| Step | Hyp | Ref
| Expression |
| 1 | | isfld 20741 |
. . . . 5
⊢ (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing)) |
| 2 | 1 | simplbi 497 |
. . . 4
⊢ (𝑅 ∈ Field → 𝑅 ∈
DivRing) |
| 3 | | drngring 20737 |
. . . 4
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| 4 | 2, 3 | syl 17 |
. . 3
⊢ (𝑅 ∈ Field → 𝑅 ∈ Ring) |
| 5 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼) |
| 6 | 5 | frlmlmod 21770 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (𝑅 freeLMod 𝐼) ∈ LMod) |
| 7 | 6 | adantlr 715 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(𝑅 freeLMod 𝐼) ∈ LMod) |
| 8 | | simpr 484 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
𝐼 ∈ (Fin ∖
{∅})) |
| 9 | | eldifi 4130 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ 𝐼 ∈
Fin) |
| 10 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 11 | 5, 10 | frlmfibas 21783 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) →
((Base‘𝑅)
↑m 𝐼) =
(Base‘(𝑅 freeLMod
𝐼))) |
| 12 | 9, 11 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ ((Base‘𝑅)
↑m 𝐼) =
(Base‘(𝑅 freeLMod
𝐼))) |
| 13 | | fvex 6918 |
. . . . . . . . . 10
⊢
(Base‘𝑅)
∈ V |
| 14 | | curf 37606 |
. . . . . . . . . 10
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧
(Base‘𝑅) ∈ V)
→ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) |
| 15 | 13, 14 | mp3an3 1451 |
. . . . . . . . 9
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) |
| 16 | | feq3 6717 |
. . . . . . . . . 10
⊢
(((Base‘𝑅)
↑m 𝐼) =
(Base‘(𝑅 freeLMod
𝐼)) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))) |
| 17 | 16 | biimpa 476 |
. . . . . . . . 9
⊢
((((Base‘𝑅)
↑m 𝐼) =
(Base‘(𝑅 freeLMod
𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) |
| 18 | 12, 15, 17 | syl2an 596 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}))) →
curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) |
| 19 | 18 | anandirs 679 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) |
| 20 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘(𝑅
freeLMod 𝐼)) =
(Base‘(𝑅 freeLMod
𝐼)) |
| 21 | | eqid 2736 |
. . . . . . . 8
⊢
(Scalar‘(𝑅
freeLMod 𝐼)) =
(Scalar‘(𝑅 freeLMod
𝐼)) |
| 22 | | eqid 2736 |
. . . . . . . 8
⊢ (
·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠
‘(𝑅 freeLMod 𝐼)) |
| 23 | | eqid 2736 |
. . . . . . . 8
⊢
(0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼)) |
| 24 | | eqid 2736 |
. . . . . . . 8
⊢
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))) =
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))) |
| 25 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)) |
| 26 | 20, 21, 22, 23, 24, 25 | islindf4 21859 |
. . . . . . 7
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ curry
𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))) |
| 27 | 7, 8, 19, 26 | syl3anc 1372 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))) |
| 28 | 5 | frlmsca 21774 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ 𝑅 =
(Scalar‘(𝑅 freeLMod
𝐼))) |
| 29 | 28 | fvoveq1d 7454 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (Base‘(𝑅
freeLMod 𝐼)) =
(Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))) |
| 30 | 12, 29 | eqtrd 2776 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ ((Base‘𝑅)
↑m 𝐼) =
(Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))) |
| 31 | 30 | adantlr 715 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
((Base‘𝑅)
↑m 𝐼) =
(Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))) |
| 32 | | elmapi 8890 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑓:𝐼⟶(Base‘𝑅)) |
| 33 | | ffn 6735 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐼⟶(Base‘𝑅) → 𝑓 Fn 𝐼) |
| 34 | 33 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑓 Fn 𝐼) |
| 35 | 19 | ffnd 6736 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
curry 𝑀 Fn 𝐼) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼) |
| 37 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ (Fin ∖
{∅})) |
| 38 | | inidm 4226 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 39 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) = (𝑓‘𝑛)) |
| 40 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) = (curry 𝑀‘𝑛)) |
| 41 | 34, 36, 37, 37, 38, 39, 40 | offval 7707 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑛)))) |
| 42 | | simpllr 775 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → 𝐼 ∈ (Fin ∖
{∅})) |
| 43 | | ffvelcdm 7100 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) ∈ (Base‘𝑅)) |
| 44 | 43 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) ∈ (Base‘𝑅)) |
| 45 | 19 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
| 46 | 45 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
| 47 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 48 | 5, 20, 10, 42, 44, 46, 22, 47 | frlmvscafval 21787 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → ((𝑓‘𝑛)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑛)) = ((𝐼 × {(𝑓‘𝑛)}) ∘f
(.r‘𝑅)(curry 𝑀‘𝑛))) |
| 49 | | fvex 6918 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓‘𝑛) ∈ V |
| 50 | | fnconstg 6795 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓‘𝑛) ∈ V → (𝐼 × {(𝑓‘𝑛)}) Fn 𝐼) |
| 51 | 49, 50 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝐼 × {(𝑓‘𝑛)}) Fn 𝐼) |
| 52 | 15 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) ∈ ((Base‘𝑅) ↑m 𝐼)) |
| 53 | | elmapfn 8906 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((curry
𝑀‘𝑛) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀‘𝑛) Fn 𝐼) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) Fn 𝐼) |
| 55 | 54 | adantlll 718 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) Fn 𝐼) |
| 56 | 55 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (curry 𝑀‘𝑛) Fn 𝐼) |
| 57 | 49 | fvconst2 7225 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ 𝐼 → ((𝐼 × {(𝑓‘𝑛)})‘𝑘) = (𝑓‘𝑛)) |
| 58 | 57 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((𝐼 × {(𝑓‘𝑛)})‘𝑘) = (𝑓‘𝑛)) |
| 59 | | ffn 6735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 Fn (𝐼 × 𝐼)) |
| 60 | 59 | anim2i 617 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ (Fin ∖ {∅})
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼))) |
| 61 | 60 | ancoms 458 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(𝐼 ∈ (Fin ∖
{∅}) ∧ 𝑀 Fn
(𝐼 × 𝐼))) |
| 62 | 61 | ad4ant23 753 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼))) |
| 63 | | curfv 37608 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑛 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
((curry 𝑀‘𝑛)‘𝑘) = (𝑛𝑀𝑘)) |
| 64 | 63 | 3exp1 1352 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 Fn (𝐼 × 𝐼) → (𝑛 ∈ 𝐼 → (𝑘 ∈ 𝐼 → (𝐼 ∈ (Fin ∖ {∅}) →
((curry 𝑀‘𝑛)‘𝑘) = (𝑛𝑀𝑘))))) |
| 65 | 64 | com4r 94 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ (𝑀 Fn (𝐼 × 𝐼) → (𝑛 ∈ 𝐼 → (𝑘 ∈ 𝐼 → ((curry 𝑀‘𝑛)‘𝑘) = (𝑛𝑀𝑘))))) |
| 66 | 65 | imp41 425 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝑀 Fn (𝐼 × 𝐼)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((curry 𝑀‘𝑛)‘𝑘) = (𝑛𝑀𝑘)) |
| 67 | 62, 66 | sylanl1 680 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((curry 𝑀‘𝑛)‘𝑘) = (𝑛𝑀𝑘)) |
| 68 | 51, 56, 42, 42, 38, 58, 67 | offval 7707 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → ((𝐼 × {(𝑓‘𝑛)}) ∘f
(.r‘𝑅)(curry 𝑀‘𝑛)) = (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) |
| 69 | 48, 68 | eqtrd 2776 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → ((𝑓‘𝑛)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑛)) = (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) |
| 70 | 69 | mpteq2dva 5241 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)( ·𝑠
‘(𝑅 freeLMod 𝐼))(curry 𝑀‘𝑛))) = (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 71 | 41, 70 | eqtrd 2776 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 72 | 71 | oveq2d 7448 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑓 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 73 | | simplll 774 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring) |
| 74 | | simp-4l 782 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 75 | 43 | ad4ant23 753 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑛) ∈ (Base‘𝑅)) |
| 76 | | fovcdm 7604 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅)) |
| 77 | 76 | ad5ant245 1362 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅)) |
| 78 | 10, 47 | ringcl 20248 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ (𝑓‘𝑛) ∈ (Base‘𝑅) ∧ (𝑛𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) |
| 79 | 74, 75, 77, 78 | syl3anc 1372 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) |
| 80 | 79 | fmpttd 7134 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)) |
| 81 | 80 | adantllr 719 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)) |
| 82 | | elmapg 8880 |
. . . . . . . . . . . . . . . . 17
⊢
(((Base‘𝑅)
∈ V ∧ 𝐼 ∈
(Fin ∖ {∅})) → ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))) |
| 83 | 13, 82 | mpan 690 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))) |
| 84 | 83 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))) |
| 85 | 12 | eleq2d 2826 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼)))) |
| 86 | 84, 85 | bitr3d 281 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼)))) |
| 87 | 86 | ad5ant13 756 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → ((𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼)))) |
| 88 | 81, 87 | mpbid 232 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Ring
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
| 89 | | mptexg 7242 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ V) |
| 90 | 89 | ralrimivw 3149 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ ∀𝑛 ∈
𝐼 (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ V) |
| 91 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) |
| 92 | 91 | fnmpt 6707 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑛 ∈
𝐼 (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ V → (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝐼) |
| 93 | 90, 92 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝐼) |
| 94 | | fvexd 6920 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ (0g‘(𝑅 freeLMod 𝐼)) ∈ V) |
| 95 | 93, 9, 94 | fndmfifsupp 9419 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼))) |
| 96 | 95 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼))) |
| 97 | 5, 20, 23, 37, 37, 73, 88, 96 | frlmgsum 21793 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 98 | 72, 97 | eqtr2d 2777 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))) |
| 99 | 32, 98 | sylan2 593 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀))) |
| 100 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 101 | 5, 100 | frlm0 21775 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (𝐼 ×
{(0g‘𝑅)})
= (0g‘(𝑅
freeLMod 𝐼))) |
| 102 | 101 | ad4ant13 751 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝐼 × {(0g‘𝑅)}) =
(0g‘(𝑅
freeLMod 𝐼))) |
| 103 | 99, 102 | eqeq12d 2752 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → ((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ↔ ((𝑅 freeLMod 𝐼) Σg (𝑓 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)))) |
| 104 | 28 | fveq2d 6909 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (0g‘𝑅) =
(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))) |
| 105 | 104 | sneqd 4637 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ {(0g‘𝑅)} =
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) |
| 106 | 105 | xpeq2d 5714 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (𝐼 ×
{(0g‘𝑅)})
= (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) |
| 107 | 106 | eqeq2d 2747 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅}))
→ (𝑓 = (𝐼 ×
{(0g‘𝑅)})
↔ 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))) |
| 108 | 107 | ad4ant13 751 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑓 = (𝐼 × {(0g‘𝑅)}) ↔ 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))) |
| 109 | 103, 108 | imbi12d 344 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) → 𝑓 = (𝐼 × {(0g‘𝑅)})) ↔ (((𝑅 freeLMod 𝐼) Σg (𝑓 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))) |
| 110 | 31, 109 | raleqbidva 3331 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(∀𝑓 ∈
((Base‘𝑅)
↑m 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) → 𝑓 = (𝐼 × {(0g‘𝑅)})) ↔ ∀𝑓 ∈
(Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓 ∘f (
·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 ×
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))) |
| 111 | 27, 110 | bitr4d 282 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) → 𝑓 = (𝐼 × {(0g‘𝑅)})))) |
| 112 | 111 | notbid 318 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) → 𝑓 = (𝐼 × {(0g‘𝑅)})))) |
| 113 | | rexanali 3101 |
. . . 4
⊢
(∃𝑓 ∈
((Base‘𝑅)
↑m 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) → 𝑓 = (𝐼 × {(0g‘𝑅)}))) |
| 114 | 112, 113 | bitr4di 289 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})))) |
| 115 | 4, 114 | sylanl1 680 |
. 2
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})))) |
| 116 | | fconstfv 7233 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐼⟶{(0g‘𝑅)} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅))) |
| 117 | | fvex 6918 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑅) ∈ V |
| 118 | 117 | fconst2 7226 |
. . . . . . . . . . . 12
⊢ (𝑓:𝐼⟶{(0g‘𝑅)} ↔ 𝑓 = (𝐼 × {(0g‘𝑅)})) |
| 119 | 116, 118 | sylbb1 237 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn 𝐼 ∧ ∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅)) → 𝑓 = (𝐼 × {(0g‘𝑅)})) |
| 120 | 119 | ex 412 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝐼 → (∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅) → 𝑓 = (𝐼 × {(0g‘𝑅)}))) |
| 121 | 120 | con3d 152 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g‘𝑅)}) → ¬ ∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅))) |
| 122 | | df-ne 2940 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑖) ≠ (0g‘𝑅) ↔ ¬ (𝑓‘𝑖) = (0g‘𝑅)) |
| 123 | 122 | rexbii 3093 |
. . . . . . . . . 10
⊢
(∃𝑖 ∈
𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅) ↔ ∃𝑖 ∈ 𝐼 ¬ (𝑓‘𝑖) = (0g‘𝑅)) |
| 124 | | rexnal 3099 |
. . . . . . . . . 10
⊢
(∃𝑖 ∈
𝐼 ¬ (𝑓‘𝑖) = (0g‘𝑅) ↔ ¬ ∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅)) |
| 125 | 123, 124 | bitri 275 |
. . . . . . . . 9
⊢
(∃𝑖 ∈
𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅) ↔ ¬ ∀𝑖 ∈ 𝐼 (𝑓‘𝑖) = (0g‘𝑅)) |
| 126 | 121, 125 | imbitrrdi 252 |
. . . . . . . 8
⊢ (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g‘𝑅)}) → ∃𝑖 ∈ 𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅))) |
| 127 | 33, 126 | syl 17 |
. . . . . . 7
⊢ (𝑓:𝐼⟶(Base‘𝑅) → (¬ 𝑓 = (𝐼 × {(0g‘𝑅)}) → ∃𝑖 ∈ 𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅))) |
| 128 | 127 | adantl 481 |
. . . . . 6
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (¬ 𝑓 = (𝐼 × {(0g‘𝑅)}) → ∃𝑖 ∈ 𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅))) |
| 129 | | neldifsn 4791 |
. . . . . . . . . . 11
⊢ ¬
𝑖 ∈ (𝐼 ∖ {𝑖}) |
| 130 | | difss 4135 |
. . . . . . . . . . 11
⊢ (𝐼 ∖ {𝑖}) ⊆ 𝐼 |
| 131 | | diffi 9216 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ Fin → (𝐼 ∖ {𝑖}) ∈ Fin) |
| 132 | 131 | ad4antlr 733 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → (𝐼 ∖ {𝑖}) ∈ Fin) |
| 133 | | eleq2 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = ∅ → (𝑖 ∈ 𝑦 ↔ 𝑖 ∈ ∅)) |
| 134 | 133 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ∅ → (¬ 𝑖 ∈ 𝑦 ↔ ¬ 𝑖 ∈ ∅)) |
| 135 | | sseq1 4008 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ∅ → (𝑦 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼)) |
| 136 | 134, 135 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ∅ → ((¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼) ↔ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼))) |
| 137 | 136 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ∅ → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)))) |
| 138 | | mpteq1 5234 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = ∅ → (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ ∅ ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 139 | | mpt0 6709 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ∅ ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = ∅ |
| 140 | 138, 139 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = ∅ → (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = ∅) |
| 141 | 140 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = ∅ → (𝑅 Σg
(𝑛 ∈ 𝑦 ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg
∅)) |
| 142 | 100 | gsum0 18698 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 Σg
∅) = (0g‘𝑅) |
| 143 | 141, 142 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ∅ → (𝑅 Σg
(𝑛 ∈ 𝑦 ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (0g‘𝑅)) |
| 144 | 143 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ∅ → ((𝑅 Σg
(𝑛 ∈ 𝑦 ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘))) |
| 145 | 144 | ifeq1d 4544 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = ∅ → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 146 | 145 | mpoeq3dv 7513 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ∅ → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 147 | 146 | fveq2d 6909 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ∅ → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 148 | 147 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ∅ → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 149 | 137, 148 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ∅ → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 150 | | elequ2 2122 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → (𝑖 ∈ 𝑦 ↔ 𝑖 ∈ 𝑥)) |
| 151 | 150 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (¬ 𝑖 ∈ 𝑦 ↔ ¬ 𝑖 ∈ 𝑥)) |
| 152 | | sseq1 4008 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝐼 ↔ 𝑥 ⊆ 𝐼)) |
| 153 | 151, 152 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → ((¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼) ↔ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼))) |
| 154 | 153 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)))) |
| 155 | | mpteq1 5234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 156 | 155 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → (𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 157 | 156 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑥 → ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))) |
| 158 | 157 | ifeq1d 4544 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 159 | 158 | mpoeq3dv 7513 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 160 | 159 | fveq2d 6909 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 161 | 160 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 162 | 154, 161 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 163 | | eleq2 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (𝑖 ∈ 𝑦 ↔ 𝑖 ∈ (𝑥 ∪ {𝑧}))) |
| 164 | 163 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (¬ 𝑖 ∈ 𝑦 ↔ ¬ 𝑖 ∈ (𝑥 ∪ {𝑧}))) |
| 165 | | sseq1 4008 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦 ⊆ 𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) |
| 166 | 164, 165 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ((¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼) ↔ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))) |
| 167 | 166 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)))) |
| 168 | | mpteq1 5234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 169 | 168 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 170 | 169 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))) |
| 171 | 170 | ifeq1d 4544 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 172 | 171 | mpoeq3dv 7513 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 173 | 172 | fveq2d 6909 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 174 | 173 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 175 | 167, 174 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 ∪ {𝑧}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 176 | | eleq2 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (𝑖 ∈ 𝑦 ↔ 𝑖 ∈ (𝐼 ∖ {𝑖}))) |
| 177 | 176 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (¬ 𝑖 ∈ 𝑦 ↔ ¬ 𝑖 ∈ (𝐼 ∖ {𝑖}))) |
| 178 | | sseq1 4008 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (𝑦 ⊆ 𝐼 ↔ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) |
| 179 | 177, 178 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → ((¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼) ↔ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼))) |
| 180 | 179 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)))) |
| 181 | | mpteq1 5234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) |
| 182 | 181 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 183 | 182 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))) |
| 184 | 183 | ifeq1d 4544 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 185 | 184 | mpoeq3dv 7513 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 186 | 185 | fveq2d 6909 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 187 | 186 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 188 | 180, 187 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐼 ∖ {𝑖}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑦 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 189 | | fnov 7565 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 Fn (𝐼 × 𝐼) ↔ 𝑀 = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ (𝑗𝑀𝑘))) |
| 190 | 59, 189 | sylib 218 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ (𝑗𝑀𝑘))) |
| 191 | 190 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ (𝑗𝑀𝑘))) |
| 192 | | ringgrp 20236 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 193 | 4, 192 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ Field → 𝑅 ∈ Grp) |
| 194 | | oveq1 7439 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑗 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘)) |
| 195 | 194 | equcoms 2018 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑖 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘)) |
| 196 | 195 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑖 → ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)) = ((0g‘𝑅)(+g‘𝑅)(𝑗𝑀𝑘))) |
| 197 | | simp1l 1197 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Grp) |
| 198 | | fovcdm 7604 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅)) |
| 199 | 198 | 3adant1l 1176 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅)) |
| 200 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 201 | 10, 200, 100 | grplid 18986 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Grp ∧ (𝑗𝑀𝑘) ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 202 | 197, 199,
201 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → ((0g‘𝑅)(+g‘𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 203 | 196, 202 | sylan9eqr 2798 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) ∧ 𝑗 = 𝑖) → ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 204 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) ∧ ¬ 𝑗 = 𝑖) → (𝑗𝑀𝑘) = (𝑗𝑀𝑘)) |
| 205 | 203, 204 | ifeqda 4561 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 206 | 205 | mpoeq3dva 7511 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ (𝑗𝑀𝑘))) |
| 207 | 193, 206 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ (𝑗𝑀𝑘))) |
| 208 | 191, 207 | eqtr4d 2779 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 209 | 208 | fveq2d 6909 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 210 | 209 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((0g‘𝑅)(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 211 | | elun1 4181 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ 𝑥 → 𝑖 ∈ (𝑥 ∪ {𝑧})) |
| 212 | 211 | con3i 154 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑖 ∈ (𝑥 ∪ {𝑧}) → ¬ 𝑖 ∈ 𝑥) |
| 213 | | ssun1 4177 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑧}) |
| 214 | | sstr 3991 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥 ⊆ 𝐼) |
| 215 | 213, 214 | mpan 690 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → 𝑥 ⊆ 𝐼) |
| 216 | 212, 215 | anim12i 613 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) |
| 217 | 216 | anim2i 617 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼))) |
| 218 | 217 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼))) |
| 219 | | velsn 4641 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧) |
| 220 | | elun2 4182 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ {𝑧} → 𝑖 ∈ (𝑥 ∪ {𝑧})) |
| 221 | 219, 220 | sylbir 235 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑧 → 𝑖 ∈ (𝑥 ∪ {𝑧})) |
| 222 | 221 | necon3bi 2966 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑖 ∈ (𝑥 ∪ {𝑧}) → 𝑖 ≠ 𝑧) |
| 223 | 222 | anim1i 615 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) |
| 224 | | ringcmn 20280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 225 | 4, 224 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑅 ∈ Field → 𝑅 ∈ CMnd) |
| 226 | 225 | ad7antr 738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ CMnd) |
| 227 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin) |
| 228 | 215 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥 ⊆ 𝐼) |
| 229 | | ssfi 9214 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐼 ∈ Fin ∧ 𝑥 ⊆ 𝐼) → 𝑥 ∈ Fin) |
| 230 | 227, 228,
229 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin) |
| 231 | 230 | ad5ant13 756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → 𝑥 ∈ Fin) |
| 232 | 215 | sselda 3982 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑥 ∪ {𝑧}) ⊆ 𝐼 ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ 𝐼) |
| 233 | 232 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ 𝐼) |
| 234 | 233 | ad4ant24 754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ 𝐼) |
| 235 | 4 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 236 | 2 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing) |
| 237 | | ffvelcdm 7100 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼) → (𝑓‘𝑖) ∈ (Base‘𝑅)) |
| 238 | 237 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑅 ∈ DivRing ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅))) |
| 239 | 238 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) → (𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅))) |
| 240 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(invr‘𝑅) = (invr‘𝑅) |
| 241 | 10, 100, 240 | drnginvrcl 20754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 242 | 241 | 3expa 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅)) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 243 | 239, 242 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 244 | 243 | anasss 466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 245 | 236, 244 | sylanl1 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 246 | 245 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 247 | 43 | ad5ant25 761 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → (𝑓‘𝑛) ∈ (Base‘𝑅)) |
| 248 | | simp-4r 783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) |
| 249 | 76 | 3expa 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅)) |
| 250 | 249 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅)) |
| 251 | 248, 250 | sylanl1 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅)) |
| 252 | 235, 247,
251, 78 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) |
| 253 | 10, 47 | ringcl 20248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅) ∧ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 254 | 235, 246,
252, 253 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 255 | 254 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 256 | 234, 255 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝑥) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 257 | 256 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 ∈ 𝑥) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 258 | | vex 3483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 𝑧 ∈ V |
| 259 | 258 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → 𝑧 ∈ V) |
| 260 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → ¬ 𝑧 ∈ 𝑥) |
| 261 | | ssun2 4178 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ {𝑧} ⊆ (𝑥 ∪ {𝑧}) |
| 262 | | sstr 3991 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (({𝑧} ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → {𝑧} ⊆ 𝐼) |
| 263 | 261, 262 | mpan 690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → {𝑧} ⊆ 𝐼) |
| 264 | 258 | snss 4784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ 𝐼 ↔ {𝑧} ⊆ 𝐼) |
| 265 | 263, 264 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → 𝑧 ∈ 𝐼) |
| 266 | 265 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑧 ∈ 𝐼) |
| 267 | 4 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 268 | 4 | ad5antr 734 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 269 | 245 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 270 | | ffvelcdm 7100 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑧 ∈ 𝐼) → (𝑓‘𝑧) ∈ (Base‘𝑅)) |
| 271 | 270 | ad4ant24 754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) → (𝑓‘𝑧) ∈ (Base‘𝑅)) |
| 272 | 10, 47 | ringcl 20248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅) ∧ (𝑓‘𝑧) ∈ (Base‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧)) ∈ (Base‘𝑅)) |
| 273 | 268, 269,
271, 272 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧)) ∈ (Base‘𝑅)) |
| 274 | 273 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧)) ∈ (Base‘𝑅)) |
| 275 | | fovcdm 7604 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅)) |
| 276 | 275 | 3expa 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅)) |
| 277 | 248, 276 | sylanl1 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅)) |
| 278 | 10, 47 | ringcl 20248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑅 ∈ Ring ∧
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧)) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅)) |
| 279 | 267, 274,
277, 278 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅)) |
| 280 | 266, 279 | sylanl2 681 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅)) |
| 281 | 280 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅)) |
| 282 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 = 𝑧 → (𝑓‘𝑛) = (𝑓‘𝑧)) |
| 283 | | oveq1 7439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 = 𝑧 → (𝑛𝑀𝑘) = (𝑧𝑀𝑘)) |
| 284 | 282, 283 | oveq12d 7450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 = 𝑧 → ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) = ((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘))) |
| 285 | 284 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 𝑧 → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 286 | 245 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 287 | 270 | ad5ant24 760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑧) ∈ (Base‘𝑅)) |
| 288 | 10, 47 | ringass 20251 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Ring ∧
(((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅) ∧ (𝑓‘𝑧) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 289 | 267, 286,
287, 277, 288 | syl13anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 290 | 289 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑧 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘))) = ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))) |
| 291 | 266, 290 | sylanl2 681 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑧)(.r‘𝑅)(𝑧𝑀𝑘))) = ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))) |
| 292 | 285, 291 | sylan9eqr 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 = 𝑧) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))) |
| 293 | 292 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 = 𝑧) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))) |
| 294 | 10, 200, 226, 231, 257, 259, 260, 281, 293 | gsumunsnd 19977 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 295 | 294 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))(+g‘𝑅)(𝑖𝑀𝑘))) |
| 296 | | ringabl 20279 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) |
| 297 | 4, 296 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑅 ∈ Field → 𝑅 ∈ Abel) |
| 298 | 297 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Abel) |
