Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbllem2 Structured version   Visualization version   GIF version

Theorem hspmbllem2 42471
Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. This is Step (b) of Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbllem2.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
hspmbllem2.x (𝜑𝑋 ∈ Fin)
hspmbllem2.k (𝜑𝐾𝑋)
hspmbllem2.y (𝜑𝑌 ∈ ℝ)
hspmbllem2.e (𝜑𝐸 ∈ ℝ+)
hspmbllem2.c (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑋))
hspmbllem2.d (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑋))
hspmbllem2.a (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
hspmbllem2.g (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))
hspmbllem2.r (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
hspmbllem2.i (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
hspmbllem2.f (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
hspmbllem2.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hspmbllem2.t 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
hspmbllem2.s 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
Assertion
Ref Expression
hspmbllem2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐶,𝑎,𝑏,𝑐,,𝑘,𝑙   𝐷,𝑎,𝑏,𝑐,,𝑗,𝑘,𝑙   𝑗,𝐻,𝑘   𝐾,𝑎,𝑏,𝑐,,𝑗,𝑘,𝑙,𝑥,𝑦   𝑆,𝑎,𝑏,𝑘,𝑙   𝑇,𝑎,𝑏,𝑘,𝑙   𝑋,𝑎,𝑏,𝑐,,𝑗,𝑘,𝑙,𝑥,𝑦   𝑌,𝑎,𝑏,𝑐,,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑎,𝑏,𝑐,,𝑗,𝑘,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,,𝑎,𝑏,𝑐,𝑙)   𝐶(𝑥,𝑦,𝑗)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦,,𝑗,𝑐)   𝑇(𝑥,𝑦,,𝑗,𝑐)   𝐸(𝑥,𝑦,,𝑗,𝑘,𝑎,𝑏,𝑐,𝑙)   𝐻(𝑥,𝑦,,𝑎,𝑏,𝑐,𝑙)   𝐿(𝑥,𝑦,,𝑗,𝑘,𝑎,𝑏,𝑐,𝑙)

Proof of Theorem hspmbllem2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hspmbllem2.i . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
2 hspmbllem2.f . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
31, 2readdcld 10516 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ)
4 hspmbllem2.r . . . 4 (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
5 hspmbllem2.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
65rpred 12281 . . . 4 (𝜑𝐸 ∈ ℝ)
74, 6readdcld 10516 . . 3 (𝜑 → (((voln*‘𝑋)‘𝐴) + 𝐸) ∈ ℝ)
8 nfv 1892 . . . 4 𝑗𝜑
9 nnex 11492 . . . . 5 ℕ ∈ V
109a1i 11 . . . 4 (𝜑 → ℕ ∈ V)
11 icossicc 12674 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
12 hspmbllem2.l . . . . . 6 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
13 hspmbllem2.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
1413adantr 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
15 hspmbllem2.c . . . . . . . 8 (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑋))
1615ffvelrnda 6716 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑𝑚 𝑋))
17 elmapi 8278 . . . . . . 7 ((𝐶𝑗) ∈ (ℝ ↑𝑚 𝑋) → (𝐶𝑗):𝑋⟶ℝ)
1816, 17syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑋⟶ℝ)
19 hspmbllem2.d . . . . . . . 8 (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑋))
2019ffvelrnda 6716 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑𝑚 𝑋))
21 elmapi 8278 . . . . . . 7 ((𝐷𝑗) ∈ (ℝ ↑𝑚 𝑋) → (𝐷𝑗):𝑋⟶ℝ)
2220, 21syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ)
2312, 14, 18, 22hoidmvcl 42426 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,)+∞))
2411, 23sseldi 3887 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,]+∞))
258, 10, 24sge0clmpt 42269 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ (0[,]+∞))
26 hspmbllem2.k . . . . . . . . 9 (𝜑𝐾𝑋)
27 ne0i 4220 . . . . . . . . 9 (𝐾𝑋𝑋 ≠ ∅)
2826, 27syl 17 . . . . . . . 8 (𝜑𝑋 ≠ ∅)
2928adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑋 ≠ ∅)
3012, 14, 29, 18, 22hoidmvn0val 42428 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) = ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
3130mpteq2dva 5055 . . . . 5 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))))
3231fveq2d 6542 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
33 hspmbllem2.g . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))
3432, 33eqbrtrd 4984 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))
357, 25, 34ge0lere 41369 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ)
36 hspmbllem2.t . . . . . . . . 9 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
37 hspmbllem2.y . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
3837adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑌 ∈ ℝ)
3936, 38, 14, 22hsphoif 42420 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝑇𝑌)‘(𝐷𝑗)):𝑋⟶ℝ)
4012, 14, 18, 39hoidmvcl 42426 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) ∈ (0[,)+∞))
4111, 40sseldi 3887 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) ∈ (0[,]+∞))
428, 10, 41sge0clmpt 42269 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) ∈ (0[,]+∞))
43 oveq2 7024 . . . . . . . . . . 11 (𝑥 = 𝑦 → (ℝ ↑𝑚 𝑥) = (ℝ ↑𝑚 𝑦))
44 eqeq1 2799 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
