MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant134 Structured version   Visualization version   GIF version

Theorem ad4ant134 1175
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad4ant134 ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem ad4ant134
StepHypRef Expression
1 ad4ant3.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expa 1119 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
32adantllr 718 1 ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  ad5ant245  1362  ad5ant134  1368  ad5ant135  1369  ad5ant145  1370  ralxfrd2  5411  gruwun  10808  lemul12b  12071  initoeu1  17961  termoeu1  17968  dflidl2lem  20842  quscrng  20878  metss  24017  wlkswwlksf1o  29133  climxlim2lem  44561  smflimlem4  45490
  Copyright terms: Public domain W3C validator