| Step | Hyp | Ref
| Expression |
| 1 | | metuel2.u |
. . . 4
⊢ 𝑈 = (metUnif‘𝐷) |
| 2 | 1 | eleq2i 2833 |
. . 3
⊢ (𝑉 ∈ 𝑈 ↔ 𝑉 ∈ (metUnif‘𝐷)) |
| 3 | 2 | a1i 11 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ 𝑈 ↔ 𝑉 ∈ (metUnif‘𝐷))) |
| 4 | | metuel 24577 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉))) |
| 5 | | oveq2 7439 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑑 → (0[,)𝑎) = (0[,)𝑑)) |
| 6 | 5 | imaeq2d 6078 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑑 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑑))) |
| 7 | 6 | cbvmptv 5255 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑎))) = (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))) |
| 8 | 7 | elrnmpt 5969 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑑 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑑)))) |
| 9 | 8 | elv 3485 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑑 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑑))) |
| 10 | 9 | anbi1i 624 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∧ 𝑤 ⊆ 𝑉) ↔ (∃𝑑 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
| 11 | | r19.41v 3189 |
. . . . . . . . 9
⊢
(∃𝑑 ∈
ℝ+ (𝑤 =
(◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ (∃𝑑 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
| 12 | 10, 11 | bitr4i 278 |
. . . . . . . 8
⊢ ((𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∧ 𝑤 ⊆ 𝑉) ↔ ∃𝑑 ∈ ℝ+ (𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
| 13 | 12 | exbii 1848 |
. . . . . . 7
⊢
(∃𝑤(𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∧ 𝑤 ⊆ 𝑉) ↔ ∃𝑤∃𝑑 ∈ ℝ+ (𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
| 14 | | df-rex 3071 |
. . . . . . 7
⊢
(∃𝑤 ∈ ran
(𝑎 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉 ↔ ∃𝑤(𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∧ 𝑤 ⊆ 𝑉)) |
| 15 | | rexcom4 3288 |
. . . . . . 7
⊢
(∃𝑑 ∈
ℝ+ ∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ ∃𝑤∃𝑑 ∈ ℝ+ (𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
| 16 | 13, 14, 15 | 3bitr4i 303 |
. . . . . 6
⊢
(∃𝑤 ∈ ran
(𝑎 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉 ↔ ∃𝑑 ∈ ℝ+ ∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉)) |
| 17 | | cnvexg 7946 |
. . . . . . . . 9
⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) |
| 18 | | imaexg 7935 |
. . . . . . . . 9
⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑑)) ∈ V) |
| 19 | | sseq1 4009 |
. . . . . . . . . 10
⊢ (𝑤 = (◡𝐷 “ (0[,)𝑑)) → (𝑤 ⊆ 𝑉 ↔ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
| 20 | 19 | ceqsexgv 3654 |
. . . . . . . . 9
⊢ ((◡𝐷 “ (0[,)𝑑)) ∈ V → (∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
| 21 | 17, 18, 20 | 3syl 18 |
. . . . . . . 8
⊢ (𝐷 ∈ (PsMet‘𝑋) → (∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
| 22 | 21 | rexbidv 3179 |
. . . . . . 7
⊢ (𝐷 ∈ (PsMet‘𝑋) → (∃𝑑 ∈ ℝ+
∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ ∃𝑑 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
| 23 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑑 ∈ ℝ+ ∃𝑤(𝑤 = (◡𝐷 “ (0[,)𝑑)) ∧ 𝑤 ⊆ 𝑉) ↔ ∃𝑑 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
| 24 | 16, 23 | bitrid 283 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉 ↔ ∃𝑑 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉)) |
| 25 | | cnvimass 6100 |
. . . . . . . . 9
⊢ (◡𝐷 “ (0[,)𝑑)) ⊆ dom 𝐷 |
| 26 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋)) |
| 27 | | psmetf 24316 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 28 | | fdm 6745 |
. . . . . . . . . 10
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom
𝐷 = (𝑋 × 𝑋)) |
| 29 | 26, 27, 28 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋)) |
| 30 | 25, 29 | sseqtrid 4026 |
. . . . . . . 8
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑑)) ⊆ (𝑋 × 𝑋)) |
| 31 | | ssrel2 5795 |
. . . . . . . 8
⊢ ((◡𝐷 “ (0[,)𝑑)) ⊆ (𝑋 × 𝑋) → ((◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) → 〈𝑥, 𝑦〉 ∈ 𝑉))) |
| 32 | 30, 31 | syl 17 |
. . . . . . 7
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → ((◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) → 〈𝑥, 𝑦〉 ∈ 𝑉))) |
| 33 | | simplr 769 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 34 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
| 35 | 33, 34 | opelxpd 5724 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑋)) |
| 36 | 35 | biantrurd 532 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑) ↔ (〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑)))) |
| 37 | | psmetcl 24317 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈
ℝ*) |
| 38 | 37 | ad5ant145 1371 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈
ℝ*) |
| 39 | 38 | 3biant1d 1480 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑))) |
| 40 | | psmetge0 24322 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐷𝑦)) |
| 41 | 40 | biantrurd 532 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑))) |
| 42 | 41 | ad5ant145 1371 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (0 ≤ (𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑))) |
| 43 | | 0xr 11308 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ* |
| 44 | | simpllr 776 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑑 ∈ ℝ+) |
| 45 | 44 | rpxrd 13078 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑑 ∈ ℝ*) |
| 46 | | elico1 13430 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ* ∧ 𝑑 ∈ ℝ*) → ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑))) |
| 47 | 43, 45, 46 | sylancr 587 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑥𝐷𝑦) ∧ (𝑥𝐷𝑦) < 𝑑))) |
| 48 | 39, 42, 47 | 3bitr4d 311 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (𝑥𝐷𝑦) ∈ (0[,)𝑑))) |
| 49 | | df-ov 7434 |
. . . . . . . . . . . . 13
⊢ (𝑥𝐷𝑦) = (𝐷‘〈𝑥, 𝑦〉) |
| 50 | 49 | eleq1i 2832 |
. . . . . . . . . . . 12
⊢ ((𝑥𝐷𝑦) ∈ (0[,)𝑑) ↔ (𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑)) |
| 51 | 48, 50 | bitrdi 287 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ (𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑))) |
| 52 | | simp-4l 783 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐷 ∈ (PsMet‘𝑋)) |
| 53 | | ffn 6736 |
. . . . . . . . . . . 12
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) |
| 54 | | elpreima 7078 |
. . . . . . . . . . . 12
⊢ (𝐷 Fn (𝑋 × 𝑋) → (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) ↔ (〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑)))) |
| 55 | 52, 27, 53, 54 | 4syl 19 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) ↔ (〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝑥, 𝑦〉) ∈ (0[,)𝑑)))) |
| 56 | 36, 51, 55 | 3bitr4d 311 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) < 𝑑 ↔ 〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)))) |
| 57 | 56 | anasss 466 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) < 𝑑 ↔ 〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)))) |
| 58 | | df-br 5144 |
. . . . . . . . . 10
⊢ (𝑥𝑉𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑉) |
| 59 | 58 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑉𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑉)) |
| 60 | 57, 59 | imbi12d 344 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦) ↔ (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) → 〈𝑥, 𝑦〉 ∈ 𝑉))) |
| 61 | 60 | 2ralbidva 3219 |
. . . . . . 7
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) →
(∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (〈𝑥, 𝑦〉 ∈ (◡𝐷 “ (0[,)𝑑)) → 〈𝑥, 𝑦〉 ∈ 𝑉))) |
| 62 | 32, 61 | bitr4d 282 |
. . . . . 6
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) ∧ 𝑑 ∈ ℝ+) → ((◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦))) |
| 63 | 62 | rexbidva 3177 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑑 ∈ ℝ+ (◡𝐷 “ (0[,)𝑑)) ⊆ 𝑉 ↔ ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦))) |
| 64 | 24, 63 | bitrd 279 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ⊆ (𝑋 × 𝑋)) → (∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉 ↔ ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦))) |
| 65 | 64 | pm5.32da 579 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → ((𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦)))) |
| 66 | 65 | adantl 481 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑉) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦)))) |
| 67 | 3, 4, 66 | 3bitrd 305 |
1
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ 𝑈 ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → 𝑥𝑉𝑦)))) |