45 prodeq1 15096 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑦 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
4644, 45ifbieq2d 4406 . . . . . . . . . . 11 (𝑥 = 𝑦 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
4743, 43, 46mpoeq123dv 7087 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑎 ∈ (ℝ ↑𝑚 𝑦), 𝑏 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
4847cbvmptv 5061 . . . . . . . . 9 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑦 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑦), 𝑏 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
4912, 48eqtri 2819 . . . . . . . 8 𝐿 = (𝑦 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑦), 𝑏 ∈ (ℝ ↑𝑚 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
50 diffi 8596 . . . . . . . . . . 11 (𝑋 ∈ Fin → (𝑋 ∖ {𝐾}) ∈ Fin)
5113, 50syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 ∖ {𝐾}) ∈ Fin)
52 snfi 8442 . . . . . . . . . . 11 {𝐾} ∈ Fin
5352a1i 11 . . . . . . . . . 10 (𝜑 → {𝐾} ∈ Fin)
54 unfi 8631 . . . . . . . . . 10 (((𝑋 ∖ {𝐾}) ∈ Fin ∧ {𝐾} ∈ Fin) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin)
5551, 53, 54syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin)
5655adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin)
57 snidg 4504 . . . . . . . . . . . 12 (𝐾𝑋𝐾 ∈ {𝐾})
5826, 57syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ {𝐾})
59 elun2 4074 . . . . . . . . . . 11 (𝐾 ∈ {𝐾} → 𝐾 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}))
6058, 59syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}))
61 neldifsnd 4633 . . . . . . . . . 10 (𝜑 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾}))
6260, 61eldifd 3870 . . . . . . . . 9 (𝜑𝐾 ∈ (((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∖ (𝑋 ∖ {𝐾})))
6362adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝐾 ∈ (((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∖ (𝑋 ∖ {𝐾})))
64 eqid 2795 . . . . . . . 8 ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ((𝑋 ∖ {𝐾}) ∪ {𝐾})
65 eqid 2795 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
66 uncom 4050 . . . . . . . . . . . . 13 ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾}))
6766a1i 11 . . . . . . . . . . . 12 (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾})))
6826snssd 4649 . . . . . . . . . . . . 13 (𝜑 → {𝐾} ⊆ 𝑋)
69 undif 4344 . . . . . . . . . . . . 13 ({𝐾} ⊆ 𝑋 ↔ ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋)
7068, 69sylib 219 . . . . . . . . . . . 12 (𝜑 → ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋)
7167, 70eqtrd 2831 . . . . . . . . . . 11 (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋)
7271adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋)
7372feq2d 6368 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ ↔ (𝐶𝑗):𝑋⟶ℝ))
7418, 73mpbird 258 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ)
7572feq2d 6368 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((𝐷𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ ↔ (𝐷𝑗):𝑋⟶ℝ))
7622, 75mpbird 258 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ)
7749, 56, 63, 64, 38, 65, 74, 76hsphoidmvle 42430 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷𝑗)))
7871fveq2d 6542 . . . . . . . . . 10 (𝜑 → (𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (𝐿𝑋))
79 eqidd 2796 . . . . . . . . . 10 (𝜑 → (𝐶𝑗) = (𝐶𝑗))
8036a1i 11 . . . . . . . . . . . . 13 (𝜑𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))))
8171oveq2d 7032 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (ℝ ↑𝑚 𝑋))
8271mpteq1d 5049 . . . . . . . . . . . . . . . 16 (𝜑 → ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))
8381, 82mpteq12dv 5045 . . . . . . . . . . . . . . 15 (𝜑 → (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))) = (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
8483eqcomd 2801 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))) = (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
8584mpteq2dv 5056 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))))
8680, 85eqtr2d 2832 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))) = 𝑇)
8786fveq1d 6540 . . . . . . . . . . 11 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌) = (𝑇𝑌))
8887fveq1d 6540 . . . . . . . . . 10 (𝜑 → (((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌)‘(𝐷𝑗)) = ((𝑇𝑌)‘(𝐷𝑗)))
8978, 79, 88oveq123d 7037 . . . . . . . . 9 (𝜑 → ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌)‘(𝐷𝑗))) = ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))
9089adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌)‘(𝐷𝑗))) = ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))
9178adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (𝐿𝑋))
9291oveqd 7033 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷𝑗)) = ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))
9390, 92breq12d 4975 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷𝑗)) ↔ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))))
