Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matunitlindflem1 Structured version   Visualization version   GIF version

Theorem matunitlindflem1 37624
Description: One direction of matunitlindf 37626. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
matunitlindflem1 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))

Proof of Theorem matunitlindflem1
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑖 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfld 20741 . . . . 5 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
21simplbi 497 . . . 4 (𝑅 ∈ Field → 𝑅 ∈ DivRing)
3 drngring 20737 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
42, 3syl 17 . . 3 (𝑅 ∈ Field → 𝑅 ∈ Ring)
5 eqid 2736 . . . . . . . . 9 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
65frlmlmod 21770 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑅 freeLMod 𝐼) ∈ LMod)
76adantlr 715 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑅 freeLMod 𝐼) ∈ LMod)
8 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → 𝐼 ∈ (Fin ∖ {∅}))
9 eldifi 4130 . . . . . . . . . 10 (𝐼 ∈ (Fin ∖ {∅}) → 𝐼 ∈ Fin)
10 eqid 2736 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
115, 10frlmfibas 21783 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
129, 11sylan2 593 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)))
13 fvex 6918 . . . . . . . . . 10 (Base‘𝑅) ∈ V
14 curf 37606 . . . . . . . . . 10 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ (Base‘𝑅) ∈ V) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
1513, 14mp3an3 1451 . . . . . . . . 9 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼))
16 feq3 6717 . . . . . . . . . 10 (((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) → (curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼) ↔ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))))
1716biimpa 476 . . . . . . . . 9 ((((Base‘𝑅) ↑m 𝐼) = (Base‘(𝑅 freeLMod 𝐼)) ∧ curry 𝑀:𝐼⟶((Base‘𝑅) ↑m 𝐼)) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
1812, 15, 17syl2an 596 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅}))) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
1918anandirs 679 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼)))
20 eqid 2736 . . . . . . . 8 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
21 eqid 2736 . . . . . . . 8 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
22 eqid 2736 . . . . . . . 8 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
23 eqid 2736 . . . . . . . 8 (0g‘(𝑅 freeLMod 𝐼)) = (0g‘(𝑅 freeLMod 𝐼))
24 eqid 2736 . . . . . . . 8 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
25 eqid 2736 . . . . . . . 8 (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))
2620, 21, 22, 23, 24, 25islindf4 21859 . . . . . . 7 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝐼 ∈ (Fin ∖ {∅}) ∧ curry 𝑀:𝐼⟶(Base‘(𝑅 freeLMod 𝐼))) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
277, 8, 19, 26syl3anc 1372 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
285frlmsca 21774 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
2928fvoveq1d 7454 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (Base‘(𝑅 freeLMod 𝐼)) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
3012, 29eqtrd 2776 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑m 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
3130adantlr 715 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((Base‘𝑅) ↑m 𝐼) = (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼)))
32 elmapi 8890 . . . . . . . . . 10 (𝑓 ∈ ((Base‘𝑅) ↑m 𝐼) → 𝑓:𝐼⟶(Base‘𝑅))
33 ffn 6735 . . . . . . . . . . . . . . 15 (𝑓:𝐼⟶(Base‘𝑅) → 𝑓 Fn 𝐼)
3433adantl 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑓 Fn 𝐼)
3519ffnd 6736 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → curry 𝑀 Fn 𝐼)
3635adantr 480 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → curry 𝑀 Fn 𝐼)
37 simplr 768 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ (Fin ∖ {∅}))
38 inidm 4226 . . . . . . . . . . . . . 14 (𝐼𝐼) = 𝐼
39 eqidd 2737 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑓𝑛) = (𝑓𝑛))
40 eqidd 2737 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) = (curry 𝑀𝑛))
4134, 36, 37, 37, 38, 39, 40offval 7707 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛𝐼 ↦ ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛))))
42 simpllr 775 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → 𝐼 ∈ (Fin ∖ {∅}))
43 ffvelcdm 7100 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
4443adantll 714 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
4519ffvelcdmda 7103 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼)))
4645adantlr 715 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ (Base‘(𝑅 freeLMod 𝐼)))
47 eqid 2736 . . . . . . . . . . . . . . . 16 (.r𝑅) = (.r𝑅)
485, 20, 10, 42, 44, 46, 22, 47frlmvscafval 21787 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛)) = ((𝐼 × {(𝑓𝑛)}) ∘f (.r𝑅)(curry 𝑀𝑛)))
49 fvex 6918 . . . . . . . . . . . . . . . . 17 (𝑓𝑛) ∈ V
50 fnconstg 6795 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ∈ V → (𝐼 × {(𝑓𝑛)}) Fn 𝐼)
5149, 50mp1i 13 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝐼 × {(𝑓𝑛)}) Fn 𝐼)
5215ffvelcdmda 7103 . . . . . . . . . . . . . . . . . . 19 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) ∈ ((Base‘𝑅) ↑m 𝐼))
53 elmapfn 8906 . . . . . . . . . . . . . . . . . . 19 ((curry 𝑀𝑛) ∈ ((Base‘𝑅) ↑m 𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5452, 53syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5554adantlll 718 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5655adantlr 715 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (curry 𝑀𝑛) Fn 𝐼)
5749fvconst2 7225 . . . . . . . . . . . . . . . . 17 (𝑘𝐼 → ((𝐼 × {(𝑓𝑛)})‘𝑘) = (𝑓𝑛))
5857adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((𝐼 × {(𝑓𝑛)})‘𝑘) = (𝑓𝑛))
59 ffn 6735 . . . . . . . . . . . . . . . . . . . 20 (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 Fn (𝐼 × 𝐼))
6059anim2i 617 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
6160ancoms 458 . . . . . . . . . . . . . . . . . 18 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
6261ad4ant23 753 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)))
63 curfv 37608 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 Fn (𝐼 × 𝐼) ∧ 𝑛𝐼𝑘𝐼) ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
64633exp1 1352 . . . . . . . . . . . . . . . . . . 19 (𝑀 Fn (𝐼 × 𝐼) → (𝑛𝐼 → (𝑘𝐼 → (𝐼 ∈ (Fin ∖ {∅}) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘)))))
6564com4r 94 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (Fin ∖ {∅}) → (𝑀 Fn (𝐼 × 𝐼) → (𝑛𝐼 → (𝑘𝐼 → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘)))))
6665imp41 425 . . . . . . . . . . . . . . . . 17 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝑀 Fn (𝐼 × 𝐼)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
6762, 66sylanl1 680 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((curry 𝑀𝑛)‘𝑘) = (𝑛𝑀𝑘))
6851, 56, 42, 42, 38, 58, 67offval 7707 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝐼 × {(𝑓𝑛)}) ∘f (.r𝑅)(curry 𝑀𝑛)) = (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
6948, 68eqtrd 2776 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛)) = (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
7069mpteq2dva 5241 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛𝐼 ↦ ((𝑓𝑛)( ·𝑠 ‘(𝑅 freeLMod 𝐼))(curry 𝑀𝑛))) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
7141, 70eqtrd 2776 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
7271oveq2d 7448 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = ((𝑅 freeLMod 𝐼) Σg (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
73 simplll 774 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
74 simp-4l 782 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
7543ad4ant23 753 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
76 fovcdm 7604 . . . . . . . . . . . . . . . . 17 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛𝐼𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
7776ad5ant245 1362 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
7810, 47ringcl 20248 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑓𝑛) ∈ (Base‘𝑅) ∧ (𝑛𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
7974, 75, 77, 78syl3anc 1372 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
8079fmpttd 7134 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))
8180adantllr 719 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅))
82 elmapg 8880 . . . . . . . . . . . . . . . . 17 (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8313, 82mpan 690 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8483adantl 481 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅)))
8512eleq2d 2826 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8684, 85bitr3d 281 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8786ad5ant13 756 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → ((𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))):𝐼⟶(Base‘𝑅) ↔ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼))))
8881, 87mpbid 232 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑛𝐼) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘(𝑅 freeLMod 𝐼)))
89 mptexg 7242 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (Fin ∖ {∅}) → (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V)
9089ralrimivw 3149 . . . . . . . . . . . . . . 15 (𝐼 ∈ (Fin ∖ {∅}) → ∀𝑛𝐼 (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V)
91 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
9291fnmpt 6707 . . . . . . . . . . . . . . 15 (∀𝑛𝐼 (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
9390, 92syl 17 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
94 fvexd 6920 . . . . . . . . . . . . . 14 (𝐼 ∈ (Fin ∖ {∅}) → (0g‘(𝑅 freeLMod 𝐼)) ∈ V)
9593, 9, 94fndmfifsupp 9419 . . . . . . . . . . . . 13 (𝐼 ∈ (Fin ∖ {∅}) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
9695ad2antlr 727 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g‘(𝑅 freeLMod 𝐼)))
975, 20, 23, 37, 37, 73, 88, 96frlmgsum 21793 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → ((𝑅 freeLMod 𝐼) Σg (𝑛𝐼 ↦ (𝑘𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
9872, 97eqtr2d 2777 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
9932, 98sylan2 593 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)))
100 eqid 2736 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1015, 100frlm0 21775 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 × {(0g𝑅)}) = (0g‘(𝑅 freeLMod 𝐼)))
102101ad4ant13 751 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝐼 × {(0g𝑅)}) = (0g‘(𝑅 freeLMod 𝐼)))
10399, 102eqeq12d 2752 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ ((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼))))
10428fveq2d 6909 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (0g𝑅) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼))))
105104sneqd 4637 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → {(0g𝑅)} = {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})
106105xpeq2d 5714 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝐼 × {(0g𝑅)}) = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))
107106eqeq2d 2747 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (Fin ∖ {∅})) → (𝑓 = (𝐼 × {(0g𝑅)}) ↔ 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))
108107ad4ant13 751 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (𝑓 = (𝐼 × {(0g𝑅)}) ↔ 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})))
109103, 108imbi12d 344 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})) ↔ (((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
11031, 109raleqbidva 3331 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})) ↔ ∀𝑓 ∈ (Base‘((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐼))(((𝑅 freeLMod 𝐼) Σg (𝑓f ( ·𝑠 ‘(𝑅 freeLMod 𝐼))curry 𝑀)) = (0g‘(𝑅 freeLMod 𝐼)) → 𝑓 = (𝐼 × {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}))))
11127, 110bitr4d 282 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)}))))
112111notbid 318 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)}))))
113 rexanali 3101 . . . 4 (∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) ↔ ¬ ∀𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) → 𝑓 = (𝐼 × {(0g𝑅)})))
114112, 113bitr4di 289 . . 3 (((𝑅 ∈ Ring ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)}))))
1154, 114sylanl1 680 . 2 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) ↔ ∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)}))))
116 fconstfv 7233 . . . . . . . . . . . 12 (𝑓:𝐼⟶{(0g𝑅)} ↔ (𝑓 Fn 𝐼 ∧ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)))
117 fvex 6918 . . . . . . . . . . . . 13 (0g𝑅) ∈ V
118117fconst2 7226 . . . . . . . . . . . 12 (𝑓:𝐼⟶{(0g𝑅)} ↔ 𝑓 = (𝐼 × {(0g𝑅)}))
119116, 118sylbb1 237 . . . . . . . . . . 11 ((𝑓 Fn 𝐼 ∧ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)) → 𝑓 = (𝐼 × {(0g𝑅)}))
120119ex 412 . . . . . . . . . 10 (𝑓 Fn 𝐼 → (∀𝑖𝐼 (𝑓𝑖) = (0g𝑅) → 𝑓 = (𝐼 × {(0g𝑅)})))
121120con3d 152 . . . . . . . . 9 (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅)))
122 df-ne 2940 . . . . . . . . . . 11 ((𝑓𝑖) ≠ (0g𝑅) ↔ ¬ (𝑓𝑖) = (0g𝑅))
123122rexbii 3093 . . . . . . . . . 10 (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) ↔ ∃𝑖𝐼 ¬ (𝑓𝑖) = (0g𝑅))
124 rexnal 3099 . . . . . . . . . 10 (∃𝑖𝐼 ¬ (𝑓𝑖) = (0g𝑅) ↔ ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅))
125123, 124bitri 275 . . . . . . . . 9 (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) ↔ ¬ ∀𝑖𝐼 (𝑓𝑖) = (0g𝑅))
126121, 125imbitrrdi 252 . . . . . . . 8 (𝑓 Fn 𝐼 → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
12733, 126syl 17 . . . . . . 7 (𝑓:𝐼⟶(Base‘𝑅) → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
128127adantl 481 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (¬ 𝑓 = (𝐼 × {(0g𝑅)}) → ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)))
129 neldifsn 4791 . . . . . . . . . . 11 ¬ 𝑖 ∈ (𝐼 ∖ {𝑖})
130 difss 4135 . . . . . . . . . . 11 (𝐼 ∖ {𝑖}) ⊆ 𝐼
131 diffi 9216 . . . . . . . . . . . . 13 (𝐼 ∈ Fin → (𝐼 ∖ {𝑖}) ∈ Fin)
132131ad4antlr 733 . . . . . . . . . . . 12 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → (𝐼 ∖ {𝑖}) ∈ Fin)
133 eleq2 2829 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → (𝑖𝑦𝑖 ∈ ∅))
134133notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ ∅))
135 sseq1 4008 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (𝑦𝐼 ↔ ∅ ⊆ 𝐼))
136134, 135anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)))
137136anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = ∅ → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼))))
138 mpteq1 5234 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = ∅ → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ ∅ ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
139 mpt0 6709 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ∅ ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = ∅
140138, 139eqtrdi 2792 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = ∅ → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = ∅)
141140oveq2d 7448 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ∅ → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg ∅))
142100gsum0 18698 . . . . . . . . . . . . . . . . . . . 20 (𝑅 Σg ∅) = (0g𝑅)
143141, 142eqtrdi 2792 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ∅ → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (0g𝑅))
144143oveq1d 7447 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)))
145144ifeq1d 4544 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
146145mpoeq3dv 7513 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
147146fveq2d 6909 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
148147eqeq2d 2747 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
149137, 148imbi12d 344 . . . . . . . . . . . . 13 (𝑦 = ∅ → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
150 elequ2 2122 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑖𝑦𝑖𝑥))
151150notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (¬ 𝑖𝑦 ↔ ¬ 𝑖𝑥))
152 sseq1 4008 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑦𝐼𝑥𝐼))
153151, 152anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖𝑥𝑥𝐼)))
154153anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼))))
155 mpteq1 5234 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
156155oveq2d 7448 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
157156oveq1d 7447 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
158157ifeq1d 4544 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
159158mpoeq3dv 7513 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
160159fveq2d 6909 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
161160eqeq2d 2747 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
162154, 161imbi12d 344 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
163 eleq2 2829 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑖𝑦𝑖 ∈ (𝑥 ∪ {𝑧})))
164163notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ (𝑥 ∪ {𝑧})))
165 sseq1 4008 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
166164, 165anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 ∪ {𝑧}) → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)))
167166anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 ∪ {𝑧}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))))
168 mpteq1 5234 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
169168oveq2d 7448 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
170169oveq1d 7447 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
171170ifeq1d 4544 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 ∪ {𝑧}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
172171mpoeq3dv 7513 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
173172fveq2d 6909 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
174173eqeq2d 2747 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 ∪ {𝑧}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
175167, 174imbi12d 344 . . . . . . . . . . . . 13 (𝑦 = (𝑥 ∪ {𝑧}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
176 eleq2 2829 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑖𝑦𝑖 ∈ (𝐼 ∖ {𝑖})))
177176notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (¬ 𝑖𝑦 ↔ ¬ 𝑖 ∈ (𝐼 ∖ {𝑖})))
178 sseq1 4008 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑦𝐼 ↔ (𝐼 ∖ {𝑖}) ⊆ 𝐼))
179177, 178anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = (𝐼 ∖ {𝑖}) → ((¬ 𝑖𝑦𝑦𝐼) ↔ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)))
