Step | Hyp | Ref
| Expression |
1 | | hspmbllem2.i |
. . 3
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) |
2 | | hspmbllem2.f |
. . 3
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) |
3 | 1, 2 | readdcld 11004 |
. 2
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ∈ ℝ) |
4 | | hspmbllem2.r |
. . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ) |
5 | | hspmbllem2.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
6 | 5 | rpred 12772 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ ℝ) |
7 | 4, 6 | readdcld 11004 |
. . 3
⊢ (𝜑 → (((voln*‘𝑋)‘𝐴) + 𝐸) ∈ ℝ) |
8 | | nfv 1917 |
. . . 4
⊢
Ⅎ𝑗𝜑 |
9 | | nnex 11979 |
. . . . 5
⊢ ℕ
∈ V |
10 | 9 | a1i 11 |
. . . 4
⊢ (𝜑 → ℕ ∈
V) |
11 | | icossicc 13168 |
. . . . 5
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
12 | | hspmbllem2.l |
. . . . . 6
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
13 | | hspmbllem2.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ Fin) |
14 | 13 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
15 | | hspmbllem2.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑋)) |
16 | 15 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑋)) |
17 | | elmapi 8637 |
. . . . . . 7
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑋) → (𝐶‘𝑗):𝑋⟶ℝ) |
18 | 16, 17 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑋⟶ℝ) |
19 | | hspmbllem2.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑋)) |
20 | 19 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑋)) |
21 | | elmapi 8637 |
. . . . . . 7
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑋) → (𝐷‘𝑗):𝑋⟶ℝ) |
22 | 20, 21 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) |
23 | 12, 14, 18, 22 | hoidmvcl 44120 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
24 | 11, 23 | sselid 3919 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
25 | 8, 10, 24 | sge0clmpt 43963 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ (0[,]+∞)) |
26 | | hspmbllem2.k |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
27 | | ne0i 4268 |
. . . . . . . . 9
⊢ (𝐾 ∈ 𝑋 → 𝑋 ≠ ∅) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ≠ ∅) |
29 | 28 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ≠ ∅) |
30 | 12, 14, 29, 18, 22 | hoidmvn0val 44122 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
31 | 30 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) |
32 | 31 | fveq2d 6778 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))))) |
33 | | hspmbllem2.g |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸)) |
34 | 32, 33 | eqbrtrd 5096 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸)) |
35 | 7, 25, 34 | ge0lere 43070 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ ℝ) |
36 | | hspmbllem2.t |
. . . . . . . . 9
⊢ 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) |
37 | | hspmbllem2.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ ℝ) |
38 | 37 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑌 ∈ ℝ) |
39 | 36, 38, 14, 22 | hsphoif 44114 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑗)):𝑋⟶ℝ) |
40 | 12, 14, 18, 39 | hoidmvcl 44120 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
41 | 11, 40 | sselid 3919 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
42 | 8, 10, 41 | sge0clmpt 43963 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) |
43 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (ℝ ↑m 𝑥) = (ℝ ↑m
𝑦)) |
44 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) |
45 | | prodeq1 15619 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
46 | 44, 45 | ifbieq2d 4485 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
47 | 43, 43, 46 | mpoeq123dv 7350 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑦), 𝑏 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
48 | 47 | cbvmptv 5187 |
. . . . . . . . 9
⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ
↑m 𝑥),
𝑏 ∈ (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑦 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑦), 𝑏 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
49 | 12, 48 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐿 = (𝑦 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑦), 𝑏 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
50 | | diffi 8962 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ Fin → (𝑋 ∖ {𝐾}) ∈ Fin) |
51 | 13, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∖ {𝐾}) ∈ Fin) |
52 | | snfi 8834 |
. . . . . . . . . . 11
⊢ {𝐾} ∈ Fin |
53 | 52 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐾} ∈ Fin) |
54 | | unfi 8955 |
. . . . . . . . . 10
⊢ (((𝑋 ∖ {𝐾}) ∈ Fin ∧ {𝐾} ∈ Fin) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin) |
55 | 51, 53, 54 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin) |
56 | 55 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin) |
57 | | snidg 4595 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝑋 → 𝐾 ∈ {𝐾}) |
58 | 26, 57 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ {𝐾}) |
59 | | elun2 4111 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ {𝐾} → 𝐾 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})) |
60 | 58, 59 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})) |
61 | | neldifsnd 4726 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾})) |
62 | 60, 61 | eldifd 3898 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∖ (𝑋 ∖ {𝐾}))) |
63 | 62 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ (((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∖ (𝑋 ∖ {𝐾}))) |
64 | | eqid 2738 |
. . . . . . . 8
⊢ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ((𝑋 ∖ {𝐾}) ∪ {𝐾}) |
65 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m ((𝑋
∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) |