9477, 93mpbid 233 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))
958, 10, 41, 24, 94sge0lempt 42254 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
9635, 42, 95ge0lere 41369 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) ∈ ℝ)
97 hspmbllem2.s . . . . . . . . . 10 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
9897, 38, 14, 18hoidifhspf 42462 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((𝑆𝑌)‘(𝐶𝑗)):𝑋⟶ℝ)
9912, 14, 98, 22hoidmvcl 42426 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)) ∈ (0[,)+∞))
10099fmpttd 6742 . . . . . . 7 (𝜑 → (𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))):ℕ⟶(0[,)+∞))
10111a1i 11 . . . . . . 7 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
102100, 101fssd 6396 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))):ℕ⟶(0[,]+∞))
10310, 102sge0cl 42225 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))) ∈ (0[,]+∞))
10411, 99sseldi 3887 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)) ∈ (0[,]+∞))
10526adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐾𝑋)
10612, 14, 18, 22, 105, 97, 38hoidifhspdmvle 42464 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)) ≤ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))
1078, 10, 104, 24, 106sge0lempt 42254 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
10835, 103, 107ge0lere 41369 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ)
10937adantr 481 . . . . . . . . 9 ((𝜑𝑙 ∈ ℕ) → 𝑌 ∈ ℝ)
11013adantr 481 . . . . . . . . 9 ((𝜑𝑙 ∈ ℕ) → 𝑋 ∈ Fin)
111 eleq1w 2865 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝑗 ∈ ℕ ↔ 𝑙 ∈ ℕ))
112111anbi2d 628 . . . . . . . . . . 11 (𝑗 = 𝑙 → ((𝜑𝑗 ∈ ℕ) ↔ (𝜑𝑙 ∈ ℕ)))
113 fveq2 6538 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝐷𝑗) = (𝐷𝑙))
114113feq1d 6367 . . . . . . . . . . 11 (𝑗 = 𝑙 → ((𝐷𝑗):𝑋⟶ℝ ↔ (𝐷𝑙):𝑋⟶ℝ))
115112, 114imbi12d 346 . . . . . . . . . 10 (𝑗 = 𝑙 → (((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ) ↔ ((𝜑𝑙 ∈ ℕ) → (𝐷𝑙):𝑋⟶ℝ)))
116115, 22chvarv 2370 . . . . . . . . 9 ((𝜑𝑙 ∈ ℕ) → (𝐷𝑙):𝑋⟶ℝ)
11736, 109, 110, 116hsphoif 42420 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → ((𝑇𝑌)‘(𝐷𝑙)):𝑋⟶ℝ)
118 reex 10474 . . . . . . . . . . . 12 ℝ ∈ V
119118a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ ∈ V)
120119, 13jca 512 . . . . . . . . . 10 (𝜑 → (ℝ ∈ V ∧ 𝑋 ∈ Fin))
121120adantr 481 . . . . . . . . 9 ((𝜑𝑙 ∈ ℕ) → (ℝ ∈ V ∧ 𝑋 ∈ Fin))
122 elmapg 8269 . . . . . . . . 9 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (((𝑇𝑌)‘(𝐷𝑙)) ∈ (ℝ ↑𝑚 𝑋) ↔ ((𝑇𝑌)‘(𝐷𝑙)):𝑋⟶ℝ))
123121, 122syl 17 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → (((𝑇𝑌)‘(𝐷𝑙)) ∈ (ℝ ↑𝑚 𝑋) ↔ ((𝑇𝑌)‘(𝐷𝑙)):𝑋⟶ℝ))
124117, 123mpbird 258 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → ((𝑇𝑌)‘(𝐷𝑙)) ∈ (ℝ ↑𝑚 𝑋))
125124fmpttd 6742 . . . . . 6 (𝜑 → (𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙))):ℕ⟶(ℝ ↑𝑚 𝑋))
126 simpl 483 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → 𝜑)
127 elinel1 4093 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) → 𝑓𝐴)
128127adantl 482 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → 𝑓𝐴)
129 hspmbllem2.a . . . . . . . . . . . . . 14 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
130129sselda 3889 . . . . . . . . . . . . 13 ((𝜑𝑓𝐴) → 𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
131 eliun 4829 . . . . . . . . . . . . 13 (𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
132130, 131sylib 219 . . . . . . . . . . . 12 ((𝜑𝑓𝐴) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
133126, 128, 132syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
134 simpll 763 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝜑)
135 elinel2 4094 . . . . . . . . . . . . . . 15 (𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) → 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
136135adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
137136adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
138 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
139 ixpfn 8316 . . . . . . . . . . . . . . . . 17 (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → 𝑓 Fn 𝑋)
140139adantl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓 Fn 𝑋)
141 nfv 1892 . . . . . . . . . . . . . . . . . 18 𝑘((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ)
142 nfcv 2949 . . . . . . . . . . . . . . . . . . 19 𝑘𝑓
143 nfixp1 8330 . . . . . . . . . . . . . . . . . . 19 𝑘X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))
144142, 143nfel 2961 . . . . . . . . . . . . . . . . . 18 𝑘 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))
145141, 144nfan 1881 . . . . . . . . . . . . . . . . 17 𝑘(((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
146183adant3 1125 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (𝐶𝑗):𝑋⟶ℝ)
147 simp3 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → 𝑘𝑋)
