MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metuel2 Structured version   Visualization version   GIF version

Theorem metuel2 23169
Description: Elementhood in the uniform structure generated by a metric 𝐷 (Contributed by Thierry Arnoux, 24-Jan-2018.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metuel2.u 𝑈 = (metUnif‘𝐷)
Assertion
Ref Expression
metuel2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉𝑈 ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
Distinct variable groups:   𝑥,𝑑,𝑦,𝐷   𝑉,𝑑,𝑥,𝑦   𝑋,𝑑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦,𝑑)

Proof of Theorem metuel2
Dummy variables 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metuel2.u . . . 4 𝑈 = (metUnif‘𝐷)
21eleq2i 2904 . . 3 (𝑉𝑈𝑉 ∈ (metUnif‘𝐷))
32a1i 11 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉𝑈𝑉 ∈ (metUnif‘𝐷)))
4 metuel 23168 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
5 oveq2 7158 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → (0[,)𝑎) = (0[,)𝑑))
65imaeq2d 5924 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑑)))
76cbvmptv 5162 . . . . . . . . . . . 12 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))
87elrnmpt 5823 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑))))
98elv 3500 . . . . . . . . . 10 (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑)))
109anbi1i 625 . . . . . . . . 9 ((𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉) ↔ (∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
11 r19.41v 3347 . . . . . . . . 9 (∃𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ (∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
1210, 11bitr4i 280 . . . . . . . 8 ((𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉) ↔ ∃𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
1312exbii 1844 . . . . . . 7 (∃𝑤(𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉) ↔ ∃𝑤𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
14 df-rex 3144 . . . . . . 7 (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑤(𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉))
15 rexcom4 3249 . . . . . . 7 (∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ ∃𝑤𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
1613, 14, 153bitr4i 305 . . . . . 6 (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
17 cnvexg 7623 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
18 imaexg 7614 . . . . . . . . 9 (𝐷 ∈ V → (𝐷 “ (0[,)𝑑)) ∈ V)
19 sseq1 3992 . . . . . . . . . 10 (𝑤 = (𝐷 “ (0[,)𝑑)) → (𝑤𝑉 ↔ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2019ceqsexgv 3647 . . . . . . . . 9 ((𝐷 “ (0[,)𝑑)) ∈ V → (∃𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2117, 18, 203syl 18 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2221rexbidv 3297 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ ∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2322adantr 483 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ ∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2416, 23syl5bb 285 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
25 cnvimass 5944 . . . . . . . . 9 (𝐷 “ (0[,)𝑑)) ⊆ dom 𝐷
26 simpll 765 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋))
27 psmetf 22910 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
28 fdm 6517 . . . . . . . . . 10 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
2926, 27, 283syl 18 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋))
3025, 29sseqtrid 4019 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → (𝐷 “ (0[,)𝑑)) ⊆ (𝑋 × 𝑋))
31 ssrel2 5654 . . . . . . . 8 ((𝐷 “ (0[,)𝑑)) ⊆ (𝑋 × 𝑋) → ((𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥𝑋𝑦𝑋 (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
3230, 31syl 17 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → ((𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥𝑋𝑦𝑋 (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
33 simplr 767 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑥𝑋)
34 simpr 487 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
3533, 34opelxpd 5588 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
3635biantrurd 535 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))))
37 psmetcl 22911 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ*)
3837ad5ant145 1365 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ*)
39383biant1d 1474 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
40 psmetge0 22916 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
4140biantrurd 535 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
4241ad5ant145 1365 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
43 0xr 10682 . . . . . . . . . . . . . 14 0 ∈ ℝ*
44 simpllr 774 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑑 ∈ ℝ+)
4544rpxrd 12426 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑑 ∈ ℝ*)
46 elico1 12775 . . . . . . . . . . . . . 14 ((0 ∈ ℝ*𝑑 ∈ ℝ*) → ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
4743, 45, 46sylancr 589 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
4839, 42, 473bitr4d 313 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (𝑥𝐷𝑦) ∈ (0[,)𝑑)))
49 df-ov 7153 . . . . . . . . . . . . 13 (𝑥𝐷𝑦) = (𝐷‘⟨𝑥, 𝑦⟩)
5049eleq1i 2903 . . . . . . . . . . . 12 ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))
5148, 50syl6bb 289 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑)))
52 simp-4l 781 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝐷 ∈ (PsMet‘𝑋))
53 ffn 6509 . . . . . . . . . . . 12 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
54 elpreima 6823 . . . . . . . . . . . 12 (𝐷 Fn (𝑋 × 𝑋) → (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))))
5552, 27, 53, 544syl 19 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))))
5636, 51, 553bitr4d 313 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑))))
5756anasss 469 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) < 𝑑 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑))))
58 df-br 5060 . . . . . . . . . 10 (𝑥𝑉𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑉)
5958a1i 11 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑉𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑉))
6057, 59imbi12d 347 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
61602ralbidva 3198 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
6232, 61bitr4d 284 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → ((𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦)))
6362rexbidva 3296 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦)))
6424, 63bitrd 281 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦)))
6564pm5.32da 581 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ((𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
6665adantl 484 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
673, 4, 663bitrd 307 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉𝑈 ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3495  wss 3936  c0 4291  cop 4567   class class class wbr 5059  cmpt 5139   × cxp 5548  ccnv 5549  dom cdm 5550  ran crn 5551  cima 5553   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  0cc0 10531  *cxr 10668   < clt 10669  cle 10670  +crp 12383  [,)cico 12734  PsMetcpsmet 20523  metUnifcmetu 20530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ico 12738  df-psmet 20531  df-fbas 20536  df-fg 20537  df-metu 20538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator