Step | Hyp | Ref
| Expression |
1 | | hspmbllem2.i |
. . 3
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) |
2 | | hspmbllem2.f |
. . 3
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) |
3 | 1, 2 | readdcld 10516 |
. 2
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ∈ ℝ) |
4 | | hspmbllem2.r |
. . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ) |
5 | | hspmbllem2.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
6 | 5 | rpred 12281 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ ℝ) |
7 | 4, 6 | readdcld 10516 |
. . 3
⊢ (𝜑 → (((voln*‘𝑋)‘𝐴) + 𝐸) ∈ ℝ) |
8 | | nfv 1892 |
. . . 4
⊢
Ⅎ𝑗𝜑 |
9 | | nnex 11492 |
. . . . 5
⊢ ℕ
∈ V |
10 | 9 | a1i 11 |
. . . 4
⊢ (𝜑 → ℕ ∈
V) |
11 | | icossicc 12674 |
. . . . 5
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
12 | | hspmbllem2.l |
. . . . . 6
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
13 | | hspmbllem2.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ Fin) |
14 | 13 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
15 | | hspmbllem2.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ
↑𝑚 𝑋)) |
16 | 15 | ffvelrnda 6716 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑋)) |
17 | | elmapi 8278 |
. . . . . . 7
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑋) → (𝐶‘𝑗):𝑋⟶ℝ) |
18 | 16, 17 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑋⟶ℝ) |
19 | | hspmbllem2.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ
↑𝑚 𝑋)) |
20 | 19 | ffvelrnda 6716 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑋)) |
21 | | elmapi 8278 |
. . . . . . 7
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑋) → (𝐷‘𝑗):𝑋⟶ℝ) |
22 | 20, 21 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) |
23 | 12, 14, 18, 22 | hoidmvcl 42426 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
24 | 11, 23 | sseldi 3887 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
25 | 8, 10, 24 | sge0clmpt 42269 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ (0[,]+∞)) |
26 | | hspmbllem2.k |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
27 | | ne0i 4220 |
. . . . . . . . 9
⊢ (𝐾 ∈ 𝑋 → 𝑋 ≠ ∅) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ≠ ∅) |
29 | 28 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ≠ ∅) |
30 | 12, 14, 29, 18, 22 | hoidmvn0val 42428 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
31 | 30 | mpteq2dva 5055 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) |
32 | 31 | fveq2d 6542 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))))) |
33 | | hspmbllem2.g |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸)) |
34 | 32, 33 | eqbrtrd 4984 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸)) |
35 | 7, 25, 34 | ge0lere 41369 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ ℝ) |
36 | | hspmbllem2.t |
. . . . . . . . 9
⊢ 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) |
37 | | hspmbllem2.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ ℝ) |
38 | 37 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑌 ∈ ℝ) |
39 | 36, 38, 14, 22 | hsphoif 42420 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑗)):𝑋⟶ℝ) |
40 | 12, 14, 18, 39 | hoidmvcl 42426 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
41 | 11, 40 | sseldi 3887 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
42 | 8, 10, 41 | sge0clmpt 42269 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) |
43 | | oveq2 7024 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (ℝ ↑𝑚
𝑥) = (ℝ
↑𝑚 𝑦)) |
44 | | eqeq1 2799 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) |
45 | | prodeq1 15096 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
46 | 44, 45 | ifbieq2d 4406 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
47 | 43, 43, 46 | mpoeq123dv 7087 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑎 ∈ (ℝ ↑𝑚
𝑦), 𝑏 ∈ (ℝ ↑𝑚
𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
48 | 47 | cbvmptv 5061 |
. . . . . . . . 9
⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ
↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑦 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑦), 𝑏 ∈ (ℝ ↑𝑚
𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
49 | 12, 48 | eqtri 2819 |
. . . . . . . 8
⊢ 𝐿 = (𝑦 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑦), 𝑏 ∈ (ℝ ↑𝑚
𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
50 | | diffi 8596 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ Fin → (𝑋 ∖ {𝐾}) ∈ Fin) |
51 | 13, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∖ {𝐾}) ∈ Fin) |
52 | | snfi 8442 |
. . . . . . . . . . 11
⊢ {𝐾} ∈ Fin |
53 | 52 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐾} ∈ Fin) |
54 | | unfi 8631 |
. . . . . . . . . 10
⊢ (((𝑋 ∖ {𝐾}) ∈ Fin ∧ {𝐾} ∈ Fin) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin) |
55 | 51, 53, 54 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin) |
56 | 55 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin) |
57 | | snidg 4504 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝑋 → 𝐾 ∈ {𝐾}) |
58 | 26, 57 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ {𝐾}) |
59 | | elun2 4074 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ {𝐾} → 𝐾 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})) |
60 | 58, 59 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})) |
61 | | neldifsnd 4633 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾})) |
62 | 60, 61 | eldifd 3870 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∖ (𝑋 ∖ {𝐾}))) |
63 | 62 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ (((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∖ (𝑋 ∖ {𝐾}))) |
64 | | eqid 2795 |
. . . . . . . 8
⊢ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ((𝑋 ∖ {𝐾}) ∪ {𝐾}) |
65 | | eqid 2795 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) |
66 | | uncom 4050 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾})) |
67 | 66 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾}))) |
68 | 26 | snssd 4649 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝐾} ⊆ 𝑋) |
69 | | undif 4344 |
. . . . . . . . . . . . 13
⊢ ({𝐾} ⊆ 𝑋 ↔ ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋) |
70 | 68, 69 | sylib 219 |
. . . . . . . . . . . 12
⊢ (𝜑 → ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋) |
71 | 67, 70 | eqtrd 2831 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋) |
72 | 71 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋) |
73 | 72 | feq2d 6368 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ ↔ (𝐶‘𝑗):𝑋⟶ℝ)) |
74 | 18, 73 | mpbird 258 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ) |
75 | 72 | feq2d 6368 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ ↔ (𝐷‘𝑗):𝑋⟶ℝ)) |
76 | 22, 75 | mpbird 258 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ) |
77 | 49, 56, 63, 64, 38, 65, 74, 76 | hsphoidmvle 42430 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷‘𝑗))) |
78 | 71 | fveq2d 6542 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (𝐿‘𝑋)) |
79 | | eqidd 2796 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶‘𝑗) = (𝐶‘𝑗)) |
80 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))) |
81 | 71 | oveq2d 7032 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℝ
↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (ℝ ↑𝑚
𝑋)) |
82 | 71 | mpteq1d 5049 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) |
83 | 81, 82 | mpteq12dv 5045 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑐 ∈ (ℝ ↑𝑚
((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) = (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) |
84 | 83 | eqcomd 2801 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) = (𝑐 ∈ (ℝ ↑𝑚
((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) |
85 | 84 | mpteq2dv 5056 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))) |
86 | 80, 85 | eqtr2d 2832 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) = 𝑇) |
87 | 86 | fveq1d 6540 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌) = (𝑇‘𝑌)) |
88 | 87 | fveq1d 6540 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗)) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) |
89 | 78, 79, 88 | oveq123d 7037 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) |
90 | 89 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) |
91 | 78 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (𝐿‘𝑋)) |
92 | 91 | oveqd 7033 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷‘𝑗)) = ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) |
93 | 90, 92 | breq12d 4975 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷‘𝑗)) ↔ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) |
94 | 77, 93 | mpbid 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) |
95 | 8, 10, 41, 24, 94 | sge0lempt 42254 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
96 | 35, 42, 95 | ge0lere 41369 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) ∈ ℝ) |
97 | | hspmbllem2.s |
. . . . . . . . . 10
⊢ 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ = 𝐾, if(𝑥 ≤ (𝑐‘ℎ), (𝑐‘ℎ), 𝑥), (𝑐‘ℎ))))) |
98 | 97, 38, 14, 18 | hoidifhspf 42462 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑆‘𝑌)‘(𝐶‘𝑗)):𝑋⟶ℝ) |
99 | 12, 14, 98, 22 | hoidmvcl 42426 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
100 | 99 | fmpttd 6742 |
. . . . . . 7
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))):ℕ⟶(0[,)+∞)) |
101 | 11 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (0[,)+∞) ⊆
(0[,]+∞)) |
102 | 100, 101 | fssd 6396 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))):ℕ⟶(0[,]+∞)) |
103 | 10, 102 | sge0cl 42225 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ (0[,]+∞)) |
104 | 11, 99 | sseldi 3887 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
105 | 26 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ 𝑋) |
106 | 12, 14, 18, 22, 105, 97, 38 | hoidifhspdmvle 42464 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)) ≤ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) |
107 | 8, 10, 104, 24, 106 | sge0lempt 42254 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
108 | 35, 103, 107 | ge0lere 41369 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ ℝ) |
109 | 37 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → 𝑌 ∈ ℝ) |
110 | 13 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → 𝑋 ∈ Fin) |
111 | | eleq1w 2865 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑙 → (𝑗 ∈ ℕ ↔ 𝑙 ∈ ℕ)) |
112 | 111 | anbi2d 628 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑙 → ((𝜑 ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ 𝑙 ∈ ℕ))) |
113 | | fveq2 6538 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑙 → (𝐷‘𝑗) = (𝐷‘𝑙)) |
114 | 113 | feq1d 6367 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑙 → ((𝐷‘𝑗):𝑋⟶ℝ ↔ (𝐷‘𝑙):𝑋⟶ℝ)) |
115 | 112, 114 | imbi12d 346 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑙 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) ↔ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐷‘𝑙):𝑋⟶ℝ))) |
116 | 115, 22 | chvarv 2370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐷‘𝑙):𝑋⟶ℝ) |
117 | 36, 109, 110, 116 | hsphoif 42420 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑙)):𝑋⟶ℝ) |
118 | | reex 10474 |
. . . . . . . . . . . 12
⊢ ℝ
∈ V |
119 | 118 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈
V) |
120 | 119, 13 | jca 512 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ ∈ V ∧
𝑋 ∈
Fin)) |
121 | 120 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (ℝ ∈ V
∧ 𝑋 ∈
Fin)) |
122 | | elmapg 8269 |
. . . . . . . . 9
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → (((𝑇‘𝑌)‘(𝐷‘𝑙)) ∈ (ℝ ↑𝑚
𝑋) ↔ ((𝑇‘𝑌)‘(𝐷‘𝑙)):𝑋⟶ℝ)) |
123 | 121, 122 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (((𝑇‘𝑌)‘(𝐷‘𝑙)) ∈ (ℝ ↑𝑚
𝑋) ↔ ((𝑇‘𝑌)‘(𝐷‘𝑙)):𝑋⟶ℝ)) |
124 | 117, 123 | mpbird 258 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑙)) ∈ (ℝ ↑𝑚
𝑋)) |
125 | 124 | fmpttd 6742 |
. . . . . 6
⊢ (𝜑 → (𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙))):ℕ⟶(ℝ
↑𝑚 𝑋)) |
126 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝜑) |
127 | | elinel1 4093 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ 𝐴) |
128 | 127 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ 𝐴) |