148146, 147ffvelrnd 6717 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ)
149148rexrd 10537 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ*)
150149ad5ant135 1361 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ*)
151393adant3 1125 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝑇𝑌)‘(𝐷𝑗)):𝑋⟶ℝ)
152151, 147ffvelrnd 6717 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) ∈ ℝ)
153152rexrd 10537 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) ∈ ℝ*)
154153ad5ant135 1361 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) ∈ ℝ*)
155 iftrue 4387 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌))
156 ioossre 12648 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-∞(,)𝑌) ⊆ ℝ
157156a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝐾 → (-∞(,)𝑌) ⊆ ℝ)
158155, 157eqsstrd 3926 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
159 iffalse 4390 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = ℝ)
160 ssid 3910 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ ⊆ ℝ
161160a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = 𝐾 → ℝ ⊆ ℝ)
162159, 161eqsstrd 3926 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
163158, 162pm2.61i 183 . . . . . . . . . . . . . . . . . . . . . 22 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
164 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) → 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
165 hspmbllem2.h . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
166165, 13, 26, 37hspval 42453 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐾(𝐻𝑋)𝑌) = X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
167166adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) → (𝐾(𝐻𝑋)𝑌) = X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
168164, 167eleqtrd 2885 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) → 𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
169168adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
170 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋) → 𝑘𝑋)
171 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑓 ∈ V
172171elixp 8317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)))
173172biimpi 217 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)))
174173simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
175174adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘𝑋) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
176 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘𝑋) → 𝑘𝑋)
177 rspa 3173 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
178175, 176, 177syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
179169, 170, 178syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
180163, 179sseldi 3887 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
181180rexrd 10537 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ*)
182181ad4ant14 748 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ*)
183149ad4ant124 1166 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ*)
184223adant3 1125 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (𝐷𝑗):𝑋⟶ℝ)
185184, 147ffvelrnd 6717 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ)
186185rexrd 10537 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
187186ad4ant124 1166 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
188171elixp 8317 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
189188biimpi 217 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
190189simprd 496 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
191190adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ∧ 𝑘𝑋) → ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
192 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ∧ 𝑘𝑋) → 𝑘𝑋)
193 rspa 3173 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
194191, 192, 193syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
195194adantll 710 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
196 icogelb 12638 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶𝑗)‘𝑘) ∈ ℝ* ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ* ∧ (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
197183, 187, 195, 196syl3anc 1364 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
198197adantl3r 746 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
199 icoltub 41345 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐶𝑗)‘𝑘) ∈ ℝ* ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ* ∧ (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
200183, 187, 195, 199syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
201200adantl3r 746 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
202201ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
203 simpll 763 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → 𝜑)
204 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