| 299 | 225 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ CMnd) |
| 300 | | vex 3483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 𝑥 ∈ V |
| 301 | 300 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑥 ∈ V) |
| 302 | | ssel2 3977 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑥 ⊆ 𝐼 ∧ 𝑛 ∈ 𝑥) → 𝑛 ∈ 𝐼) |
| 303 | 302, 254 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑥 ⊆ 𝐼 ∧ 𝑛 ∈ 𝑥)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 304 | 303 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑛 ∈ 𝑥) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅)) |
| 305 | 304 | fmpttd 7134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ⊆ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅)) |
| 306 | 305 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅)) |
| 307 | | ovex 7465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) ∈ V |
| 308 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) |
| 309 | 307, 308 | fnmpti 6710 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝑥 |
| 310 | 309 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐼 ∈ Fin ∧ 𝑥 ⊆ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝑥) |
| 311 | | fvexd 6920 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝐼 ∈ Fin ∧ 𝑥 ⊆ 𝐼) → (0g‘𝑅) ∈ V) |
| 312 | 310, 229,
311 | fndmfifsupp 9419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝐼 ∈ Fin ∧ 𝑥 ⊆ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘𝑅)) |
| 313 | 312 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑥 ⊆ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘𝑅)) |
| 314 | 313 | ad5ant14 757 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘𝑅)) |
| 315 | 10, 100, 299, 301, 306, 314 | gsumcl 19934 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅)) |
| 316 | 215, 315 | sylanl2 681 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅)) |
| 317 | 265, 279 | sylanl2 681 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅)) |
| 318 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) |
| 319 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → 𝑖 ∈ 𝐼) |
| 320 | 318, 319 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼)) |
| 321 | 320 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼)) |
| 322 | | fovcdm 7604 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 323 | 322 | 3expa 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 324 | 321, 323 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 325 | 10, 200, 298, 316, 317, 324 | abl32 19822 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))(+g‘𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 326 | 325 | adantlrl 720 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))(+g‘𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 327 | 326 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))(+g‘𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 328 | 295, 327 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘)))) |
| 329 | 328 | ifeq1d 4544 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) |
| 330 | 329 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) |
| 331 | 330 | mpoeq3dva 7511 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) |
| 332 | 331 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))) |
| 333 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅) |
| 334 | 1 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑅 ∈ Field → 𝑅 ∈ CRing) |
| 335 | 334 | ad5antr 734 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ CRing) |
| 336 | | simp-4r 783 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼 ∈ Fin) |
| 337 | 193 | ad6antr 736 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Grp) |
| 338 | 320 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼)) |
| 339 | 338, 323 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 340 | 10, 200 | grpcl 18960 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∈ Grp ∧ (𝑅 Σg
(𝑛 ∈ 𝑥 ↦
(((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅)) |
| 341 | 337, 315,
339, 340 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑥 ⊆ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅)) |
| 342 | 228, 341 | sylanl2 681 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅)) |
| 343 | 248, 266 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧 ∈ 𝐼)) |
| 344 | 343, 276 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 ∈ 𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅)) |
| 345 | | simp-5r 785 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) |
| 346 | 345, 198 | syl3an1 1163 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅)) |
| 347 | 266, 273 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧)) ∈ (Base‘𝑅)) |
| 348 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖 ∈ 𝐼) |
| 349 | 265 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧 ∈ 𝐼) |
| 350 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖 ≠ 𝑧) |
| 351 | 333, 10, 200, 47, 335, 336, 342, 344, 346, 347, 348, 349, 350 | mdetero 22617 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))) |
| 352 | 351 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))(+g‘𝑅)((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑧))(.r‘𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))) |
| 353 | 332, 352 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))) |
| 354 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑧𝑀𝑘)) |
| 355 | | oveq1 7439 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = 𝑧 → (𝑗𝑀𝑘) = (𝑧𝑀𝑘)) |
| 356 | 354, 355 | eqtr4d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 357 | | iffalse 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘)) |
| 358 | 356, 357 | pm2.61i 182 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) |
| 359 | | ifeq2 4529 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 360 | 358, 359 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 361 | 360 | mpoeq3ia 7512 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 362 | 361 | fveq2i 6908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 363 | | ifeq2 4529 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 364 | 358, 363 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 365 | 364 | mpoeq3ia 7512 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) |
| 366 | 365 | fveq2i 6908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) |
| 367 | 353, 362,
366 | 3eqtr3g 2799 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑖 ≠ 𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 368 | 223, 367 | sylanl2 681 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 369 | 368 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 370 | 369 | biimprd 248 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 371 | 218, 370 | embantd 59 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧 ∈ 𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 372 | 371 | expcom 413 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑧 ∈ 𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 373 | 372 | com23 86 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑧 ∈ 𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 374 | 373 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ 𝑥 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))) |
| 375 | 149, 162,
175, 188, 210, 374 | findcard2s 9206 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∖ {𝑖}) ∈ Fin → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))) |
| 376 | 132, 375 | mpcom 38 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 377 | 129, 130,
376 | mpanr12 705 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 378 | 377 | adantlr 715 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) |
| 379 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ 𝐼 = 𝐼 |
| 380 | | fconstmpt 5746 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ×
{(0g‘𝑅)})
= (𝑘 ∈ 𝐼 ↦
(0g‘𝑅)) |
| 381 | 380 | eqeq2i 2749 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ↔ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑘 ∈ 𝐼 ↦ (0g‘𝑅))) |
| 382 | | ovex 7465 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 Σg
(𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) ∈ V |
| 383 | 382 | rgenw 3064 |
. . . . . . . . . . . . . . . . 17
⊢
∀𝑘 ∈
𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) ∈ V |
| 384 | | mpteqb 7034 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑘 ∈
𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) ∈ V → ((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑘 ∈ 𝐼 ↦ (0g‘𝑅)) ↔ ∀𝑘 ∈ 𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅))) |
| 385 | 383, 384 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝑘 ∈ 𝐼 ↦ (0g‘𝑅)) ↔ ∀𝑘 ∈ 𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) |
| 386 | 381, 385 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ↔ ∀𝑘 ∈ 𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) |
| 387 | 225 | ad5antr 734 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ CMnd) |
| 388 | | simp-4r 783 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → 𝐼 ∈ Fin) |
| 389 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) |
| 390 | 307, 389 | fnmpti 6710 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝐼 |
| 391 | 390 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐼 ∈ Fin → (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) Fn 𝐼) |
| 392 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) |
| 393 | | fvexd 6920 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐼 ∈ Fin →
(0g‘𝑅)
∈ V) |
| 394 | 391, 392,
393 | fndmfifsupp 9419 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐼 ∈ Fin → (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘𝑅)) |
| 395 | 394 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘𝑅)) |
| 396 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
| 397 | 320, 323 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 398 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑖 → (𝑓‘𝑛) = (𝑓‘𝑖)) |
| 399 | | oveq1 7439 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑖 → (𝑛𝑀𝑘) = (𝑖𝑀𝑘)) |
| 400 | 398, 399 | oveq12d 7450 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑖 → ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) = ((𝑓‘𝑖)(.r‘𝑅)(𝑖𝑀𝑘))) |
| 401 | 400 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑖 → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑖)(.r‘𝑅)(𝑖𝑀𝑘)))) |
| 402 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ Field) |
| 403 | 2, 237 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑅 ∈ Field ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅))) |
| 404 | 403 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) → (𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅))) |
| 405 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 406 | 10, 100, 47, 405, 240 | drnginvrl 20757 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖)) = (1r‘𝑅)) |
| 407 | 406 | 3expa 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑅 ∈ DivRing ∧ (𝑓‘𝑖) ∈ (Base‘𝑅)) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖)) = (1r‘𝑅)) |
| 408 | 404, 407 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ (𝑓‘𝑖) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖)) = (1r‘𝑅)) |
| 409 | 408 | anasss 466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖)) = (1r‘𝑅)) |
| 410 | 409 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖))(.r‘𝑅)(𝑖𝑀𝑘)) = ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘))) |
| 411 | 402, 410 | sylanl1 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖))(.r‘𝑅)(𝑖𝑀𝑘)) = ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘))) |
| 412 | 411 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖))(.r‘𝑅)(𝑖𝑀𝑘)) = ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘))) |
| 413 | 4 | ad5antr 734 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 414 | 245 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) |
| 415 | 237 | ad2ant2lr 748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (𝑓‘𝑖) ∈ (Base‘𝑅)) |
| 416 | 415 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑖) ∈ (Base‘𝑅)) |
| 417 | 10, 47 | ringass 20251 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∈ Ring ∧
(((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅) ∧ (𝑓‘𝑖) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖))(.r‘𝑅)(𝑖𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑖)(.r‘𝑅)(𝑖𝑀𝑘)))) |
| 418 | 413, 414,
416, 397, 417 | syl13anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑓‘𝑖))(.r‘𝑅)(𝑖𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑖)(.r‘𝑅)(𝑖𝑀𝑘)))) |
| 419 | 4 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑅 ∈ Ring) |
| 420 | 419 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 421 | 322 | 3adant1l 1176 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅)) |