180179anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = (𝐼 ∖ {𝑖}) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) ↔ (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼))))
181 mpteq1 5234 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))
182181oveq2d 7448 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
183182oveq1d 7447 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐼 ∖ {𝑖}) → ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
184183ifeq1d 4544 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐼 ∖ {𝑖}) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
185184mpoeq3dv 7513 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐼 ∖ {𝑖}) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
186185fveq2d 6909 . . . . . . . . . . . . . . 15 (𝑦 = (𝐼 ∖ {𝑖}) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
187186eqeq2d 2747 . . . . . . . . . . . . . 14 (𝑦 = (𝐼 ∖ {𝑖}) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
188180, 187imbi12d 344 . . . . . . . . . . . . 13 (𝑦 = (𝐼 ∖ {𝑖}) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑦𝑦𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑦 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) ↔ ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
189 fnov 7565 . . . . . . . . . . . . . . . . . 18 (𝑀 Fn (𝐼 × 𝐼) ↔ 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
19059, 189sylib 218 . . . . . . . . . . . . . . . . 17 (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
191190adantl 481 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
192 ringgrp 20236 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1934, 192syl 17 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Field → 𝑅 ∈ Grp)
194 oveq1 7439 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘))
195194equcoms 2018 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (𝑖𝑀𝑘) = (𝑗𝑀𝑘))
196195oveq2d 7448 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)) = ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)))
197 simp1l 1197 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → 𝑅 ∈ Grp)
198 fovcdm 7604 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
1991983adant1l 1176 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
200 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (+g𝑅) = (+g𝑅)
20110, 200, 100grplid 18986 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Grp ∧ (𝑗𝑀𝑘) ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
202197, 199, 201syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → ((0g𝑅)(+g𝑅)(𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
203196, 202sylan9eqr 2798 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) ∧ 𝑗 = 𝑖) → ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)) = (𝑗𝑀𝑘))
204 eqidd 2737 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) ∧ ¬ 𝑗 = 𝑖) → (𝑗𝑀𝑘) = (𝑗𝑀𝑘))
205203, 204ifeqda 4561 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
206205mpoeq3dva 7511 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
207193, 206sylan 580 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ (𝑗𝑀𝑘)))
208191, 207eqtr4d 2779 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑀 = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
209208fveq2d 6909 . . . . . . . . . . . . . 14 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
210209ad4antr 732 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ ∅ ∧ ∅ ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((0g𝑅)(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
211 elun1 4181 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝑥𝑖 ∈ (𝑥 ∪ {𝑧}))
212211con3i 154 . . . . . . . . . . . . . . . . . . . 20 𝑖 ∈ (𝑥 ∪ {𝑧}) → ¬ 𝑖𝑥)
213 ssun1 4177 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ⊆ (𝑥 ∪ {𝑧})
214 sstr 3991 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥𝐼)
215213, 214mpan 690 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼)
216212, 215anim12i 613 . . . . . . . . . . . . . . . . . . 19 ((¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (¬ 𝑖𝑥𝑥𝐼))
217216anim2i 617 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)))
218217adantr 480 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)))
219 velsn 4641 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧)
220 elun2 4182 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ {𝑧} → 𝑖 ∈ (𝑥 ∪ {𝑧}))
221219, 220sylbir 235 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑧𝑖 ∈ (𝑥 ∪ {𝑧}))
222221necon3bi 2966 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ (𝑥 ∪ {𝑧}) → 𝑖𝑧)
223222anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
224 ringcmn 20280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2254, 224syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑅 ∈ Field → 𝑅 ∈ CMnd)
226225ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
227 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝐼 ∈ Fin)
228215adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑥𝐼)
229 ssfi 9214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → 𝑥 ∈ Fin)
230227, 228, 229syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin)
231230ad5ant13 756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑥 ∈ Fin)
232215sselda 3982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑛𝑥) → 𝑛𝐼)
233232adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑛𝑥) → 𝑛𝐼)
234233ad4ant24 754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → 𝑛𝐼)
2354ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → 𝑅 ∈ Ring)
2362ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing)
237 ffvelcdm 7100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼) → (𝑓𝑖) ∈ (Base‘𝑅))
238237anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ DivRing ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
239238anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
240 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (invr𝑅) = (invr𝑅)
24110, 100, 240drnginvrcl 20754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
2422413expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
243239, 242sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ (𝑓𝑖) ≠ (0g𝑅)) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
244243anasss 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑅 ∈ DivRing ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
245236, 244sylanl1 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
246245ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
24743ad5ant25 761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑓𝑛) ∈ (Base‘𝑅))
248 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
249763expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑛𝐼) ∧ 𝑘𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
250249an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
251248, 250sylanl1 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (𝑛𝑀𝑘) ∈ (Base‘𝑅))
252235, 247, 251, 78syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅))
25310, 47ringcl 20248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
254235, 246, 252, 253syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
255254adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
256234, 255syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
257256adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
258 vex 3483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑧 ∈ V
259258a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → 𝑧 ∈ V)
260 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ¬ 𝑧𝑥)
261 ssun2 4178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {𝑧} ⊆ (𝑥 ∪ {𝑧})
262 sstr 3991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (({𝑧} ⊆ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → {𝑧} ⊆ 𝐼)
263261, 262mpan 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → {𝑧} ⊆ 𝐼)
264258snss 4784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧𝐼 ↔ {𝑧} ⊆ 𝐼)
265263, 264sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑧𝐼)
266265adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → 𝑧𝐼)
2674ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
2684ad5antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → 𝑅 ∈ Ring)
269245adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
270 ffvelcdm 7100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑧𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
271270ad4ant24 754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
27210, 47ringcl 20248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑧) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
273268, 269, 271, 272syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
274273adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
275 fovcdm 7604 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
2762753expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
277248, 276sylanl1 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
27810, 47ringcl 20248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅)) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
279267, 274, 277, 278syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
280266, 279sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
281280adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
282 fveq2 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 = 𝑧 → (𝑓𝑛) = (𝑓𝑧))
283 oveq1 7439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 = 𝑧 → (𝑛𝑀𝑘) = (𝑧𝑀𝑘))
284282, 283oveq12d 7450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 = 𝑧 → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) = ((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘)))
285284oveq2d 7448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 = 𝑧 → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
286245ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
287270ad5ant24 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (𝑓𝑧) ∈ (Base‘𝑅))
28810, 47ringass 20251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑧) ∈ (Base‘𝑅) ∧ (𝑧𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
289267, 286, 287, 277, 288syl13anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))))
290289eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑧𝐼) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
291266, 290sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑧)(.r𝑅)(𝑧𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
292285, 291sylan9eqr 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑧) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
293292adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑧) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))
29410, 200, 226, 231, 257, 259, 260, 281, 293gsumunsnd 19977 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
295294oveq1d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)))
296 ringabl 20279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
2974, 296syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Field → 𝑅 ∈ Abel)
298297ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Abel)
299225ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
300 vex 3483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑥 ∈ V
301300a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑥 ∈ V)
302 ssel2 3977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥𝐼𝑛𝑥) → 𝑛𝐼)
303302, 254sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑥𝐼𝑛𝑥)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
304303anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑥𝐼) ∧ 𝑛𝑥) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ (Base‘𝑅))
305304fmpttd 7134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅))
306305an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))):𝑥⟶(Base‘𝑅))
307 ovex 7465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) ∈ V
308 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
309307, 308fnmpti 6710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝑥
310309a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝑥)
311 fvexd 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (0g𝑅) ∈ V)
312310, 229, 311fndmfifsupp 9419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐼 ∈ Fin ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
313312adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑥𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
314313ad5ant14 757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
31510, 100, 299, 301, 306, 314gsumcl 19934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅))
316215, 315sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅))
317265, 279sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)) ∈ (Base‘𝑅))
318 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
319 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅)) → 𝑖𝐼)
320318, 319anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
321320adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
322 fovcdm 7604 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
3233223expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
324321, 323sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
32510, 200, 298, 316, 317, 324abl32 19822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
326325adantlrl 720 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
327326adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘)))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
328295, 327eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))))
329328ifeq1d 4544 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))
3303293adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) ∧ 𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))
331330mpoeq3dva 7511 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))))
332331fveq2d 6909 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
333 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 maDet 𝑅) = (𝐼 maDet 𝑅)
3341simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ Field → 𝑅 ∈ CRing)
335334ad5antr 734 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ CRing)
336 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼 ∈ Fin)
337193ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → 𝑅 ∈ Grp)
338320adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑖𝐼))
339338, 323sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
34010, 200grpcl 18960 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Grp ∧ (𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
341337, 315, 339, 340syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
342228, 341sylanl2 681 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) ∈ (Base‘𝑅))
343248, 266anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅) ∧ 𝑧𝐼))
344343, 276sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → (𝑧𝑀𝑘) ∈ (Base‘𝑅))
345 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
346345, 198syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
347266, 273sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧)) ∈ (Base‘𝑅))
348 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖𝐼)
349265ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧𝐼)
350 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑖𝑧)
351333, 10, 200, 47, 335, 336, 342, 344, 346, 347, 348, 349, 350mdetero 22617 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
352351adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘))(+g𝑅)((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑧))(.r𝑅)(𝑧𝑀𝑘))), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
353332, 352eqtrd 2776 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))))
354 iftrue 4530 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑧𝑀𝑘))
355 oveq1 7439 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = 𝑧 → (𝑗𝑀𝑘) = (𝑧𝑀𝑘))
356354, 355eqtr4d 2779 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
357 iffalse 4533 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑗 = 𝑧 → if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘))
358356, 357pm2.61i 182 . . . . . . . . . . . . . . . . . . . . . . . 24 if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘)
359 ifeq2 4529 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
360358, 359mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
361360mpoeq3ia 7512 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
362361fveq2i 6908 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
363 ifeq2 4529 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)) = (𝑗𝑀𝑘) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
364358, 363mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗𝐼𝑘𝐼) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))) = if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
365364mpoeq3ia 7512 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘)))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))
366365fveq2i 6908 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), if(𝑗 = 𝑧, (𝑧𝑀𝑘), (𝑗𝑀𝑘))))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))
367353, 362, 3663eqtr3g 2799 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑖𝑧 ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
368223, 367sylanl2 681 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
369368eqeq2d 2747 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) ↔ ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
370369biimprd 248 . . . . . . . . . . . . . . . . 17 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
371218, 370embantd 59 . . . . . . . . . . . . . . . 16 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ ¬ 𝑧𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
372371expcom 413 . . . . . . . . . . . . . . 15 𝑧𝑥 → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
373372com23 86 . . . . . . . . . . . . . 14 𝑧𝑥 → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
374373adantl 481 . . . . . . . . . . . . 13 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖𝑥𝑥𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛𝑥 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))) → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝑥 ∪ {𝑧}) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝑥 ∪ {𝑧}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))))
375149, 162, 175, 188, 210, 374findcard2s 9206 . . . . . . . . . . . 12 ((𝐼 ∖ {𝑖}) ∈ Fin → ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))))))
376132, 375mpcom 38 . . . . . . . . . . 11 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (¬ 𝑖 ∈ (𝐼 ∖ {𝑖}) ∧ (𝐼 ∖ {𝑖}) ⊆ 𝐼)) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
377129, 130, 376mpanr12 705 . . . . . . . . . 10 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
378377adantlr 715 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))))
379 eqid 2736 . . . . . . . . . . . 12 𝐼 = 𝐼
380 fconstmpt 5746 . . . . . . . . . . . . . . . . 17 (𝐼 × {(0g𝑅)}) = (𝑘𝐼 ↦ (0g𝑅))
381380eqeq2i 2749 . . . . . . . . . . . . . . . 16 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)))
382 ovex 7465 . . . . . . . . . . . . . . . . . 18 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V
383382rgenw 3064 . . . . . . . . . . . . . . . . 17 𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V
384 mpteqb 7034 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) ∈ V → ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)))
385383, 384ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝑘𝐼 ↦ (0g𝑅)) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅))
386381, 385bitri 275 . . . . . . . . . . . . . . 15 ((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ↔ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅))
387225ad5antr 734 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑅 ∈ CMnd)
388 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝐼 ∈ Fin)
389 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))
390307, 389fnmpti 6710 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼
391390a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) Fn 𝐼)
392 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
393 fvexd 6920 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (0g𝑅) ∈ V)
394391, 392, 393fndmfifsupp 9419 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ Fin → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
395394ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) finSupp (0g𝑅))
396 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑖𝐼)
397320, 323sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
398 fveq2 6905 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
399 oveq1 7439 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑖 → (𝑛𝑀𝑘) = (𝑖𝑀𝑘))
400398, 399oveq12d 7450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑖 → ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) = ((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘)))
401400oveq2d 7448 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
402 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → 𝑅 ∈ Field)
4032, 237anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ Field ∧ (𝑓:𝐼⟶(Base‘𝑅) ∧ 𝑖𝐼)) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
404403anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) → (𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)))
405 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (1r𝑅) = (1r𝑅)
40610, 100, 47, 405, 240drnginvrl 20757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
4074063expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑅 ∈ DivRing ∧ (𝑓𝑖) ∈ (Base‘𝑅)) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
408404, 407sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ (𝑓𝑖) ≠ (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
409408anasss 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖)) = (1r𝑅))
410409oveq1d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
411402, 410sylanl1 680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
412411adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)))
4134ad5antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → 𝑅 ∈ Ring)
414245adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅))
415237ad2ant2lr 748 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑓𝑖) ∈ (Base‘𝑅))
416415adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑓𝑖) ∈ (Base‘𝑅))
41710, 47ringass 20251 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅) ∧ (𝑓𝑖) ∈ (Base‘𝑅) ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅))) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
418413, 414, 416, 397, 417syl13anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑓𝑖))(.r𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))))
4194adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) → 𝑅 ∈ Ring)
4204193ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → 𝑅 ∈ Ring)
4213223adant1l 1176 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → (𝑖𝑀𝑘) ∈ (Base‘𝑅))
42210, 47, 405ringlidm 20267 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑘) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
423420, 421, 422syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝑖𝐼𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
424423ad5ant145 1370 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
425424adantlrr 721 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((1r𝑅)(.r𝑅)(𝑖𝑀𝑘)) = (𝑖𝑀𝑘))
426412, 418, 4253eqtr3d 2784 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑖)(.r𝑅)(𝑖𝑀𝑘))) = (𝑖𝑀𝑘))
427401, 426sylan9eqr 2798 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ 𝑛 = 𝑖) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (𝑖𝑀𝑘))
42810, 200, 387, 388, 395, 254, 396, 397, 427gsumdifsnd 19980 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)))
429 ovex 7465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)) ∈ V
430 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) = (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))
431429, 430fnmpti 6710 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) Fn 𝐼
432431a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ Fin → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) Fn 𝐼)
433432, 392, 393fndmfifsupp 9419 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ Fin → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) finSupp (0g𝑅))
434433ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))) finSupp (0g𝑅))
43510, 100, 47, 413, 388, 414, 252, 434gsummulc2 20315 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → (𝑅 Σg (𝑛𝐼 ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