205203, 204jca 512 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → (𝜑𝑗 ∈ ℕ))
2062053ad2ant1 1126 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝜑𝑗 ∈ ℕ))
207 simp2 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → 𝑘 = 𝐾)
208 simp3 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝑘) ≤ 𝑌)
209 fveq2 6538 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 𝐾 → ((𝐷𝑗)‘𝑘) = ((𝐷𝑗)‘𝐾))
210209breq1d 4972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝐾 → (((𝐷𝑗)‘𝑘) ≤ 𝑌 ↔ ((𝐷𝑗)‘𝐾) ≤ 𝑌))
211210biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝐾) ≤ 𝑌)
212211iftrued 4389 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = ((𝐷𝑗)‘𝐾))
213209eqcomd 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 𝐾 → ((𝐷𝑗)‘𝐾) = ((𝐷𝑗)‘𝑘))
214213adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝐾) = ((𝐷𝑗)‘𝑘))
215212, 214eqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = ((𝐷𝑗)‘𝑘))
2162153adant1 1123 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = ((𝐷𝑗)‘𝑘))
217 breq2 4966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = 𝑌 → ((𝑐) ≤ 𝑦 ↔ (𝑐) ≤ 𝑌))
218 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = 𝑌𝑦 = 𝑌)
219217, 218ifbieq2d 4406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 = 𝑌 → if((𝑐) ≤ 𝑦, (𝑐), 𝑦) = if((𝑐) ≤ 𝑌, (𝑐), 𝑌))
220219ifeq2d 4400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = 𝑌 → if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)) = if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))
221220mpteq2dv 5056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = 𝑌 → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌))))
222221mpteq2dv 5056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = 𝑌 → (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))) = (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))))
223 ovex 7048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (ℝ ↑𝑚 𝑋) ∈ V
224223mptex 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))) ∈ V
225224a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))) ∈ V)
22636, 222, 37, 225fvmptd3 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑇𝑌) = (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))))
227226adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑌) = (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))))
228 fveq1 6537 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = (𝐷𝑗) → (𝑐) = ((𝐷𝑗)‘))
229228breq1d 4972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = (𝐷𝑗) → ((𝑐) ≤ 𝑌 ↔ ((𝐷𝑗)‘) ≤ 𝑌))
230229, 228ifbieq1d 4404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = (𝐷𝑗) → if((𝑐) ≤ 𝑌, (𝑐), 𝑌) = if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))
231228, 230ifeq12d 4401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝐷𝑗) → if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)) = if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))
232231mpteq2dv 5056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = (𝐷𝑗) → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌))) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))))
233232adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ ℕ) ∧ 𝑐 = (𝐷𝑗)) → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌))) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))))
234 mptexg 6850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑋 ∈ Fin → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))) ∈ V)
23513, 234syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))) ∈ V)
236235adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑗 ∈ ℕ) → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))) ∈ V)
237227, 233, 20, 236fvmptd 6641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑗 ∈ ℕ) → ((𝑇𝑌)‘(𝐷𝑗)) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))))
238237fveq1d 6540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ ℕ) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘))
2392383adant3 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘))
240 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑘 = 𝐾) → 𝜑)
241 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑘 = 𝐾) → 𝑘 = 𝐾)
242240, 26syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑘 = 𝐾) → 𝐾𝑋)
243241, 242eqeltrd 2883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑘 = 𝐾) → 𝑘𝑋)
244 eqidd 2796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑘𝑋) → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))))
245 eleq1w 2865 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ( = 𝑘 → ( ∈ (𝑋 ∖ {𝐾}) ↔ 𝑘 ∈ (𝑋 ∖ {𝐾})))
246 fveq2 6538 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ( = 𝑘 → ((𝐷𝑗)‘) = ((𝐷𝑗)‘𝑘))
247246breq1d 4972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ( = 𝑘 → (((𝐷𝑗)‘) ≤ 𝑌 ↔ ((𝐷𝑗)‘𝑘) ≤ 𝑌))
248247, 246ifbieq1d 4404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ( = 𝑘 → if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌) = if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌))
249245, 246, 248ifbieq12d 4408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ( = 𝑘 → if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
250249adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑘𝑋) ∧ = 𝑘) → if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
251 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑘𝑋) → 𝑘𝑋)
252 fvexd 6553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → ((𝐷𝑗)‘𝑘) ∈ V)
253 ifexg 4428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐷𝑗)‘𝑘) ∈ V ∧ 𝑌 ∈ ℝ) → if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌) ∈ V)
254252, 37, 253syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌) ∈ V)
255 ifexg 4428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐷𝑗)‘𝑘) ∈ V ∧ if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌) ∈ V) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) ∈ V)
256252, 254, 255syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) ∈ V)
257256adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑘𝑋) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) ∈ V)
258244, 250, 251, 257fvmptd 6641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑘𝑋) → ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
259240, 243, 258syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑘 = 𝐾) → ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
260 eleq1 2870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝐾 → (𝑘 ∈ (𝑋 ∖ {𝐾}) ↔ 𝐾 ∈ (𝑋 ∖ {𝐾})))
261210, 209ifbieq1d 4404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝐾 → if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌) = if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌))
262260, 209, 261ifbieq12d 4408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝐾 → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)))
263262adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)))
264259, 263eqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑘 = 𝐾) → ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)))
2652643adant2 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)))
266 neldifsnd 4633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 𝐾 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾}))
267266iffalsed 4392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝐾 → if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)) = if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌))
2682673ad2ant3 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)) = if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌))
269239, 265, 2683eqtrrd 2836 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
2702693expa 1111 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
2712703adant3 1125 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
272216, 271eqtr3d 2833 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝑘) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
273206, 207, 208, 272syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝑘) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
274273ad5ant145 1362 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝑘) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
275202, 274breqtrd 4988 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
276 mnfxr 10545 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 -∞ ∈ ℝ*
277276a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → -∞ ∈ ℝ*)
27837rexrd 10537 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑌 ∈ ℝ*)
279278adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) → 𝑌 ∈ ℝ*)
2802793ad2ant1 1126 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → 𝑌 ∈ ℝ*)
2811793adant3 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
2821553ad2ant3 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌))
283281, 282eleqtrd 2885 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝑘) ∈ (-∞(,)𝑌))
284 iooltub 41347 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-∞ ∈ ℝ*𝑌 ∈ ℝ* ∧ (𝑓𝑘) ∈ (-∞(,)𝑌)) → (𝑓𝑘) < 𝑌)
285277, 280, 283, 284syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝑘) < 𝑌)
2862853adant1r 1170 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝑘) < 𝑌)
287286ad4ant123 1165 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝑓𝑘) < 𝑌)
288 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌)
289210notbid 319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝐾 → (¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌 ↔ ¬ ((𝐷𝑗)‘𝐾) ≤ 𝑌))
290289adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌 ↔ ¬ ((𝐷𝑗)‘𝐾) ≤ 𝑌))
291288, 290mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ¬ ((𝐷𝑗)‘𝐾) ≤ 𝑌)
292291iffalsed 4392 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = 𝑌)
293 eqidd 2796 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = 𝑌)
