Step | Hyp | Ref
| Expression |
1 | | metuel2.u |
. . . 4
⊢ 𝑈 = (metUnif‘𝐷) |
2 | 1 | eleq2i 2830 |
. . 3
⊢ (𝑉 ∈ 𝑈 ↔ 𝑉 ∈ (metUnif‘𝐷)) |
3 | 2 | a1i 11 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ 𝑈 ↔ 𝑉 ∈ (metUnif‘𝐷))) |
4 | | metuel 23626 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉))) |
5 | | oveq2 7263 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑑 → (0[,)𝑎) = (0[,)𝑑)) |
6 | 5 | imaeq2d 5958 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑑 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑑))) |
7 | 6 | cbvmptv 5183 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑎))) = (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))) |
8 | 7 | elrnmpt 5854 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑑 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑑)))) |
9 | 8 | elv 3428 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑑 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑑))) |
10 | 9 | anbi1i 623 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∧ 𝑤 ⊆ 𝑉) ↔ (∃𝑑 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
11 | | r19.41v 3273 |
. . . . . . . . 9
⊢
(∃𝑑 ∈
ℝ+ (𝑤 =
(◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ (∃𝑑 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
12 | 10, 11 | bitr4i 277 |
. . . . . . . 8
⊢ ((𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∧ 𝑤 ⊆ 𝑉) ↔ ∃𝑑 ∈ ℝ+ (𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
13 | 12 | exbii 1851 |
. . . . . . 7
⊢
(∃𝑤(𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∧ 𝑤 ⊆ 𝑉) ↔ ∃𝑤∃𝑑 ∈ ℝ+ (𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
14 | | df-rex 3069 |
. . . . . . 7
⊢
(∃𝑤 ∈ ran
(𝑎 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉 ↔ ∃𝑤(𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∧ 𝑤 ⊆ 𝑉)) |
15 | | rexcom4 3179 |
. . . . . . 7
⊢
(∃𝑑 ∈
ℝ+ ∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ ∃𝑤∃𝑑 ∈ ℝ+ (𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
16 | 13, 14, 15 | 3bitr4i 302 |
. . . . . 6
⊢
(∃𝑤 ∈ ran
(𝑎 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉 ↔ ∃𝑑 ∈ ℝ+ ∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
17 | | cnvexg 7745 |
. . . . . . . . 9
⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) |
18 | | imaexg 7736 |
. . . . . . . . 9
⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑑)) ∈ V) |
19 | | sseq1 3942 |
. . . . . . . . . 10
⊢ (𝑤 = (◡𝐷 “ (0[,)𝑑)) → (𝑤 ⊆ 𝑉 ↔ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
20 | 19 | ceqsexgv 3576 |
. . . . . . . . 9
⊢ ((◡𝐷 “ (0[,)𝑑)) ∈ V → (∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
21 | 17, 18, 20 | 3syl 18 |
. . . . . . . 8
⊢ (𝐷 ∈ (PsMet‘𝑋) → (∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
22 | 21 | rexbidv 3225 |
. . . . . . 7
⊢ (𝐷 ∈ (PsMet‘𝑋) → (∃𝑑 ∈ ℝ+
∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ ∃𝑑 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
23 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑑 ∈ ℝ+ ∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ ∃𝑑 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
24 | 16, 23 | syl5bb 282 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉 ↔ ∃𝑑 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
25 | | cnvimass 5978 |
. . . . . . . . 9
⊢ (◡𝐷 “ (0[,)𝑑)) ⊆ dom 𝐷 |
26 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋)) |
27 | | psmetf 23367 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
28 | | fdm 6593 |
. . . . . . . . . 10
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom
𝐷 = (𝑋 × 𝑋)) |
29 | 26, 27, 28 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋)) |
30 | 25, 29 | sseqtrid 3969 |
. . . . . . . 8
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑑)) ⊆ (𝑋 × 𝑋)) |
31 | | ssrel2 5685 |
. . . . . . . 8
⊢ ((◡𝐷 “ (0[,)𝑑)) ⊆ (𝑋 × 𝑋) → ((◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) → 〈𝑥, 𝑦〉 ∈ 𝑉))) |
32 | 30, 31 | syl 17 |
. . . . . . 7
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → ((◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) → 〈𝑥, 𝑦〉 ∈ 𝑉))) |
33 | | simplr 765 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
34 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
35 | 33, 34 | opelxpd 5618 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑋)) |
36 | 35 | biantrurd 532 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑) ↔ (〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑)))) |
37 | | psmetcl 23368 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈
ℝ*) |
38 | 37 | ad5ant145 1367 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈
ℝ*) |
39 | 38 | 3biant1d 1476 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑))) |
40 | | psmetge0 23373 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐷𝑦)) |
41 | 40 | biantrurd 532 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑))) |
42 | 41 | ad5ant145 1367 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑))) |
43 | | 0xr 10953 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ* |
44 | | simpllr 772 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑑 ∈ ℝ+) |
45 | 44 | rpxrd 12702 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑑 ∈ ℝ*) |
46 | | elico1 13051 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ* ∧ 𝑑 ∈ ℝ*) → ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑))) |
47 | 43, 45, 46 | sylancr 586 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑))) |
48 | 39, 42, 47 | 3bitr4d 310 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (𝑥𝐷𝑦) ∈ (0[,)𝑑))) |
49 | | df-ov 7258 |
. . . . . . . . . . . . 13
⊢ (𝑥𝐷𝑦) = (𝐷‘〈𝑥, 𝑦〉) |
50 | 49 | eleq1i 2829 |
. . . . . . . . . . . 12
⊢ ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ (𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑)) |
51 | 48, 50 | bitrdi 286 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑))) |
52 | | simp-4l 779 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐷 ∈ (PsMet‘𝑋)) |
53 | | ffn 6584 |
. . . . . . . . . . . 12
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) |
54 | | elpreima 6917 |
. . . . . . . . . . . 12
⊢ (𝐷 Fn (𝑋 × 𝑋) → (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) ↔ (〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑)))) |
55 | 52, 27, 53, 54 | 4syl 19 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) ↔ (〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑)))) |
56 | 36, 51, 55 | 3bitr4d 310 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ 〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)))) |
57 | 56 | anasss 466 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) < 𝑑 ↔ 〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)))) |
58 | | df-br 5071 |
. . . . . . . . . 10
⊢ (𝑥𝑉𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑉) |
59 | 58 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑉𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑉)) |
60 | 57, 59 | imbi12d 344 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦) ↔ (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) → 〈𝑥, 𝑦〉 ∈ 𝑉))) |
61 | 60 | 2ralbidva 3121 |
. . . . . . 7
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) →
(∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) → 〈𝑥, 𝑦〉 ∈ 𝑉))) |
62 | 32, 61 | bitr4d 281 |
. . . . . 6
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → ((◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦))) |
63 | 62 | rexbidva 3224 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑑 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦))) |
64 | 24, 63 | bitrd 278 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉 ↔ ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦))) |
65 | 64 | pm5.32da 578 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → ((𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦)))) |
66 | 65 | adantl 481 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦)))) |
67 | 3, 4, 66 | 3bitrd 304 |
1
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ 𝑈 ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦)))) |