MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metuel2 Structured version   Visualization version   GIF version

Theorem metuel2 24481
Description: Elementhood in the uniform structure generated by a metric 𝐷 (Contributed by Thierry Arnoux, 24-Jan-2018.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metuel2.u 𝑈 = (metUnif‘𝐷)
Assertion
Ref Expression
metuel2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉𝑈 ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
Distinct variable groups:   𝑥,𝑑,𝑦,𝐷   𝑉,𝑑,𝑥,𝑦   𝑋,𝑑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦,𝑑)

Proof of Theorem metuel2
Dummy variables 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metuel2.u . . . 4 𝑈 = (metUnif‘𝐷)
21eleq2i 2823 . . 3 (𝑉𝑈𝑉 ∈ (metUnif‘𝐷))
32a1i 11 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉𝑈𝑉 ∈ (metUnif‘𝐷)))
4 metuel 24480 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉)))
5 oveq2 7354 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → (0[,)𝑎) = (0[,)𝑑))
65imaeq2d 6009 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑑)))
76cbvmptv 5195 . . . . . . . . . . . 12 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))
87elrnmpt 5898 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑))))
98elv 3441 . . . . . . . . . 10 (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑)))
109anbi1i 624 . . . . . . . . 9 ((𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉) ↔ (∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
11 r19.41v 3162 . . . . . . . . 9 (∃𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ (∃𝑑 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
1210, 11bitr4i 278 . . . . . . . 8 ((𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉) ↔ ∃𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
1312exbii 1849 . . . . . . 7 (∃𝑤(𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉) ↔ ∃𝑤𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
14 df-rex 3057 . . . . . . 7 (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑤(𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ 𝑤𝑉))
15 rexcom4 3259 . . . . . . 7 (∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ ∃𝑤𝑑 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
1613, 14, 153bitr4i 303 . . . . . 6 (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉))
17 cnvexg 7854 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
18 imaexg 7843 . . . . . . . . 9 (𝐷 ∈ V → (𝐷 “ (0[,)𝑑)) ∈ V)
19 sseq1 3960 . . . . . . . . . 10 (𝑤 = (𝐷 “ (0[,)𝑑)) → (𝑤𝑉 ↔ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2019ceqsexgv 3609 . . . . . . . . 9 ((𝐷 “ (0[,)𝑑)) ∈ V → (∃𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2117, 18, 203syl 18 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2221rexbidv 3156 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ ∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2322adantr 480 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑑 ∈ ℝ+𝑤(𝑤 = (𝐷 “ (0[,)𝑑)) ∧ 𝑤𝑉) ↔ ∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
2416, 23bitrid 283 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉))
25 cnvimass 6031 . . . . . . . . 9 (𝐷 “ (0[,)𝑑)) ⊆ dom 𝐷
26 simpll 766 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋))
27 psmetf 24222 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
28 fdm 6660 . . . . . . . . . 10 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
2926, 27, 283syl 18 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋))
3025, 29sseqtrid 3977 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → (𝐷 “ (0[,)𝑑)) ⊆ (𝑋 × 𝑋))
31 ssrel2 5725 . . . . . . . 8 ((𝐷 “ (0[,)𝑑)) ⊆ (𝑋 × 𝑋) → ((𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥𝑋𝑦𝑋 (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
3230, 31syl 17 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → ((𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥𝑋𝑦𝑋 (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
33 simplr 768 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑥𝑋)
34 simpr 484 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
3533, 34opelxpd 5655 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋))
3635biantrurd 532 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))))
37 psmetcl 24223 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ*)
3837ad5ant145 1371 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ*)
39383biant1d 1480 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
40 psmetge0 24228 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
4140biantrurd 532 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
4241ad5ant145 1371 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
43 0xr 11159 . . . . . . . . . . . . . 14 0 ∈ ℝ*
44 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑑 ∈ ℝ+)
4544rpxrd 12935 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑑 ∈ ℝ*)
46 elico1 13288 . . . . . . . . . . . . . 14 ((0 ∈ ℝ*𝑑 ∈ ℝ*) → ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
4743, 45, 46sylancr 587 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑)))
4839, 42, 473bitr4d 311 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (𝑥𝐷𝑦) ∈ (0[,)𝑑)))
49 df-ov 7349 . . . . . . . . . . . . 13 (𝑥𝐷𝑦) = (𝐷‘⟨𝑥, 𝑦⟩)
5049eleq1i 2822 . . . . . . . . . . . 12 ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))
5148, 50bitrdi 287 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑)))
52 simp-4l 782 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝐷 ∈ (PsMet‘𝑋))
53 ffn 6651 . . . . . . . . . . . 12 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
54 elpreima 6991 . . . . . . . . . . . 12 (𝐷 Fn (𝑋 × 𝑋) → (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))))
5552, 27, 53, 544syl 19 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑥, 𝑦⟩) ∈ (0[,)𝑑))))
5636, 51, 553bitr4d 311 . . . . . . . . . 10 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑))))
5756anasss 466 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) < 𝑑 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑))))
58 df-br 5092 . . . . . . . . . 10 (𝑥𝑉𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑉)
5958a1i 11 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑉𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑉))
6057, 59imbi12d 344 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
61602ralbidva 3194 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (⟨𝑥, 𝑦⟩ ∈ (𝐷 “ (0[,)𝑑)) → ⟨𝑥, 𝑦⟩ ∈ 𝑉)))
6232, 61bitr4d 282 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → ((𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦)))
6362rexbidva 3154 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦)))
6424, 63bitrd 279 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉 ↔ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦)))
6564pm5.32da 579 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ((𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
6665adantl 481 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑉) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
673, 4, 663bitrd 305 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉𝑈 ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑𝑥𝑉𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3902  c0 4283  cop 4582   class class class wbr 5091  cmpt 5172   × cxp 5614  ccnv 5615  dom cdm 5616  ran crn 5617  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  *cxr 11145   < clt 11146  cle 11147  +crp 12890  [,)cico 13247  PsMetcpsmet 21276  metUnifcmetu 21283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-2 12188  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-psmet 21284  df-fbas 21289  df-fg 21290  df-metu 21291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator