → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg ∅))
142100gsum0 18368 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg ∅) = (0g𝑅)
143141, 142eqtrdi 2794 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ∅ → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (0g𝑅))
144143oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)))
145144ifeq1d 4478 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
146145mpoeq3dv 7354 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
147146fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
148147eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
149137, 148imbi12d 345 . . . . . . . . . . . . 13 (𝑦 = ∅ → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
150 elequ2 2121 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑖𝑦𝑖𝑥))
151150notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (¬ 𝑖𝑦 ↔ ¬ 𝑖𝑥))
152 sseq1 3946 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑦𝐼𝑥𝐼))
153151, 152anbi12d 631 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖𝑥𝑥𝐼)))
154153anbi2d 629 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼))))
155 mpteq1 5167 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
156155oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
157156oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
158157ifeq1d 4478 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
159158mpoeq3dv 7354 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
160159fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
161160eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
162154, 161imbi12d 345 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
163 eleq2 2827 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑖𝑦𝑖 ∈ (𝑥 ∪ {𝑧})))
164163notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ (𝑥 ∪ {𝑧})))
165 sseq1 3946 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
166164, 165anbi12d 631 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 ∪ {𝑧}) → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)))
167166anbi2d 629 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 ∪ {𝑧}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))))
168 mpteq1 5167 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
169168oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
170169oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
171170ifeq1d 4478 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 ∪ {𝑧}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
172171mpoeq3dv 7354 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
173172fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
174173eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 ∪ {𝑧}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
175167, 174imbi12d 345 . . . . . . . . . . . . 13 (𝑦 = (𝑥 ∪ {𝑧}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
176 eleq2 2827 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑖𝑦𝑖 ∈ (𝐼 ∖ {𝑖})))
177176notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ (𝐼 ∖ {𝑖})))
178 sseq1 3946 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑦𝐼 ↔ (𝐼 ∖ {𝑖}) ⊆ 𝐼))
179177, 178anbi12d 631 . . . . . . . . . . . . . . 15 (𝑦 = (𝐼 ∖ {𝑖}) → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)))
180179anbi2d 629 . . . . . . . . . . . . . 14 (𝑦 = (𝐼 ∖ {𝑖}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼))))
181 mpteq1 5167 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
182181oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
183182oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐼 ∖ {𝑖}) → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
184183ifeq1d 4478 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐼 ∖ {𝑖}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
185184mpoeq3dv 7354 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
186185fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑦 = (𝐼 ∖ {𝑖}) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
187186eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑦 = (𝐼 ∖ {𝑖}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
188180, 187imbi12d 345 . . . . . . . . . . . . 13 (𝑦 = (𝐼 ∖ {𝑖}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
189 fnov 7405 . . . . . . . . . . . . . . . . . 18 (𝑀 Fn (𝐼 × 𝐼) ↔ 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
19059, 189sylib 217 . . . . . . . . . . . . . . . . 17 (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
191190adantl 482 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
192 ringgrp 19788 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1934, 192syl 17 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Field → 𝑅 ∈ Grp)
194 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘))
195194equcoms 2023 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘))
196195oveq2d 7291 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)) = ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)))
197 simp1l 1196 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → 𝑅 ∈ Grp)
198 fovrn 7442 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
1991983adant1l 1175 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
200 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑅) = (+g𝑅)
20110, 200, 100grplid 18609 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Grp ∧ (𝑗𝑀𝑘) ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
202197, 199, 201syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
203196, 202sylan9eqr 2800 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) ∧ 𝑗 = 𝑖) → ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)) = (𝑗𝑀𝑘))
204 eqidd 2739 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) ∧ ¬ 𝑗 = 𝑖) → (𝑗𝑀𝑘) = (𝑗𝑀𝑘))
205203, 204ifeqda 4495 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
206205mpoeq3dva 7352 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
207193, 206sylan 580 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
208191, 207eqtr4d 2781 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
209208fveq2d 6778 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
210209ad4antr 729 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
211 elun1 4110 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝑥𝑖 ∈ (𝑥 ∪ {𝑧}))
212211con3i 154 . . . . . . . . . . . . . . . . . . . 20 𝑖 ∈ (𝑥 ∪ {𝑧}) → ¬ 𝑖𝑥)
213 ssun1 4106 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ⊆ (𝑥 ∪ {𝑧})
214 sstr 3929 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥𝐼)
215213, 214mpan 687 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼)
216212, 215anim12i 613 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (¬ 𝑖𝑥𝑥𝐼))
217216anim2i 617 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)))
218217adantr 481 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)))
219 velsn 4577 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧)
220 elun2 4111 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ {𝑧} → 𝑖 ∈ (𝑥 ∪ {𝑧}))
221219, 220sylbir 234 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑧𝑖 ∈ (𝑥 ∪ {𝑧}))
222221necon3bi 2970 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ (𝑥 ∪ {𝑧}) → 𝑖𝑧)
223222anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
224 ringcmn 19820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2254, 224syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Field → 𝑅 ∈ CMnd)
226225ad7antr 735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
227 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin)
228215adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥𝐼)
229 ssfi 8956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → 𝑥 ∈ Fin)
230227, 228, 229syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin)
231230ad5ant13 754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑥 ∈ Fin)
232215sselda 3921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑛𝑥) → 𝑛𝐼)
233232adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑛𝑥) → 𝑛𝐼)
234233ad4ant24 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → 𝑛𝐼)
2354ad6antr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → 𝑅 ∈ Ring)
2362ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing)
237 ffvelrn 6959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼) → (𝑓𝑖) ∈ (Base‘𝑅))
238237anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ DivRing ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
239238anassrs 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
240 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (invr𝑅) = (invr𝑅)
24110, 100, 240drnginvrcl 20008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
2422413expa 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
243239, 242sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
244243anasss 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
245236, 244sylanl1 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
246245ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
24743ad5ant25 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
248 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
249763expa 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
250249an32s 649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
251248, 250sylanl1 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
252235, 247, 251, 78syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
25310, 47ringcl 19800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
254235, 246, 252, 253syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
255254adantllr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
256234, 255syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
257256adantllr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
258 vex 3436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑧 ∈ V
259258a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑧 ∈ V)
260 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ¬ 𝑧𝑥)
261 ssun2 4107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {𝑧} ⊆ (𝑥 ∪ {𝑧})
262 sstr 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (({𝑧} ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → {𝑧} ⊆ 𝐼)
263261, 262mpan 687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → {𝑧} ⊆ 𝐼)
264258snss 4719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧𝐼 ↔ {𝑧} ⊆ 𝐼)
265263, 264sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑧𝐼)
266265adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑧𝐼)
2674ad6antr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
2684ad5antr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → 𝑅 ∈ Ring)
269245adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
270 ffvelrn 6959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑧𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
271270ad4ant24 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
27210, 47ringcl 19800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑧) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
273268, 269, 271, 272syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
274273adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
275 fovrn 7442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
2762753expa 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
277248, 276sylanl1 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
27810, 47ringcl 19800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅)) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
279267, 274, 277, 278syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
280266, 279sylanl2 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
281280adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
282 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 = 𝑧 → (𝑓𝑛) = (𝑓𝑧))
283 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 = 𝑧 → (𝑛𝑀𝑘) = (𝑧𝑀𝑘))
284282, 283oveq12d 7293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 = 𝑧 → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) = ((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘)))
285284oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 𝑧 → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
286245ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
287270ad5ant24 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
28810, 47ringass 19803 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑧) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
289267, 286, 287, 277, 288syl13anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
290289eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
291266, 290sylanl2 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
292285, 291sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑧) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
293292adantllr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑧) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
29410, 200, 226, 231, 257, 259, 260, 281, 293gsumunsnd 19559 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
295294oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)))
296 ringabl 19819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
2974, 296syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Field → 𝑅 ∈ Abel)
298297ad6antr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Abel)
299225ad6antr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
300 vex 3436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑥 ∈ V
301300a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑥 ∈ V)
302 ssel2 3916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥𝐼𝑛𝑥) → 𝑛𝐼)
303302, 254sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑥𝐼𝑛𝑥)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
304303anassrs 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑥𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
305304fmpttd 6989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅))
306305an32s 649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅))
307 ovex 7308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V
308 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
309307, 308fnmpti 6576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝑥
310309a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝑥)
311 fvexd 6789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (0g𝑅) ∈ V)
312310, 229, 311fndmfifsupp 9141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
313312adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
314313ad5ant14 755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
31510, 100, 299, 301, 306, 314gsumcl 19516 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅))
316215, 315sylanl2 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅))
317265, 279sylanl2 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
318 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
319 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅)) → 𝑖𝐼)
320318, 319anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
321320adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
322 fovrn 7442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
3233223expa 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
324321, 323sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
32510, 200, 298, 316, 317, 324abl32 19408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
326325adantlrl 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
327326adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
328295, 327eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
329328ifeq1d 4478 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))
3303293adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))
331330mpoeq3dva 7352 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))
332331fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
333 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
3341simprbi 497 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ Field → 𝑅 ∈ CRing)
335334ad5antr 731 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ CRing)
336 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼 ∈ Fin)
337193ad6antr 733 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Grp)
338320adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
339338, 323sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
34010, 200grpcl 18585 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Grp ∧ (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
341337, 315, 339, 340syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
342228, 341sylanl2 678 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
343248, 266anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼))
344343, 276sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
345 simp-5r 783 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
346345, 198syl3an1 1162 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
347266, 273sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
348 simplrl 774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖𝐼)
349265ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧𝐼)
350 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖𝑧)
351333, 10, 200, 47, 335, 336, 342, 344, 346, 347, 348, 349, 350mdetero 21759 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
352351adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
353332, 352eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
354 iftrue 4465 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑧𝑀𝑘))
355 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑧 → (𝑗𝑀𝑘) = (𝑧𝑀𝑘))
356354, 355eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
357 iffalse 4468 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
358356, 357pm2.61i 182 . . . . . . . . . . . . . . . . . . . . . . . 24 if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘)
359 ifeq2 4464 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
360358, 359mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
361360mpoeq3ia 7353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
362361fveq2i 6777 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
363 ifeq2 4464 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
364358, 363mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
365364mpoeq3ia 7353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
366365fveq2i 6777 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
367353, 362, 3663eqtr3g 2801 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
368223, 367sylanl2 678 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
369368eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
370369biimprd 247 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
371218, 370embantd 59 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
372371expcom 414 . . . . . . . . . . . . . . 15 𝑧𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
373372com23 86 . . . . . . . . . . . . . 14 𝑧𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
374373adantl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
375149, 162, 175, 188, 210, 374findcard2s 8948 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑖}) ∈ Fin → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
376132, 375mpcom 38 . . . . . . . . . . 11 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
377129, 130, 376mpanr12 702 . . . . . . . . . 10 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
378377adantlr 712 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
379 eqid 2738 . . . . . . . . . . . 12 𝐼 = 𝐼
380 fconstmpt 5649 . . . . . . . . . . . . . . . . 17 (𝐼 × {(0g𝑅)}) = (𝑘𝐼 ↦ (0g𝑅))
381380eqeq2i 2751 . . . . . . . . . . . . . . . 16 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)))
382 ovex 7308 . . . . . . . . . . . . . . . . . 18 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V
383382rgenw 3076 . . . . . . . . . . . . . . . . 17 𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V
384 mpteqb 6894 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V → ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)))
385383, 384ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅))
386381, 385bitri 274 . . . . . . . . . . . . . . 15 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅))
387225ad5antr 731 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
388 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝐼 ∈ Fin)
389 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
390307, 389fnmpti 6576 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼
391390a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
392 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
393 fvexd 6789 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (0g𝑅) ∈ V)
394391, 392, 393fndmfifsupp 9141 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ Fin → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
395394ad4antlr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
396 simplrl 774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑖𝐼)
397320, 323sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
398 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
399 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑖 → (𝑛𝑀𝑘) = (𝑖𝑀𝑘))