436428, 435eqtr3d 2778 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
437436adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))))
438 oveq2 7440 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)))
439438adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)))
4404ad4antr 732 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑅 ∈ Ring)
44110, 47, 100ringrz 20292 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘(𝑓𝑖)) ∈ (Base‘𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
442440, 245, 441syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
443442ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → (((invr𝑅)‘(𝑓𝑖))(.r𝑅)(0g𝑅)) = (0g𝑅))
444437, 439, 4433eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)) = (0g𝑅))
445444ifeq1d 4544 . . . . . . . . . . . . . . . . . 18 (((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) ∧ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
446445ex 412 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑘𝐼) → ((𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
447446ralimdva 3166 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
448447imp 406 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ ∀𝑘𝐼 (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))) = (0g𝑅)) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
449386, 448sylan2b 594 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))
450449, 379jctil 519 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
451450ralrimivw 3149 . . . . . . . . . . . 12 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → ∀𝑗𝐼 (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
452 mpoeq123 7506 . . . . . . . . . . . 12 ((𝐼 = 𝐼 ∧ ∀𝑗𝐼 (𝐼 = 𝐼 ∧ ∀𝑘𝐼 if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)) = if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
453379, 451, 452sylancr 587 . . . . . . . . . . 11 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
454453an32s 652 . . . . . . . . . 10 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘))) = (𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘))))
455454fveq2d 6909 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, ((𝑅 Σg (𝑛 ∈ (𝐼 ∖ {𝑖}) ↦ (((invr𝑅)‘(𝑓𝑖))(.r𝑅)((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘)))))(+g𝑅)(𝑖𝑀𝑘)), (𝑗𝑀𝑘)))) = ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))))
456334ad3antrrr 730 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑅 ∈ CRing)
457 simplr 768 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝐼 ∈ Fin)
458 simpllr 775 . . . . . . . . . . . 12 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅))
459458, 198syl3an1 1163 . . . . . . . . . . 11 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) ∧ 𝑗𝐼𝑘𝐼) → (𝑗𝑀𝑘) ∈ (Base‘𝑅))
460 simprl 770 . . . . . . . . . . 11 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → 𝑖𝐼)
461333, 10, 100, 456, 457, 459, 460mdetr0 22612 . . . . . . . . . 10 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) = (0g𝑅))
462461ad4ant14 752 . . . . . . . . 9 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘(𝑗𝐼, 𝑘𝐼 ↦ if(𝑗 = 𝑖, (0g𝑅), (𝑗𝑀𝑘)))) = (0g𝑅))
463378, 455, 4623eqtrd 2780 . . . . . . . 8 ((((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) ∧ (𝑖𝐼 ∧ (𝑓𝑖) ≠ (0g𝑅))) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅))
464463rexlimdvaa 3155 . . . . . . 7 (((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) ∧ (𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)})) → (∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
465464expimpd 453 . . . . . 6 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ∃𝑖𝐼 (𝑓𝑖) ≠ (0g𝑅)) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
466128, 465sylan2d 605 . . . . 5 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓:𝐼⟶(Base‘𝑅)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
46732, 466sylan2 593 . . . 4 ((((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) ∧ 𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)) → (((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
468467rexlimdva 3154 . . 3 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ Fin) → (∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
4699, 468sylan2 593 . 2 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (∃𝑓 ∈ ((Base‘𝑅) ↑m 𝐼)((𝑘𝐼 ↦ (𝑅 Σg (𝑛𝐼 ↦ ((𝑓𝑛)(.r𝑅)(𝑛𝑀𝑘))))) = (𝐼 × {(0g𝑅)}) ∧ ¬ 𝑓 = (𝐼 × {(0g𝑅)})) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
470115, 469sylbid 240 1 (((𝑅 ∈ Field ∧ 𝑀:(𝐼 × 𝐼)⟶(Base‘𝑅)) ∧ 𝐼 ∈ (Fin ∖ {∅})) → (¬ curry 𝑀 LIndF (𝑅 freeLMod 𝐼) → ((𝐼 maDet 𝑅)‘𝑀) = (0g𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  Vcvv 3479  cdif 3947  cun 3948  wss 3950  c0 4332  ifcif 4524  {csn 4625   class class class wbr 5142  cmpt 5224   × cxp 5682   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  cmpo 7434  f cof 7696  curry ccur 8291  m cmap 8867  Fincfn 8986   finSupp cfsupp 9402  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17485   Σg cgsu 17486  Grpcgrp 18952  CMndccmn 19799  Abelcabl 19800  1rcur 20179  Ringcrg 20231  CRingccrg 20232  invrcinvr 20388  DivRingcdr 20730  Fieldcfield 20731  LModclmod 20859   freeLMod cfrlm 21767   LIndF clindf 21825   maDet cmdat 22591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1511  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-cur 8293  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-word 14554  df-lsw 14602  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-splice 14789  df-reverse 14798  df-s2 14888  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-efmnd 18883  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-gim 19278  df-cntz 19336  df-oppg 19365  df-symg 19388  df-pmtr 19461  df-psgn 19510  df-evpm 19511  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-rhm 20473  df-nzr 20514  df-subrng 20547  df-subrg 20571  df-drng 20732  df-field 20733  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lmhm 21022  df-lbs 21075  df-sra 21173  df-rgmod 21174  df-cnfld 21366  df-zring 21459  df-zrh 21515  df-dsmm 21753  df-frlm 21768  df-uvc 21804  df-lindf 21827  df-mat 22413  df-mdet 22592
This theorem is referenced by:  matunitlindf  37626
  Copyright terms: Public domain W3C validator