129 | | hspmbllem2.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
130 | 129 | sselda 3889 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
131 | | eliun 4829 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
132 | 130, 131 | sylib 219 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
133 | 126, 128,
132 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
134 | | simpll 763 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝜑) |
135 | | elinel2 4094 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
136 | 135 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
137 | 136 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
138 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
139 | | ixpfn 8316 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 Fn 𝑋) |
140 | 139 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 Fn 𝑋) |
141 | | nfv 1892 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) |
142 | | nfcv 2949 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘𝑓 |
143 | | nfixp1 8330 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) |
144 | 142, 143 | nfel 2961 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) |
145 | 141, 144 | nfan 1881 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
146 | 18 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (𝐶‘𝑗):𝑋⟶ℝ) |
147 | | simp3 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
148 | 146, 147 | ffvelrnd 6717 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈ ℝ) |
149 | 148 | rexrd 10537 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈
ℝ*) |
150 | 149 | ad5ant135 1361 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈
ℝ*) |
151 | 39 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝑇‘𝑌)‘(𝐷‘𝑗)):𝑋⟶ℝ) |
152 | 151, 147 | ffvelrnd 6717 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) ∈ ℝ) |
153 | 152 | rexrd 10537 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) ∈
ℝ*) |
154 | 153 | ad5ant135 1361 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) ∈
ℝ*) |
155 | | iftrue 4387 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌)) |
156 | | ioossre 12648 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(-∞(,)𝑌)
⊆ ℝ |
157 | 156 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝐾 → (-∞(,)𝑌) ⊆ ℝ) |
158 | 155, 157 | eqsstrd 3926 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) |
159 | | iffalse 4390 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = ℝ) |
160 | | ssid 3910 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ℝ
⊆ ℝ |
161 | 160 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑘 = 𝐾 → ℝ ⊆
ℝ) |
162 | 159, 161 | eqsstrd 3926 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) |
163 | 158, 162 | pm2.61i 183 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ |
164 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
165 | | hspmbllem2.h |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) |
166 | 165, 13, 26, 37 | hspval 42453 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) = X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
167 | 166 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → (𝐾(𝐻‘𝑋)𝑌) = X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
168 | 164, 167 | eleqtrd 2885 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
169 | 168 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → 𝑓 ∈ X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
170 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
171 | | vex 3440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑓 ∈ V |
172 | 171 | elixp 8317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) |
173 | 172 | biimpi 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) |
174 | 173 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
175 | 174 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
176 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
177 | | rspa 3173 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((∀𝑘 ∈
𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
178 | 175, 176,
177 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
179 | 169, 170,
178 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
180 | 163, 179 | sseldi 3887 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ℝ) |
181 | 180 | rexrd 10537 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) |
182 | 181 | ad4ant14 748 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) |
183 | 149 | ad4ant124 1166 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈
ℝ*) |
184 | 22 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (𝐷‘𝑗):𝑋⟶ℝ) |
185 | 184, 147 | ffvelrnd 6717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈ ℝ) |
186 | 185 | rexrd 10537 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) |
187 | 186 | ad4ant124 1166 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) |
188 | 171 | elixp 8317 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
189 | 188 | biimpi 217 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
190 | 189 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
191 | 190 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
192 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
193 | | rspa 3173 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((∀𝑘 ∈
𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
194 | 191, 192,
193 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
195 | 194 | adantll 710 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
196 | | icogelb 12638 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ* ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ* ∧ (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
197 | 183, 187,
195, 196 | syl3anc 1364 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
198 | 197 | adantl3r 746 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
199 | | icoltub 41345 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ* ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ* ∧ (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
200 | 183, 187,
195, 199 | syl3anc 1364 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
201 | 200 | adantl3r 746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
202 | 201 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
203 | | simpll 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → 𝜑) |
204 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
205 | 203, 204 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → (𝜑 ∧ 𝑗 ∈ ℕ)) |
206 | 205 | 3ad2ant1 1126 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝜑 ∧ 𝑗 ∈ ℕ)) |
207 | | simp2 1130 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑘 = 𝐾) |
208 | | simp3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) |
209 | | fveq2 6538 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 = 𝐾 → ((𝐷‘𝑗)‘𝑘) = ((𝐷‘𝑗)‘𝐾)) |
210 | 209 | breq1d 4972 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝐾 → (((𝐷‘𝑗)‘𝑘) ≤ 𝑌 ↔ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌)) |
211 | 210 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝐾) ≤ 𝑌) |
212 | 211 | iftrued 4389 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = ((𝐷‘𝑗)‘𝐾)) |
213 | 209 | eqcomd 2801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝐾 → ((𝐷‘𝑗)‘𝐾) = ((𝐷‘𝑗)‘𝑘)) |
214 | 213 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝐾) = ((𝐷‘𝑗)‘𝑘)) |
215 | 212, 214 | eqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = ((𝐷‘𝑗)‘𝑘)) |
216 | 215 | 3adant1 1123 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = ((𝐷‘𝑗)‘𝑘)) |
217 | | breq2 4966 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = 𝑌 → ((𝑐‘ℎ) ≤ 𝑦 ↔ (𝑐‘ℎ) ≤ 𝑌)) |
218 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) |
219 | 217, 218 | ifbieq2d 4406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = 𝑌 → if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦) = if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)) |
220 | 219 | ifeq2d 4400 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 = 𝑌 → if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)) = if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))) |
221 | 220 | mpteq2dv 5056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑦 = 𝑌 → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)))) |
222 | 221 | mpteq2dv 5056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = 𝑌 → (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) = (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))))) |
223 | | ovex 7048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (ℝ
↑𝑚 𝑋) ∈ V |
224 | 223 | mptex 6852 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 ∈ (ℝ
↑𝑚 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)))) ∈ V |
225 | 224 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)))) ∈ V) |
226 | 36, 222, 37, 225 | fvmptd3 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (𝑇‘𝑌) = (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))))) |
227 | 226 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑌) = (𝑐 ∈ (ℝ ↑𝑚
𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))))) |
228 | | fveq1 6537 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 = (𝐷‘𝑗) → (𝑐‘ℎ) = ((𝐷‘𝑗)‘ℎ)) |
229 | 228 | breq1d 4972 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 = (𝐷‘𝑗) → ((𝑐‘ℎ) ≤ 𝑌 ↔ ((𝐷‘𝑗)‘ℎ) ≤ 𝑌)) |
230 | 229, 228 | ifbieq1d 4404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 = (𝐷‘𝑗) → if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌) = if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) |
231 | 228, 230 | ifeq12d 4401 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑐 = (𝐷‘𝑗) → if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)) = if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) |
232 | 231 | mpteq2dv 5056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑐 = (𝐷‘𝑗) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) |
233 | 232 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑐 = (𝐷‘𝑗)) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) |
234 | | mptexg 6850 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑋 ∈ Fin → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) ∈ V) |
235 | 13, 234 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) ∈ V) |
236 | 235 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) ∈ V) |
237 | 227, 233,
20, 236 | fvmptd 6641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑗)) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) |
238 | 237 | fveq1d 6540 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘)) |
239 | 238 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘)) |
240 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝜑) |
241 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) |
242 | 240, 26 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝐾 ∈ 𝑋) |
243 | 241, 242 | eqeltrd 2883 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝑘 ∈ 𝑋) |
244 | | eqidd 2796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) |
245 | | eleq1w 2865 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ = 𝑘 → (ℎ ∈ (𝑋 ∖ {𝐾}) ↔ 𝑘 ∈ (𝑋 ∖ {𝐾}))) |
246 | | fveq2 6538 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ = 𝑘 → ((𝐷‘𝑗)‘ℎ) = ((𝐷‘𝑗)‘𝑘)) |
247 | 246 | breq1d 4972 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (ℎ = 𝑘 → (((𝐷‘𝑗)‘ℎ) ≤ 𝑌 ↔ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌)) |
248 | 247, 246 | ifbieq1d 4404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ = 𝑘 → if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌) = if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) |
249 | 245, 246,
248 | ifbieq12d 4408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (ℎ = 𝑘 → if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
250 | 249 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ ℎ = 𝑘) → if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
251 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
252 | | fvexd 6553 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → ((𝐷‘𝑗)‘𝑘) ∈ V) |
253 | | ifexg 4428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝐷‘𝑗)‘𝑘) ∈ V ∧ 𝑌 ∈ ℝ) → if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌) ∈ V) |
254 | 252, 37, 253 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌) ∈ V) |
255 | | ifexg 4428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝐷‘𝑗)‘𝑘) ∈ V ∧ if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌) ∈ V) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) ∈ V) |
256 | 252, 254,
255 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) ∈ V) |
257 | 256 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) ∈ V) |
258 | 244, 250,
251, 257 | fvmptd 6641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
259 | 240, 243,
258 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
260 | | eleq1 2870 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝐾 → (𝑘 ∈ (𝑋 ∖ {𝐾}) ↔ 𝐾 ∈ (𝑋 ∖ {𝐾}))) |
261 | 210, 209 | ifbieq1d 4404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝐾 → if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌) = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) |
262 | 260, 209,
261 | ifbieq12d 4408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 𝐾 → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) |
263 | 262 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) |
264 | 259, 263 | eqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) |
265 | 264 | 3adant2 1124 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) |
266 | | neldifsnd 4633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 = 𝐾 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾})) |
267 | 266 | iffalsed 4392 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝐾 → if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) |
268 | 267 | 3ad2ant3 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) |
269 | 239, 265,
268 | 3eqtrrd 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
270 | 269 | 3expa 1111 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
271 | 270 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
272 | 216, 271 | eqtr3d 2833 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
273 | 206, 207,
208, 272 | syl3anc 1364 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
274 | 273 | ad5ant145 1362 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
275 | 202, 274 | breqtrd 4988 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
276 | | mnfxr 10545 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ -∞
∈ ℝ* |
277 | 276 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → -∞ ∈
ℝ*) |
278 | 37 | rexrd 10537 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑌 ∈
ℝ*) |
279 | 278 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → 𝑌 ∈
ℝ*) |
280 | 279 | 3ad2ant1 1126 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → 𝑌 ∈
ℝ*) |
281 | 179 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
282 | 155 | 3ad2ant3 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌)) |
283 | 281, 282 | eleqtrd 2885 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ (-∞(,)𝑌)) |
284 | | iooltub 41347 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((-∞ ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ (𝑓‘𝑘) ∈ (-∞(,)𝑌)) → (𝑓‘𝑘) < 𝑌) |
285 | 277, 280,
283, 284 | syl3anc 1364 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) |
286 | 285 | 3adant1r 1170 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) |
287 | 286 | ad4ant123 1165 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < 𝑌) |
288 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) |
289 | 210 | notbid 319 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝐾 → (¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌 ↔ ¬ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌)) |
290 | 289 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌 ↔ ¬ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌)) |
291 | 288, 290 | mpbid 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ¬ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌) |
292 | 291 | iffalsed 4392 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = 𝑌) |
293 | | eqidd 2796 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = 𝑌) |
294 | 292, 293 | eqtr2d 2832 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) |
295 | 294 | adantll 710 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) |
296 | 270 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
297 | 296 | adantl3r 746 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
298 | 297 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
299 | 295, 298 | eqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
300 | 287, 299 | breqtrd 4988 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
301 | 300 | adantl3r 746 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
302 | 275, 301 | pm2.61dan 809 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
303 | 201 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
304 | 237 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝑇‘𝑌)‘(𝐷‘𝑗)) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) |
305 | 249 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) ∧ ℎ = 𝑘) → if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
306 | 257 | 3adant2 1124 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) ∈ V) |
307 | 304, 305,
147, 306 | fvmptd 6641 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
308 | 307 | 3expa 1111 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
309 | 308 | adantllr 715 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
310 | 309 | ad4ant13 747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
311 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ 𝑋) |
312 | | neqne 2992 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
𝑘 = 𝐾 → 𝑘 ≠ 𝐾) |
313 | | nelsn 4510 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ≠ 𝐾 → ¬ 𝑘 ∈ {𝐾}) |
314 | 312, 313 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (¬
𝑘 = 𝐾 → ¬ 𝑘 ∈ {𝐾}) |
315 | 314 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → ¬ 𝑘 ∈ {𝐾}) |
316 | 311, 315 | eldifd 3870 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑋 ∖ {𝐾})) |