400398, 399oveq12d 7293 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑖 → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) = ((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘)))
401400oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
402 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ Field)
4032, 237anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ Field ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
404403anassrs 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
405 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (1r𝑅) = (1r𝑅)
40610, 100, 47, 405, 240drnginvrl 20010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
4074063expa 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
408404, 407sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
409408anasss 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
410409oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
411402, 410sylanl1 677 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
412411adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
4134ad5antr 731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
414245adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
415237ad2ant2lr 745 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑓𝑖) ∈ (Base‘𝑅))
416415adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑓𝑖) ∈ (Base‘𝑅))
41710, 47ringass 19803 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
418413, 414, 416, 397, 417syl13anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
4194adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
4204193ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → 𝑅 ∈ Ring)
4213223adant1l 1175 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
42210, 47, 405ringlidm 19810 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
423420, 421, 422syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
424423ad5ant145 1368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
425424adantlrr 718 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
426412, 418, 4253eqtr3d 2786 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))) = (𝑖𝑀𝑘))
427401, 426sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑖) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (𝑖𝑀𝑘))
42810, 200, 387, 388, 395, 254, 396, 397, 427gsumdifsnd 19562 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
429 ovex 7308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ V
430 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))
431429, 430fnmpti 6576 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) Fn 𝐼
432431a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) Fn 𝐼)
433432, 392, 393fndmfifsupp 9141 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ Fin → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) finSupp (0g𝑅))
434433ad4antlr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) finSupp (0g𝑅))
43510, 100, 200, 47, 413, 388, 414, 252, 434gsummulc2 19846 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
436428, 435eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
437436adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
438 oveq2 7283 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)))
439438adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)))
4404ad4antr 729 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑅 ∈ Ring)
44110, 47, 100ringrz 19827 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
442440, 245, 441syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
443442ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
444437, 439, 4433eqtrd 2782 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (0g𝑅))
445444ifeq1d 4478 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
446445ex 413 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
447446ralimdva 3108 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
448447imp 407 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
449386, 448sylan2b 594 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
450449, 379jctil 520 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
451450ralrimivw 3104 . . . . . . . . . . . 12 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → ∀𝑗𝐼 (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
452 mpoeq123 7347 . . . . . . . . . . . 12 ((𝐼 = 𝐼 ∧ ∀𝑗𝐼 (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
453379, 451, 452sylancr 587 . . . . . . . . . . 11 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
454453an32s 649 . . . . . . . . . 10 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
455454fveq2d 6778 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))))
456334ad3antrrr 727 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑅 ∈ CRing)
457 simplr 766 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝐼 ∈ Fin)
458 simpllr 773 . . . . . . . . . . . 12 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
459458, 198syl3an1 1162 . . . . . . . . . . 11 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
460 simprl 768 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑖𝐼)
461333, 10, 100, 456, 457, 459, 460mdetr0 21754 . . . . . . . . . 10 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) = (0g𝑅))
462461ad4ant14 749 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) = (0g𝑅))
463378, 455, 4623eqtrd 2782 . . . . . . . 8 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅))
464463rexlimdvaa 3214 . . . . . . 7 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
465464expimpd 454 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
466128, 465sylan2d 605 . . . . 5 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
46732, 466sylan2 593 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
468467rexlimdva 3213 . . 3 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → (∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
4699, 468sylan2 593 . 2 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
470115, 469sylbid 239 1 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  wss 3887  c0 4256  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  f cof 7531  curry ccur 8081  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151  Grpcgrp 18577  CMndccmn 19386  Abelcabl 19387  1rcur 19737  Ringcrg 19783  CRingccrg 19784  invrcinvr 19913  DivRingcdr 19991  Fieldcfield 19992  LModclmod 20123   freeLMod cfrlm 20953   LIndF clindf 21011   maDet cmdat 21733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-cur 8083  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-oppg 18950  df-symg 18975  df-pmtr 19050  df-psgn 19099  df-evpm 19100  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-field 19994  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lmhm 20284  df-lbs 20337  df-sra 20434  df-rgmod 20435  df-nzr 20529  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-dsmm 20939  df-frlm 20954  df-uvc 20990  df-lindf 21013  df-mat 21555  df-mdet 21734
This theorem is referenced by:  matunitlindf  35775
  Copyright terms: Public domain W3C validator