294292, 293eqtr2d 2832 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌))
295294adantll 710 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌))
296270adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
297296adantl3r 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
298297adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
299295, 298eqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
300287, 299breqtrd 4988 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
301300adantl3r 746 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
302275, 301pm2.61dan 809 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
303201adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
3042373adant3 1125 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝑇𝑌)‘(𝐷𝑗)) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))))
305249adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) ∧ = 𝑘) → if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
3062573adant2 1124 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) ∈ V)
307304, 305, 147, 306fvmptd 6641 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
3083073expa 1111 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
309308adantllr 715 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
310309ad4ant13 747 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
311 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘𝑋 ∧ ¬ 𝑘 = 𝐾) → 𝑘𝑋)
312 neqne 2992 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑘 = 𝐾𝑘𝐾)
313 nelsn 4510 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘𝐾 → ¬ 𝑘 ∈ {𝐾})
314312, 313syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑘 = 𝐾 → ¬ 𝑘 ∈ {𝐾})
315314adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘𝑋 ∧ ¬ 𝑘 = 𝐾) → ¬ 𝑘 ∈ {𝐾})
316311, 315eldifd 3870 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘𝑋 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑋 ∖ {𝐾}))
317316iftrued 4389 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘𝑋 ∧ ¬ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) = ((𝐷𝑗)‘𝑘))
318317adantll 710 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) = ((𝐷𝑗)‘𝑘))
319310, 318eqtr2d 2832 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → ((𝐷𝑗)‘𝑘) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
320303, 319breqtrd 4988 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
321302, 320pm2.61dan 809 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
322150, 154, 182, 198, 321elicod 12637 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
323322ex 413 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑘𝑋 → (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
324145, 323ralrimi 3183 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
325140, 324jca 512 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
326171elixp 8317 . . . . . . . . . . . . . . 15 (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
327325, 326sylibr 235 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
328327ex 413 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
329134, 137, 138, 328syl21anc 834 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
330329reximdva 3237 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → (∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
331133, 330mpd 15 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
332 eliun 4829 . . . . . . . . . 10 (𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
333331, 332sylibr 235 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → 𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
334333ralrimiva 3149 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
335 dfss3 3878 . . . . . . . 8 ((𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)) ↔ ∀𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
336334, 335sylibr 235 . . . . . . 7 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
337 eqidd 2796 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙))) = (𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙))))
338 2fveq3 6543 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → ((𝑇𝑌)‘(𝐷𝑙)) = ((𝑇𝑌)‘(𝐷𝑗)))
339338adantl 482 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑙 = 𝑗) → ((𝑇𝑌)‘(𝐷𝑙)) = ((𝑇𝑌)‘(𝐷𝑗)))
340 id 22 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
341 fvexd 6553 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((𝑇𝑌)‘(𝐷𝑗)) ∈ V)
342337, 339, 340, 341fvmptd 6641 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗) = ((𝑇𝑌)‘(𝐷𝑗)))
343342fveq1d 6540 . . . . . . . . . 10 (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)‘𝑘) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
344343oveq2d 7032 . . . . . . . . 9 (𝑗 ∈ ℕ → (((𝐶𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)‘𝑘)) = (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
