MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant134 Structured version   Visualization version   GIF version

Theorem ad4ant134 1173
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad4ant134 ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem ad4ant134
StepHypRef Expression
1 ad4ant3.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expa 1117 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
32adantllr 716 1 ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1088
This theorem is referenced by:  ad5ant245  1360  ad5ant134  1366  ad5ant135  1367  ad5ant145  1368  ralxfrd2  5410  gruwun  10814  lemul12b  12078  initoeu1  17971  termoeu1  17978  dflidl2lem  21080  quscrng  21118  metss  24337  wlkswwlksf1o  29567  climxlim2lem  45022  smflimlem4  45951
  Copyright terms: Public domain W3C validator