66 | | uncom 4087 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾})) |
67 | 66 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾}))) |
68 | 26 | snssd 4742 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝐾} ⊆ 𝑋) |
69 | | undif 4415 |
. . . . . . . . . . . . 13
⊢ ({𝐾} ⊆ 𝑋 ↔ ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋) |
70 | 68, 69 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋) |
71 | 67, 70 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋) |
72 | 71 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋) |
73 | 72 | feq2d 6586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ ↔ (𝐶‘𝑗):𝑋⟶ℝ)) |
74 | 18, 73 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ) |
75 | 72 | feq2d 6586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ ↔ (𝐷‘𝑗):𝑋⟶ℝ)) |
76 | 22, 75 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ) |
77 | 49, 56, 63, 64, 38, 65, 74, 76 | hsphoidmvle 44124 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷‘𝑗))) |
78 | 71 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (𝐿‘𝑋)) |
79 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶‘𝑗) = (𝐶‘𝑗)) |
80 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))) |
81 | 71 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℝ
↑m ((𝑋
∖ {𝐾}) ∪ {𝐾})) = (ℝ
↑m 𝑋)) |
82 | 71 | mpteq1d 5169 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) |
83 | 81, 82 | mpteq12dv 5165 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) |
84 | 83 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) = (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) |
85 | 84 | mpteq2dv 5176 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))) |
86 | 80, 85 | eqtr2d 2779 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) = 𝑇) |
87 | 86 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌) = (𝑇‘𝑌)) |
88 | 87 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗)) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) |
89 | 78, 79, 88 | oveq123d 7296 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) |
90 | 89 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) |
91 | 78 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (𝐿‘𝑋)) |
92 | 91 | oveqd 7292 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷‘𝑗)) = ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) |
93 | 90, 92 | breq12d 5087 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷‘𝑗)) ↔ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) |
94 | 77, 93 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) |
95 | 8, 10, 41, 24, 94 | sge0lempt 43948 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
96 | 35, 42, 95 | ge0lere 43070 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) ∈ ℝ) |
97 | | hspmbllem2.s |
. . . . . . . . . 10
⊢ 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ = 𝐾, if(𝑥 ≤ (𝑐‘ℎ), (𝑐‘ℎ), 𝑥), (𝑐‘ℎ))))) |
98 | 97, 38, 14, 18 | hoidifhspf 44156 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑆‘𝑌)‘(𝐶‘𝑗)):𝑋⟶ℝ) |
99 | 12, 14, 98, 22 | hoidmvcl 44120 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
100 | 99 | fmpttd 6989 |
. . . . . . 7
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))):ℕ⟶(0[,)+∞)) |
101 | 11 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (0[,)+∞) ⊆
(0[,]+∞)) |
102 | 100, 101 | fssd 6618 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))):ℕ⟶(0[,]+∞)) |
103 | 10, 102 | sge0cl 43919 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ (0[,]+∞)) |
104 | 11, 99 | sselid 3919 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
105 | 26 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ 𝑋) |
106 | 12, 14, 18, 22, 105, 97, 38 | hoidifhspdmvle 44158 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)) ≤ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) |
107 | 8, 10, 104, 24, 106 | sge0lempt 43948 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
108 | 35, 103, 107 | ge0lere 43070 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ ℝ) |
109 | 37 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → 𝑌 ∈ ℝ) |
110 | 13 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → 𝑋 ∈ Fin) |
111 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑙 → (𝑗 ∈ ℕ ↔ 𝑙 ∈ ℕ)) |
112 | 111 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑙 → ((𝜑 ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ 𝑙 ∈ ℕ))) |
113 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑙 → (𝐷‘𝑗) = (𝐷‘𝑙)) |
114 | 113 | feq1d 6585 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑙 → ((𝐷‘𝑗):𝑋⟶ℝ ↔ (𝐷‘𝑙):𝑋⟶ℝ)) |
115 | 112, 114 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑙 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) ↔ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐷‘𝑙):𝑋⟶ℝ))) |
116 | 115, 22 | chvarvv 2002 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐷‘𝑙):𝑋⟶ℝ) |
117 | 36, 109, 110, 116 | hsphoif 44114 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑙)):𝑋⟶ℝ) |
118 | | reex 10962 |
. . . . . . . . . . . 12
⊢ ℝ
∈ V |
119 | 118 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈
V) |
120 | 119, 13 | jca 512 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ ∈ V ∧
𝑋 ∈
Fin)) |
121 | 120 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (ℝ ∈ V
∧ 𝑋 ∈
Fin)) |
122 | | elmapg 8628 |
. . . . . . . . 9
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → (((𝑇‘𝑌)‘(𝐷‘𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑇‘𝑌)‘(𝐷‘𝑙)):𝑋⟶ℝ)) |
123 | 121, 122 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (((𝑇‘𝑌)‘(𝐷‘𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑇‘𝑌)‘(𝐷‘𝑙)):𝑋⟶ℝ)) |
124 | 117, 123 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑙)) ∈ (ℝ ↑m 𝑋)) |
125 | 124 | fmpttd 6989 |
. . . . . 6
⊢ (𝜑 → (𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙))):ℕ⟶(ℝ
↑m 𝑋)) |
126 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝜑) |
127 | | elinel1 4129 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ 𝐴) |
128 | 127 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ 𝐴) |
129 | | hspmbllem2.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
130 | 129 | sselda 3921 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
131 | | eliun 4928 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
132 | 130, 131 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
133 | 126, 128,
132 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
134 | | simpll 764 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝜑) |
135 | | elinel2 4130 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
136 | 135 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
137 | 136 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
138 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
139 | | ixpfn 8691 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 Fn 𝑋) |
140 | 139 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 Fn 𝑋) |
141 | | nfv 1917 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) |
142 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘𝑓 |
143 | | nfixp1 8706 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) |
144 | 142, 143 | nfel 2921 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) |
145 | 141, 144 | nfan 1902 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
146 | 18 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (𝐶‘𝑗):𝑋⟶ℝ) |
147 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
148 | 146, 147 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈ ℝ) |
149 | 148 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈
ℝ*) |
150 | 149 | ad5ant135 1367 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈
ℝ*) |
151 | 39 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝑇‘𝑌)‘(𝐷‘𝑗)):𝑋⟶ℝ) |
152 | 151, 147 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) ∈ ℝ) |
153 | 152 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) ∈
ℝ*) |
154 | 153 | ad5ant135 1367 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) ∈
ℝ*) |
155 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌)) |
156 | | ioossre 13140 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(-∞(,)𝑌)
⊆ ℝ |
157 | 156 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝐾 → (-∞(,)𝑌) ⊆ ℝ) |
158 | 155, 157 | eqsstrd 3959 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) |
159 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = ℝ) |
160 | | ssid 3943 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ℝ
⊆ ℝ |
161 | 160 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑘 = 𝐾 → ℝ ⊆
ℝ) |
162 | 159, 161 | eqsstrd 3959 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) |
163 | 158, 162 | pm2.61i 182 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ |
164 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
165 | | hspmbllem2.h |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) |
166 | 165, 13, 26, 37 | hspval 44147 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) = X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
167 | 166 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → (𝐾(𝐻‘𝑋)𝑌) = X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
168 | 164, 167 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
169 | 168 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → 𝑓 ∈ X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
170 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
171 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑓 ∈ V |
172 | 171 | elixp 8692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) |
173 | 172 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) |
174 | 173 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
175 | 174 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
176 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
177 | | rspa 3132 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((∀𝑘 ∈
𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
178 | 175, 176,
177 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
179 | 169, 170,
178 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
180 | 163, 179 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ℝ) |
181 | 180 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) |
182 | 181 | ad4ant14 749 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) |
183 | 149 | ad4ant124 1172 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈
ℝ*) |
184 | 22 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (𝐷‘𝑗):𝑋⟶ℝ) |
185 | 184, 147 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈ ℝ) |
186 | 185 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) |
187 | 186 | ad4ant124 1172 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) |
188 | 171 | elixp 8692 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
189 | 188 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
190 | 189 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
191 | 190 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
192 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
193 | | rspa 3132 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((∀𝑘 ∈
𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
194 | 191, 192,
193 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
195 | 194 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
196 | | icogelb 13130 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ* ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ* ∧ (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
197 | 183, 187,
195, 196 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
198 | 197 | adantl3r 747 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
199 | | icoltub 43046 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ* ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ* ∧ (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
200 | 183, 187,
195, 199 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
201 | 200 | adantl3r 747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
202 | 201 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
203 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → 𝜑) |
204 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
205 | 203, 204 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → (𝜑 ∧ 𝑗 ∈ ℕ)) |
206 | 205 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝜑 ∧ 𝑗 ∈ ℕ)) |
207 | | simp2 1136 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑘 = 𝐾) |
208 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) |
209 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 = 𝐾 → ((𝐷‘𝑗)‘𝑘) = ((𝐷‘𝑗)‘𝐾)) |
210 | 209 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝐾 → (((𝐷‘𝑗)‘𝑘) ≤ 𝑌 ↔ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌)) |
211 | 210 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝐾) ≤ 𝑌) |
212 | 211 | iftrued 4467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = ((𝐷‘𝑗)‘𝐾)) |
213 | 209 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝐾 → ((𝐷‘𝑗)‘𝐾) = ((𝐷‘𝑗)‘𝑘)) |
214 | 213 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝐾) = ((𝐷‘𝑗)‘𝑘)) |
215 | 212, 214 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = ((𝐷‘𝑗)‘𝑘)) |
216 | 215 | 3adant1 1129 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = ((𝐷‘𝑗)‘𝑘)) |
217 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = 𝑌 → ((𝑐‘ℎ) ≤ 𝑦 ↔ (𝑐‘ℎ) ≤ 𝑌)) |
218 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) |
219 | 217, 218 | ifbieq2d 4485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = 𝑌 → if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦) = if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)) |
220 | 219 | ifeq2d 4479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 = 𝑌 → if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)) = if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))) |
221 | 220 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑦 = 𝑌 → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)))) |
222 | 221 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = 𝑌 → (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))))) |
223 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (ℝ
↑m 𝑋)
∈ V |
224 | 223 | mptex 7099 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 ∈ (ℝ
↑m 𝑋)
↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)))) ∈ V |
225 | 224 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)))) ∈ V) |
226 | 36, 222, 37, 225 | fvmptd3 6898 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (𝑇‘𝑌) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))))) |
227 | 226 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑌) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))))) |
228 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 = (𝐷‘𝑗) → (𝑐‘ℎ) = ((𝐷‘𝑗)‘ℎ)) |
229 | 228 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 = (𝐷‘𝑗) → ((𝑐‘ℎ) ≤ 𝑌 ↔ ((𝐷‘𝑗)‘ℎ) ≤ 𝑌)) |
230 | 229, 228 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 = (𝐷‘𝑗) → if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌) = if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) |
231 | 228, 230 | ifeq12d 4480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑐 = (𝐷‘𝑗) → if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)) = if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) |
232 | 231 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑐 = (𝐷‘𝑗) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) |
233 | 232 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑐 = (𝐷‘𝑗)) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) |
234 | | mptexg 7097 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑋 ∈ Fin → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) ∈ V) |
235 | 13, 234 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) ∈ V) |
236 | 235 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) ∈ V) |
237 | 227, 233,
20, 236 | fvmptd 6882 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑗)) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) |
238 | 237 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘)) |
239 | 238 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘)) |
240 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝜑) |
241 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) |
242 | 240, 26 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝐾 ∈ 𝑋) |
243 | 241, 242 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝑘 ∈ 𝑋) |
244 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) |
245 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ = 𝑘 → (ℎ ∈ (𝑋 ∖ {𝐾}) ↔ 𝑘 ∈ (𝑋 ∖ {𝐾}))) |
246 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ = 𝑘 → ((𝐷‘𝑗)‘ℎ) = ((𝐷‘𝑗)‘𝑘)) |
247 | 246 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (ℎ = 𝑘 → (((𝐷‘𝑗)‘ℎ) ≤ 𝑌 ↔ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌)) |
248 | 247, 246 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ = 𝑘 → if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌) = if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) |
249 | 245, 246,
248 | ifbieq12d 4487 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (ℎ = 𝑘 → if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
250 | 249 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ ℎ = 𝑘) → if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