317 | 316 | iftrued 4389 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = ((𝐷‘𝑗)‘𝑘)) |
318 | 317 | adantll 710 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = ((𝐷‘𝑗)‘𝑘)) |
319 | 310, 318 | eqtr2d 2832 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
320 | 303, 319 | breqtrd 4988 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
321 | 302, 320 | pm2.61dan 809 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
322 | 150, 154,
182, 198, 321 | elicod 12637 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
323 | 322 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑘 ∈ 𝑋 → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
324 | 145, 323 | ralrimi 3183 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
325 | 140, 324 | jca 512 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
326 | 171 | elixp 8317 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
327 | 325, 326 | sylibr 235 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
328 | 327 | ex 413 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → (𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
329 | 134, 137,
138, 328 | syl21anc 834 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → (𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
330 | 329 | reximdva 3237 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
331 | 133, 330 | mpd 15 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
332 | | eliun 4829 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
333 | 331, 332 | sylibr 235 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
334 | 333 | ralrimiva 3149 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
335 | | dfss3 3878 |
. . . . . . . 8
⊢ ((𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) ↔ ∀𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
336 | 334, 335 | sylibr 235 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
337 | | eqidd 2796 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙))) = (𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))) |
338 | | 2fveq3 6543 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑗 → ((𝑇‘𝑌)‘(𝐷‘𝑙)) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) |
339 | 338 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℕ ∧ 𝑙 = 𝑗) → ((𝑇‘𝑌)‘(𝐷‘𝑙)) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) |
340 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
341 | | fvexd 6553 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → ((𝑇‘𝑌)‘(𝐷‘𝑗)) ∈ V) |
342 | 337, 339,
340, 341 | fvmptd 6641 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → ((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) |
343 | 342 | fveq1d 6540 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
344 | 343 | oveq2d 7032 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
345 | 344 | ixpeq2dv 8326 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
346 | 345 | iuneq2i 4845 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
347 | 336, 346 | syl6sseqr 3939 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘))) |
348 | 13, 15, 125, 347, 12 | ovnlecvr2 42454 |
. . . . 5
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗))))) |
349 | 342 | oveq2d 7032 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)) = ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) |
350 | 349 | mpteq2ia 5051 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) |
351 | 350 | fveq2i 6541 |
. . . . . 6
⊢
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) |
352 | 351 | a1i 11 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))))) |
353 | 348, 352 | breqtrd 4988 |
. . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))))) |
354 | 15 | ffvelrnda 6716 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐶‘𝑙) ∈ (ℝ ↑𝑚
𝑋)) |
355 | | elmapi 8278 |
. . . . . . . . . 10
⊢ ((𝐶‘𝑙) ∈ (ℝ ↑𝑚
𝑋) → (𝐶‘𝑙):𝑋⟶ℝ) |
356 | 354, 355 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐶‘𝑙):𝑋⟶ℝ) |
357 | 97, 109, 110, 356 | hoidifhspf 42462 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ) |
358 | | elmapg 8269 |
. . . . . . . . . 10
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → (((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑𝑚
𝑋) ↔ ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ)) |
359 | 120, 358 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑𝑚
𝑋) ↔ ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ)) |
360 | 359 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑𝑚
𝑋) ↔ ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ)) |
361 | 357, 360 | mpbird 258 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑𝑚
𝑋)) |
362 | 361 | fmpttd 6742 |
. . . . . 6
⊢ (𝜑 → (𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙))):ℕ⟶(ℝ
↑𝑚 𝑋)) |
363 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝜑) |
364 | | eldifi 4024 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ 𝐴) |
365 | 364 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ 𝐴) |
366 | 363, 365,
132 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
367 | 139 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 Fn 𝑋) |
368 | | nfv 1892 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) |
369 | 368, 144 | nfan 1881 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
370 | 98 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝑆‘𝑌)‘(𝐶‘𝑗)):𝑋⟶ℝ) |
371 | 370, 147 | ffvelrnd 6717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ∈ ℝ) |
372 | 371 | rexrd 10537 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ∈
ℝ*) |
373 | 372 | ad5ant135 1361 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ∈
ℝ*) |
374 | 187 | adantl3r 746 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) |
375 | 148 | 3expa 1111 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈ ℝ) |
376 | 186 | 3expa 1111 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) |
377 | | icossre 12667 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ*) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
378 | 375, 376,
377 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
379 | 378 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
380 | 379, 195 | sseldd 3890 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ℝ) |
381 | 380 | rexrd 10537 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) |
382 | 381 | adantl3r 746 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) |
383 | 38 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → 𝑌 ∈ ℝ) |
384 | 14 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → 𝑋 ∈ Fin) |
385 | 97, 383, 384, 146, 147 | hoidifhspval3 42463 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘))) |
386 | 385 | ad5ant134 1360 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘))) |
387 | | iftrue 4387 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) |
388 | 387 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) |
389 | 386, 388 | eqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) |
390 | 389 | adantllr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) |
391 | | iftrue 4387 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑌 ≤ ((𝐶‘𝑗)‘𝑘) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = ((𝐶‘𝑗)‘𝑘)) |
392 | 391 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = ((𝐶‘𝑗)‘𝑘)) |
393 | 197 | adantl3r 746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
394 | 393 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
395 | 392, 394 | eqbrtrd 4984 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) ≤ (𝑓‘𝑘)) |
396 | | iffalse 4390 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑌 ≤ ((𝐶‘𝑗)‘𝑘) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = 𝑌) |
397 | 396 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = 𝑌) |
398 | | simpl1 1184 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) |
399 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑌 ≤ (𝑓‘𝑘)) |
400 | | fveq2 6538 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 = 𝐾 → (𝑓‘𝑘) = (𝑓‘𝐾)) |
401 | 400 | breq2d 4974 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝐾 → (𝑌 ≤ (𝑓‘𝑘) ↔ 𝑌 ≤ (𝑓‘𝐾))) |
402 | 401 | notbid 319 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝐾 → (¬ 𝑌 ≤ (𝑓‘𝑘) ↔ ¬ 𝑌 ≤ (𝑓‘𝐾))) |
403 | 402 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (¬ 𝑌 ≤ (𝑓‘𝑘) ↔ ¬ 𝑌 ≤ (𝑓‘𝐾))) |
404 | 399, 403 | mpbid 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑌 ≤ (𝑓‘𝐾)) |
405 | 404 | 3ad2antl3 1180 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑌 ≤ (𝑓‘𝐾)) |
406 | 400 | eqcomd 2801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝐾 → (𝑓‘𝐾) = (𝑓‘𝑘)) |
407 | 406 | 3ad2ant3 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝐾) = (𝑓‘𝑘)) |
408 | 366 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
409 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝜑 ∧ 𝑗 ∈ ℕ)) |
410 | 409 | ad4ant13 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝜑 ∧ 𝑗 ∈ ℕ)) |
411 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
412 | 251 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑘 ∈ 𝑋) |
413 | 410, 411,
412, 380 | syl21anc 834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓‘𝑘) ∈ ℝ) |
414 | 413 | rexlimdva2 3250 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝑓‘𝑘) ∈ ℝ)) |
415 | 414 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝑓‘𝑘) ∈ ℝ)) |
416 | 408, 415 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ℝ) |
417 | 416 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ ℝ) |
418 | 407, 417 | eqeltrd 2883 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝐾) ∈ ℝ) |
419 | 418 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝑓‘𝐾) ∈ ℝ) |
420 | 398, 363,
37 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → 𝑌 ∈ ℝ) |
421 | 419, 420 | ltnled 10634 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ((𝑓‘𝐾) < 𝑌 ↔ ¬ 𝑌 ≤ (𝑓‘𝐾))) |
422 | 405, 421 | mpbird 258 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝑓‘𝐾) < 𝑌) |
423 | 367, 366 | r19.29a 3252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 Fn 𝑋) |
424 | 423 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) → 𝑓 Fn 𝑋) |
425 | 276 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → -∞ ∈
ℝ*) |
426 | 278 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ∈
ℝ*) |
427 | 416 | ad4ant13 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ ℝ) |
428 | 427 | mnfltd 12369 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → -∞ < (𝑓‘𝑘)) |
429 | 400 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓‘𝐾) < 𝑌 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) = (𝑓‘𝐾)) |
430 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓‘𝐾) < 𝑌 ∧ 𝑘 = 𝐾) → (𝑓‘𝐾) < 𝑌) |
431 | 429, 430 | eqbrtrd 4984 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓‘𝐾) < 𝑌 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) |
432 | 431 | ad4ant24 750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) |
433 | 425, 426,
427, 428, 432 | eliood 41334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ (-∞(,)𝑌)) |
434 | 155 | eqcomd 2801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝐾 → (-∞(,)𝑌) = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
435 | 434 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (-∞(,)𝑌) = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
436 | 433, 435 | eleqtrd 2885 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
437 | 416 | ad4ant13 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ ℝ) |
438 | 159 | eqcomd 2801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑘 = 𝐾 → ℝ = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
439 | 438 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → ℝ = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
440 | 437, 439 | eleqtrd 2885 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
441 | 436, 440 | pm2.61dan 809 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
442 | 441 | ralrimiva 3149 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
443 | 424, 442 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) |
444 | 398, 422,
443 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) |
445 | 444, 172 | sylibr 235 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
446 | 166 | eqcomd 2801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻‘𝑋)𝑌)) |
447 | 446 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻‘𝑋)𝑌)) |
448 | 447 | 3ad2antl1 1178 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻‘𝑋)𝑌)) |
449 | 445, 448 | eleqtrd 2885 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
450 | | eldifn 4025 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
451 | 450 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
452 | 451 | 3ad2ant1 1126 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
453 | 452 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
454 | 449, 453 | condan 814 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → 𝑌 ≤ (𝑓‘𝑘)) |
455 | 454 | ad5ant145 1362 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ≤ (𝑓‘𝑘)) |
456 | 455 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → 𝑌 ≤ (𝑓‘𝑘)) |
457 | 397, 456 | eqbrtrd 4984 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) ≤ (𝑓‘𝑘)) |
458 | 395, 457 | pm2.61dan 809 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) ≤ (𝑓‘𝑘)) |
459 | 390, 458 | eqbrtrd 4984 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) |
460 | 385 | ad5ant124 1358 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘))) |
461 | | iffalse 4390 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = ((𝐶‘𝑗)‘𝑘)) |
462 | 461 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = ((𝐶‘𝑗)‘𝑘)) |
463 | 460, 462 | eqtrd 2831 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
464 | 197 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
465 | 463, 464 | eqbrtrd 4984 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) |
466 | 465 | adantl4r 751 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) |
467 | 459, 466 | pm2.61dan 809 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) |
468 | 200 | adantl3r 746 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
469 | 373, 374,
382, 467, 468 | elicod 12637 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
470 | 469 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑘 ∈ 𝑋 → (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
471 | 369, 470 | ralrimi 3183 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
472 | 367, 471 | jca 512 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
473 | 171 | elixp 8317 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
474 | 472, 473 | sylibr 235 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
475 | | eqidd 2796 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → (𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙))) = (𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))) |
476 | | 2fveq3 6543 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 = 𝑗 → ((𝑆‘𝑌)‘(𝐶‘𝑙)) = ((𝑆‘𝑌)‘(𝐶‘𝑗))) |
477 | 476 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ ℕ ∧ 𝑙 = 𝑗) → ((𝑆‘𝑌)‘(𝐶‘𝑙)) = ((𝑆‘𝑌)‘(𝐶‘𝑗))) |
478 | | fvexd 6553 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → ((𝑆‘𝑌)‘(𝐶‘𝑗)) ∈ V) |
479 | 475, 477,
340, 478 | fvmptd 6641 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → ((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗) = ((𝑆‘𝑌)‘(𝐶‘𝑗))) |
480 | 479 | fveq1d 6540 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘) = (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)) |
481 | 480 | oveq1d 7031 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
482 | 481 | ixpeq2dv 8326 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
483 | 482 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
484 | 483 | eleq2d 2868 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
485 | 474, 484 | mpbird 258 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
486 | 485 | ex 413 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → (𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
487 | 486 | reximdva 3237 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
488 | 366, 487 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
489 | | eliun 4829 |
. . . . . . . . 9
⊢ (𝑓 ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
490 | 488, 489 | sylibr 235 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
491 | 490 | ralrimiva 3149 |
. . . . . . 7
⊢ (𝜑 → ∀𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
492 | | dfss3 3878 |
. . . . . . 7
⊢ ((𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ∀𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
493 | 491, 492 | sylibr 235 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
494 | 13, 362, 19, 493, 12 | ovnlecvr2 42454 |
. . . . 5
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
495 | 479 | oveq1d 7031 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))) |
496 | 495 | mpteq2ia 5051 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))) |
497 | 496 | fveq2i 6541 |
. . . . . 6
⊢
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) |
498 | 497 | a1i 11 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) |
499 | 494, 498 | breqtrd 4988 |
. . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) |
500 | 1, 2, 96, 108, 353, 499 | leadd12dd 41144 |
. . 3
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) |
501 | 14, 105, 38, 18, 22, 12, 36, 97 | hspmbllem1 42470 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) |
502 | 501 | mpteq2dva 5055 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) |
503 | 502 | fveq2d 6542 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) |
504 | 8, 10, 41, 104 | sge0xadd 42279 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) =
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) |
505 | 96, 108 | rexaddd 12477 |
. . . 4
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) =
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) |
506 | 503, 504,
505 | 3eqtrrd 2836 |
. . 3
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
507 | 500, 506 | breqtrd 4988 |
. 2
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
508 | 3, 35, 7, 507, 34 | letrd 10644 |
1
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸)) |