| 422 | 10, 47, 405 | ringlidm 20267 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘)) |
| 423 | 420, 421,
422 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘)) |
| 424 | 423 | ad5ant145 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘)) |
| 425 | 424 | adantlrr 721 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((1r‘𝑅)(.r‘𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘)) |
| 426 | 412, 418,
425 | 3eqtr3d 2784 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑖)(.r‘𝑅)(𝑖𝑀𝑘))) = (𝑖𝑀𝑘)) |
| 427 | 401, 426 | sylan9eqr 2798 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ 𝑛 = 𝑖) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = (𝑖𝑀𝑘)) |
| 428 | 10, 200, 387, 388, 395, 254, 396, 397, 427 | gsumdifsnd 19980 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑅 Σg (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘))) |
| 429 | | ovex 7465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)) ∈ V |
| 430 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) = (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) |
| 431 | 429, 430 | fnmpti 6710 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) Fn 𝐼 |
| 432 | 431 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐼 ∈ Fin → (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) Fn 𝐼) |
| 433 | 432, 392,
393 | fndmfifsupp 9419 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐼 ∈ Fin → (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) finSupp (0g‘𝑅)) |
| 434 | 433 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))) finSupp (0g‘𝑅)) |
| 435 | 10, 100, 47, 413, 388, 414, 252, 434 | gsummulc2 20315 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → (𝑅 Σg (𝑛 ∈ 𝐼 ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 436 | 428, 435 | eqtr3d 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 437 | 436 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))) |
| 438 | | oveq2 7440 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 Σg
(𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(0g‘𝑅))) |
| 439 | 438 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(0g‘𝑅))) |
| 440 | 4 | ad4antr 732 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝑅 ∈ Ring) |
| 441 | 10, 47, 100 | ringrz 20292 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑅)‘(𝑓‘𝑖)) ∈ (Base‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 442 | 440, 245,
441 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 443 | 442 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 444 | 437, 439,
443 | 3eqtrd 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)) = (0g‘𝑅)) |
| 445 | 444 | ifeq1d 4544 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑅 ∈
Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) ∧ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘))) |
| 446 | 445 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑘 ∈ 𝐼) → ((𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 447 | 446 | ralimdva 3166 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (∀𝑘 ∈ 𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅) → ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 448 | 447 | imp 406 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ ∀𝑘 ∈ 𝐼 (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))) = (0g‘𝑅)) → ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘))) |
| 449 | 386, 448 | sylan2b 594 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) → ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘))) |
| 450 | 449, 379 | jctil 519 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) → (𝐼 = 𝐼 ∧ ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 451 | 450 | ralrimivw 3149 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) → ∀𝑗 ∈ 𝐼 (𝐼 = 𝐼 ∧ ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 452 | | mpoeq123 7506 |
. . . . . . . . . . . 12
⊢ ((𝐼 = 𝐼 ∧ ∀𝑗 ∈ 𝐼 (𝐼 = 𝐼 ∧ ∀𝑘 ∈ 𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 453 | 379, 451,
452 | sylancr 587 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 454 | 453 | an32s 652 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) |
| 455 | 454 | fveq2d 6909 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr‘𝑅)‘(𝑓‘𝑖))(.r‘𝑅)((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘)))))(+g‘𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘))))) |
| 456 | 334 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝑅 ∈ CRing) |
| 457 | | simplr 768 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝐼 ∈ Fin) |
| 458 | | simpllr 775 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) |
| 459 | 458, 198 | syl3an1 1163 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) ∧ 𝑗 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅)) |
| 460 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → 𝑖 ∈ 𝐼) |
| 461 | 333, 10, 100, 456, 457, 459, 460 | mdetr0 22612 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) = (0g‘𝑅)) |
| 462 | 461 | ad4ant14 752 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗 ∈ 𝐼, 𝑘 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (0g‘𝑅), (𝑗𝑀𝑘)))) = (0g‘𝑅)) |
| 463 | 378, 455,
462 | 3eqtrd 2780 |
. . . . . . . 8
⊢
((((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) ∧ (𝑖 ∈ 𝐼 ∧ (𝑓‘𝑖) ≠ (0g‘𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅)) |
| 464 | 463 | rexlimdvaa 3155 |
. . . . . . 7
⊢
(((((𝑅 ∈ Field
∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)})) → (∃𝑖 ∈ 𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 465 | 464 | expimpd 453 |
. . . . . 6
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ∃𝑖 ∈ 𝐼 (𝑓‘𝑖) ≠ (0g‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 466 | 128, 465 | sylan2d 605 |
. . . . 5
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 467 | 32, 466 | sylan2 593 |
. . . 4
⊢ ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 468 | 467 | rexlimdva 3154 |
. . 3
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → (∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 469 | 9, 468 | sylan2 593 |
. 2
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(∃𝑓 ∈
((Base‘𝑅)
↑m 𝐼)((𝑘 ∈ 𝐼 ↦ (𝑅 Σg (𝑛 ∈ 𝐼 ↦ ((𝑓‘𝑛)(.r‘𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g‘𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g‘𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |
| 470 | 115, 469 | sylbid 240 |
1
⊢ (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) →
(¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g‘𝑅))) |