251 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
252 | | fvexd 6789 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → ((𝐷‘𝑗)‘𝑘) ∈ V) |
253 | 252, 37 | ifexd 4507 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌) ∈ V) |
254 | 252, 253 | ifexd 4507 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) ∈ V) |
255 | 254 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) ∈ V) |
256 | 244, 250,
251, 255 | fvmptd 6882 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
257 | 240, 243,
256 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
258 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝐾 → (𝑘 ∈ (𝑋 ∖ {𝐾}) ↔ 𝐾 ∈ (𝑋 ∖ {𝐾}))) |
259 | 210, 209 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝐾 → if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌) = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) |
260 | 258, 209,
259 | ifbieq12d 4487 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 𝐾 → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) |
261 | 260 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) |
262 | 257, 261 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) |
263 | 262 | 3adant2 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) |
264 | | neldifsnd 4726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 = 𝐾 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾})) |
265 | 264 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝐾 → if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) |
266 | 265 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) |
267 | 239, 263,
266 | 3eqtrrd 2783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
268 | 267 | 3expa 1117 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
269 | 268 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
270 | 216, 269 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
271 | 206, 207,
208, 270 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
272 | 271 | ad5ant145 1368 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
273 | 202, 272 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
274 | | mnfxr 11032 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ -∞
∈ ℝ* |
275 | 274 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → -∞ ∈
ℝ*) |
276 | 37 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑌 ∈
ℝ*) |
277 | 276 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → 𝑌 ∈
ℝ*) |
278 | 277 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → 𝑌 ∈
ℝ*) |
279 | 179 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
280 | 155 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌)) |
281 | 279, 280 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ (-∞(,)𝑌)) |
282 | | iooltub 43048 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((-∞ ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ (𝑓‘𝑘) ∈ (-∞(,)𝑌)) → (𝑓‘𝑘) < 𝑌) |
283 | 275, 278,
281, 282 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) |
284 | 283 | 3adant1r 1176 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) |
285 | 284 | ad4ant123 1171 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < 𝑌) |
286 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) |
287 | 210 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝐾 → (¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌 ↔ ¬ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌)) |
288 | 287 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌 ↔ ¬ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌)) |
289 | 286, 288 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ¬ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌) |
290 | 289 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = 𝑌) |
291 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = 𝑌) |
292 | 290, 291 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) |
293 | 292 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) |
294 | 268 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
295 | 294 | adantl3r 747 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
296 | 295 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
297 | 293, 296 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
298 | 285, 297 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
299 | 298 | adantl3r 747 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
300 | 273, 299 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
301 | 201 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
302 | 237 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝑇‘𝑌)‘(𝐷‘𝑗)) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) |
303 | 249 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) ∧ ℎ = 𝑘) → if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
304 | 255 | 3adant2 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) ∈ V) |
305 | 302, 303,
147, 304 | fvmptd 6882 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
306 | 305 | 3expa 1117 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
307 | 306 | adantllr 716 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
308 | 307 | ad4ant13 748 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) |
309 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ 𝑋) |
310 | | neqne 2951 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
𝑘 = 𝐾 → 𝑘 ≠ 𝐾) |
311 | | nelsn 4601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ≠ 𝐾 → ¬ 𝑘 ∈ {𝐾}) |
312 | 310, 311 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (¬
𝑘 = 𝐾 → ¬ 𝑘 ∈ {𝐾}) |
313 | 312 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → ¬ 𝑘 ∈ {𝐾}) |
314 | 309, 313 | eldifd 3898 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑋 ∖ {𝐾})) |
