MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metuel2 Structured version   Visualization version   GIF version

Theorem metuel2 24460
Description: Elementhood in the uniform structure generated by a metric 𝐷 (Contributed by Thierry Arnoux, 24-Jan-2018.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metuel2.u 𝑈 = (metUnif‘𝐷)
Assertion
Ref Expression
metuel2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉𝑈 ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
Distinct variable groups:   𝑥,𝑑,𝑦,𝐷   𝑉,𝑑,𝑥,𝑦   𝑋,𝑑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦,𝑑)

Proof of Theorem metuel2
Dummy variables 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metuel2.u . . . 4 𝑈 = (metUnif‘𝐷)
21eleq2i 2821 . . 3 (𝑉𝑈𝑉 ∈ (metUnif‘𝐷))
32a1i 11 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉𝑈𝑉 ∈ (metUnif‘𝐷)))
4 metuel 24459 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
5 oveq2 7398 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → (0[,)𝑎) = (0[,)𝑑))
65imaeq2d 6034 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑑)))
76cbvmptv 5214 . . . . . . . . . . . 12 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))
87elrnmpt 5925 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑))))
98elv 3455 . . . . . . . . . 10 (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑)))
109anbi1i 624 . . . . . . . . 9 ((𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉) ↔ (∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
11 r19.41v 3168 . . . . . . . . 9 (∃𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ (∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
1210, 11bitr4i 278 . . . . . . . 8 ((𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉) ↔ ∃𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
1312exbii 1848 . . . . . . 7 (∃𝑤(𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉) ↔ ∃𝑤𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
14 df-rex 3055 . . . . . . 7 (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑤(𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉))
15 rexcom4 3265 . . . . . . 7 (∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ ∃𝑤𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
1613, 14, 153bitr4i 303 . . . . . 6 (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
17 cnvexg 7903 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
18 imaexg 7892 . . . . . . . . 9 (𝐷 ∈ V → (𝐷 “ (0[,)𝑑)) ∈ V)
19 sseq1 3975 . . . . . . . . . 10 (𝑤 = (𝐷 “ (0[,)𝑑)) → (𝑤𝑉 ↔ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2019ceqsexgv 3623 . . . . . . . . 9 ((𝐷 “ (0[,)𝑑)) ∈ V → (∃𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2117, 18, 203syl 18 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2221rexbidv 3158 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ ∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2322adantr 480 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ ∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2416, 23bitrid 283 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
25 cnvimass 6056 . . . . . . . . 9 (𝐷 “ (0[,)𝑑)) ⊆ dom 𝐷
26 simpll 766 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋))
27 psmetf 24201 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
28 fdm 6700 . . . . . . . . . 10 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
2926, 27, 283syl 18 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋))
3025, 29sseqtrid 3992 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → (𝐷 “ (0[,)𝑑)) ⊆ (𝑋 × 𝑋))
31 ssrel2 5751 . . . . . . . 8 ((𝐷 “ (0[,)𝑑)) ⊆ (𝑋 × 𝑋) → ((𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥𝑋𝑦𝑋 (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
3230, 31syl 17 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → ((𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥𝑋𝑦𝑋 (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
33 simplr 768 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑥𝑋)
34 simpr 484 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
3533, 34opelxpd 5680 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
3635biantrurd 532 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))))
37 psmetcl 24202 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ*)
3837ad5ant145 1371 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ*)
39383biant1d 1480 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
40 psmetge0 24207 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
4140biantrurd 532 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
4241ad5ant145 1371 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
43 0xr 11228 . . . . . . . . . . . . . 14 0 ∈ ℝ*
44 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑑 ∈ ℝ+)
4544rpxrd 13003 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑑 ∈ ℝ*)
46 elico1 13356 . . . . . . . . . . . . . 14 ((0 ∈ ℝ*𝑑 ∈ ℝ*) → ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
4743, 45, 46sylancr 587 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
4839, 42, 473bitr4d 311 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (𝑥𝐷𝑦) ∈ (0[,)𝑑)))
49 df-ov 7393 . . . . . . . . . . . . 13 (𝑥𝐷𝑦) = (𝐷‘⟨𝑥, 𝑦⟩)
5049eleq1i 2820 . . . . . . . . . . . 12 ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))
5148, 50bitrdi 287 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑)))
52 simp-4l 782 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝐷 ∈ (PsMet‘𝑋))
53 ffn 6691 . . . . . . . . . . . 12 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
54 elpreima 7033 . . . . . . . . . . . 12 (𝐷 Fn (𝑋 × 𝑋) → (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))))
5552, 27, 53, 544syl 19 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))))
5636, 51, 553bitr4d 311 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑))))
5756anasss 466 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) < 𝑑 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑))))
58 df-br 5111 . . . . . . . . . 10 (𝑥𝑉𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑉)
5958a1i 11 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑉𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑉))
6057, 59imbi12d 344 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
61602ralbidva 3200 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
6232, 61bitr4d 282 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → ((𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦)))
6362rexbidva 3156 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦)))
6424, 63bitrd 279 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦)))
6564pm5.32da 579 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ((𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
6665adantl 481 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
673, 4, 663bitrd 305 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉𝑈 ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  *cxr 11214   < clt 11215  cle 11216  +crp 12958  [,)cico 13315  PsMetcpsmet 21255  metUnifcmetu 21262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-2 12256  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-psmet 21263  df-fbas 21268  df-fg 21269  df-metu 21270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator