MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant134 Structured version   Visualization version   GIF version

Theorem ad4ant134 1175
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad4ant134 ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem ad4ant134
StepHypRef Expression
1 ad4ant3.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expa 1118 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
32adantllr 719 1 ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ad5ant245  1363  ad5ant134  1369  ad5ant135  1370  ad5ant145  1371  ralxfrd2  5387  gruwun  10832  lemul12b  12103  initoeu1  18029  termoeu1  18036  quscrng  21249  metss  24452  wlkswwlksf1o  29866  climxlim2lem  45854  smflimlem4  46783  isubgr3stgrlem8  47965
  Copyright terms: Public domain W3C validator