315 | 314 | iftrued 4467 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = ((𝐷‘𝑗)‘𝑘)) |
316 | 315 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = ((𝐷‘𝑗)‘𝑘)) |
317 | 308, 316 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
318 | 301, 317 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
319 | 300, 318 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
320 | 150, 154,
182, 198, 319 | elicod 13129 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
321 | 320 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑘 ∈ 𝑋 → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
322 | 145, 321 | ralrimi 3141 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
323 | 140, 322 | jca 512 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
324 | 171 | elixp 8692 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
325 | 323, 324 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
326 | 325 | ex 413 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → (𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
327 | 134, 137,
138, 326 | syl21anc 835 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → (𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
328 | 327 | reximdva 3203 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) |
329 | 133, 328 | mpd 15 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
330 | | eliun 4928 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
331 | 329, 330 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
332 | 331 | ralrimiva 3103 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
333 | | dfss3 3909 |
. . . . . . . 8
⊢ ((𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) ↔ ∀𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
334 | 332, 333 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
335 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙))) = (𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))) |
336 | | 2fveq3 6779 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑗 → ((𝑇‘𝑌)‘(𝐷‘𝑙)) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) |
337 | 336 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℕ ∧ 𝑙 = 𝑗) → ((𝑇‘𝑌)‘(𝐷‘𝑙)) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) |
338 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
339 | | fvexd 6789 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → ((𝑇‘𝑌)‘(𝐷‘𝑗)) ∈ V) |
340 | 335, 337,
338, 339 | fvmptd 6882 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → ((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) |
341 | 340 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
342 | 341 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
343 | 342 | ixpeq2dv 8701 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) |
344 | 343 | iuneq2i 4945 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) |
345 | 334, 344 | sseqtrrdi 3972 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘))) |
346 | 13, 15, 125, 345, 12 | ovnlecvr2 44148 |
. . . . 5
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗))))) |
347 | 340 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)) = ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) |
348 | 347 | mpteq2ia 5177 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) |
349 | 348 | fveq2i 6777 |
. . . . . 6
⊢
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) |
350 | 349 | a1i 11 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))))) |
351 | 346, 350 | breqtrd 5100 |
. . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))))) |
352 | 15 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐶‘𝑙) ∈ (ℝ ↑m 𝑋)) |
353 | | elmapi 8637 |
. . . . . . . . . 10
⊢ ((𝐶‘𝑙) ∈ (ℝ ↑m 𝑋) → (𝐶‘𝑙):𝑋⟶ℝ) |
354 | 352, 353 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐶‘𝑙):𝑋⟶ℝ) |
355 | 97, 109, 110, 354 | hoidifhspf 44156 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ) |
356 | | elmapg 8628 |
. . . . . . . . . 10
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → (((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ)) |
357 | 120, 356 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ)) |
358 | 357 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ)) |
359 | 355, 358 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑m 𝑋)) |
360 | 359 | fmpttd 6989 |
. . . . . 6
⊢ (𝜑 → (𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙))):ℕ⟶(ℝ
↑m 𝑋)) |
361 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝜑) |
362 | | eldifi 4061 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ 𝐴) |
363 | 362 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ 𝐴) |
364 | 361, 363,
132 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
365 | 139 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 Fn 𝑋) |
366 | | nfv 1917 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) |
367 | 366, 144 | nfan 1902 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
368 | 98 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝑆‘𝑌)‘(𝐶‘𝑗)):𝑋⟶ℝ) |
369 | 368, 147 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ∈ ℝ) |
370 | 369 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ∈
ℝ*) |
371 | 370 | ad5ant135 1367 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ∈
ℝ*) |
372 | 187 | adantl3r 747 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) |
373 | 148 | 3expa 1117 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈ ℝ) |
374 | 186 | 3expa 1117 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) |
375 | | icossre 13160 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ*) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
376 | 373, 374,
375 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
377 | 376 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
378 | 377, 195 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ℝ) |
379 | 378 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) |
380 | 379 | adantl3r 747 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) |
381 | 38 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → 𝑌 ∈ ℝ) |
382 | 14 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → 𝑋 ∈ Fin) |
383 | 97, 381, 382, 146, 147 | hoidifhspval3 44157 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘))) |
384 | 383 | ad5ant134 1366 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘))) |
385 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) |
386 | 385 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) |
387 | 384, 386 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) |
388 | 387 | adantllr 716 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) |
389 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑌 ≤ ((𝐶‘𝑗)‘𝑘) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = ((𝐶‘𝑗)‘𝑘)) |
390 | 389 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = ((𝐶‘𝑗)‘𝑘)) |
391 | 197 | adantl3r 747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
392 | 391 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
393 | 390, 392 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) ≤ (𝑓‘𝑘)) |
394 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑌 ≤ ((𝐶‘𝑗)‘𝑘) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = 𝑌) |
395 | 394 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = 𝑌) |
396 | | simpl1 1190 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) |
397 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑌 ≤ (𝑓‘𝑘)) |
398 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 = 𝐾 → (𝑓‘𝑘) = (𝑓‘𝐾)) |
399 | 398 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝐾 → (𝑌 ≤ (𝑓‘𝑘) ↔ 𝑌 ≤ (𝑓‘𝐾))) |
400 | 399 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝐾 → (¬ 𝑌 ≤ (𝑓‘𝑘) ↔ ¬ 𝑌 ≤ (𝑓‘𝐾))) |
401 | 400 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (¬ 𝑌 ≤ (𝑓‘𝑘) ↔ ¬ 𝑌 ≤ (𝑓‘𝐾))) |
402 | 397, 401 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑌 ≤ (𝑓‘𝐾)) |
403 | 402 | 3ad2antl3 1186 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑌 ≤ (𝑓‘𝐾)) |
404 | 398 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝐾 → (𝑓‘𝐾) = (𝑓‘𝑘)) |
405 | 404 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝐾) = (𝑓‘𝑘)) |
406 | 364 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
407 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝜑 ∧ 𝑗 ∈ ℕ)) |
408 | 407 | ad4ant13 748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝜑 ∧ 𝑗 ∈ ℕ)) |
409 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
410 | 251 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑘 ∈ 𝑋) |
411 | 408, 409,
410, 378 | syl21anc 835 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓‘𝑘) ∈ ℝ) |
412 | 411 | rexlimdva2 3216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝑓‘𝑘) ∈ ℝ)) |
413 | 412 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝑓‘𝑘) ∈ ℝ)) |
414 | 406, 413 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ℝ) |
415 | 414 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ ℝ) |
416 | 405, 415 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝐾) ∈ ℝ) |
417 | 416 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝑓‘𝐾) ∈ ℝ) |
418 | 396, 361,
37 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → 𝑌 ∈ ℝ) |
419 | 417, 418 | ltnled 11122 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ((𝑓‘𝐾) < 𝑌 ↔ ¬ 𝑌 ≤ (𝑓‘𝐾))) |
420 | 403, 419 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝑓‘𝐾) < 𝑌) |
421 | 365, 364 | r19.29a 3218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 Fn 𝑋) |
422 | 421 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) → 𝑓 Fn 𝑋) |
423 | 274 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → -∞ ∈
ℝ*) |
424 | 276 | ad4antr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ∈
ℝ*) |
425 | 414 | ad4ant13 748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ ℝ) |
426 | 425 | mnfltd 12860 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → -∞ < (𝑓‘𝑘)) |
427 | 398 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓‘𝐾) < 𝑌 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) = (𝑓‘𝐾)) |
428 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓‘𝐾) < 𝑌 ∧ 𝑘 = 𝐾) → (𝑓‘𝐾) < 𝑌) |
429 | 427, 428 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓‘𝐾) < 𝑌 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) |
430 | 429 | ad4ant24 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) |
431 | 423, 424,
425, 426, 430 | eliood 43036 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ (-∞(,)𝑌)) |
432 | 155 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝐾 → (-∞(,)𝑌) = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
433 | 432 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (-∞(,)𝑌) = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
434 | 431, 433 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
435 | 414 | ad4ant13 748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ ℝ) |
436 | 159 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑘 = 𝐾 → ℝ = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
437 | 436 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → ℝ = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
438 | 435, 437 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
439 | 434, 438 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
440 | 439 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
441 | 422, 440 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) |
442 | 396, 420,
441 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) |
443 | 442, 172 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) |
444 | 166 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻‘𝑋)𝑌)) |
445 | 444 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻‘𝑋)𝑌)) |
446 | 445 | 3ad2antl1 1184 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻‘𝑋)𝑌)) |
447 | 443, 446 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
448 | | eldifn 4062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
449 | 448 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
450 | 449 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
451 | 450 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) |
452 | 447, 451 | condan 815 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → 𝑌 ≤ (𝑓‘𝑘)) |
453 | 452 | ad5ant145 1368 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ≤ (𝑓‘𝑘)) |
454 | 453 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → 𝑌 ≤ (𝑓‘𝑘)) |
455 | 395, 454 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) ≤ (𝑓‘𝑘)) |
456 | 393, 455 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) ≤ (𝑓‘𝑘)) |
457 | 388, 456 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) |
458 | 383 | ad5ant124 1364 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘))) |
459 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = ((𝐶‘𝑗)‘𝑘)) |
460 | 459 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = ((𝐶‘𝑗)‘𝑘)) |
461 | 458, 460 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
462 | 197 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) |
463 | 461, 462 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) |
464 | 463 | adantl4r 752 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) |
465 | 457, 464 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) |
466 | 200 | adantl3r 747 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) |
467 | 371, 372,
380, 465, 466 | elicod 13129 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
468 | 467 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑘 ∈ 𝑋 → (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
469 | 367, 468 | ralrimi 3141 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
470 | 365, 469 | jca 512 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
471 | 171 | elixp 8692 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
472 | 470, 471 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
473 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → (𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙))) = (𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))) |
474 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 = 𝑗 → ((𝑆‘𝑌)‘(𝐶‘𝑙)) = ((𝑆‘𝑌)‘(𝐶‘𝑗))) |
475 | 474 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ ℕ ∧ 𝑙 = 𝑗) → ((𝑆‘𝑌)‘(𝐶‘𝑙)) = ((𝑆‘𝑌)‘(𝐶‘𝑗))) |
476 | | fvexd 6789 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → ((𝑆‘𝑌)‘(𝐶‘𝑗)) ∈ V) |
477 | 473, 475,
338, 476 | fvmptd 6882 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → ((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗) = ((𝑆‘𝑌)‘(𝐶‘𝑗))) |
478 | 477 | fveq1d 6776 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘) = (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)) |
479 | 478 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
480 | 479 | ixpeq2dv 8701 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
481 | 480 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
482 | 481 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
483 | 472, 482 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
484 | 483 | ex 413 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → (𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
485 | 484 | reximdva 3203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
486 | 364, 485 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
487 | | eliun 4928 |
. . . . . . . . 9
⊢ (𝑓 ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
488 | 486, 487 | sylibr 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
489 | 488 | ralrimiva 3103 |
. . . . . . 7
⊢ (𝜑 → ∀𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
490 | | dfss3 3909 |
. . . . . . 7
⊢ ((𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ∀𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
491 | 489, 490 | sylibr 233 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
492 | 13, 360, 19, 491, 12 | ovnlecvr2 44148 |
. . . . 5
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
493 | 477 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))) |
494 | 493 | mpteq2ia 5177 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))) |
495 | 494 | fveq2i 6777 |
. . . . . 6
⊢
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) |
496 | 495 | a1i 11 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) |
497 | 492, 496 | breqtrd 5100 |
. . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) |
498 | 1, 2, 96, 108, 351, 497 | leadd12dd 42855 |
. . 3
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) |
499 | 14, 105, 38, 18, 22, 12, 36, 97 | hspmbllem1 44164 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) |
500 | 499 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) |
501 | 500 | fveq2d 6778 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) |
502 | 8, 10, 41, 104 | sge0xadd 43973 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) =
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) |
503 | 96, 108 | rexaddd 12968 |
. . . 4
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) =
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) |
504 | 501, 502,
503 | 3eqtrrd 2783 |
. . 3
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
505 | 498, 504 | breqtrd 5100 |
. 2
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
506 | 3, 35, 7, 505, 34 | letrd 11132 |
1
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸)) |