345344ixpeq2dv 8326 . . . . . . . 8 (𝑗 ∈ ℕ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)‘𝑘)) = X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
346345iuneq2i 4845 . . . . . . 7 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)‘𝑘)) = 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
347336, 346syl6sseqr 3939 . . . . . 6 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)‘𝑘)))
34813, 15, 125, 347, 12ovnlecvr2 42454 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)))))
349342oveq2d 7032 . . . . . . . 8 (𝑗 ∈ ℕ → ((𝐶𝑗)(𝐿𝑋)((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)) = ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))
350349mpteq2ia 5051 . . . . . . 7 (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))
351350fveq2i 6541 . . . . . 6 ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗)))))
352351a1i 11 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))))
353348, 352breqtrd 4988 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))))
35415ffvelrnda 6716 . . . . . . . . . 10 ((𝜑𝑙 ∈ ℕ) → (𝐶𝑙) ∈ (ℝ ↑𝑚 𝑋))
355 elmapi 8278 . . . . . . . . . 10 ((𝐶𝑙) ∈ (ℝ ↑𝑚 𝑋) → (𝐶𝑙):𝑋⟶ℝ)
356354, 355syl 17 . . . . . . . . 9 ((𝜑𝑙 ∈ ℕ) → (𝐶𝑙):𝑋⟶ℝ)
35797, 109, 110, 356hoidifhspf 42462 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → ((𝑆𝑌)‘(𝐶𝑙)):𝑋⟶ℝ)
358 elmapg 8269 . . . . . . . . . 10 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (((𝑆𝑌)‘(𝐶𝑙)) ∈ (ℝ ↑𝑚 𝑋) ↔ ((𝑆𝑌)‘(𝐶𝑙)):𝑋⟶ℝ))
359120, 358syl 17 . . . . . . . . 9 (𝜑 → (((𝑆𝑌)‘(𝐶𝑙)) ∈ (ℝ ↑𝑚 𝑋) ↔ ((𝑆𝑌)‘(𝐶𝑙)):𝑋⟶ℝ))
360359adantr 481 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → (((𝑆𝑌)‘(𝐶𝑙)) ∈ (ℝ ↑𝑚 𝑋) ↔ ((𝑆𝑌)‘(𝐶𝑙)):𝑋⟶ℝ))
361357, 360mpbird 258 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → ((𝑆𝑌)‘(𝐶𝑙)) ∈ (ℝ ↑𝑚 𝑋))
362361fmpttd 6742 . . . . . 6 (𝜑 → (𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙))):ℕ⟶(ℝ ↑𝑚 𝑋))
363 simpl 483 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → 𝜑)
364 eldifi 4024 . . . . . . . . . . . 12 (𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) → 𝑓𝐴)
365364adantl 482 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → 𝑓𝐴)
366363, 365, 132syl2anc 584 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
367139adantl 482 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓 Fn 𝑋)
368 nfv 1892 . . . . . . . . . . . . . . . . 17 𝑘((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ)
369368, 144nfan 1881 . . . . . . . . . . . . . . . 16 𝑘(((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
370983adant3 1125 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝑆𝑌)‘(𝐶𝑗)):𝑋⟶ℝ)
371370, 147ffvelrnd 6717 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ∈ ℝ)
372371rexrd 10537 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ∈ ℝ*)
373372ad5ant135 1361 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ∈ ℝ*)
374187adantl3r 746 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
3751483expa 1111 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ)
3761863expa 1111 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
377 icossre 12667 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐶𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ*) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
378375, 376, 377syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
379378adantlr 711 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
380379, 195sseldd 3890 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
381380rexrd 10537 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ*)
382381adantl3r 746 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ*)
383383adant3 1125 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → 𝑌 ∈ ℝ)
384143adant3 1125 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → 𝑋 ∈ Fin)
38597, 383, 384, 146, 147hoidifhspval3 42463 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)))
386385ad5ant134 1360 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)))
387 iftrue 4387 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)) = if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌))
388387adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)) = if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌))
389386, 388eqtrd 2831 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌))
390389adantllr 715 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌))
391 iftrue 4387 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ≤ ((𝐶𝑗)‘𝑘) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) = ((𝐶𝑗)‘𝑘))
392391adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) = ((𝐶𝑗)‘𝑘))
393197adantl3r 746 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
394393ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
395392, 394eqbrtrd 4984 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) ≤ (𝑓𝑘))
396 iffalse 4390 . . . . . . . . . . . . . . . . . . . . . . 23 𝑌 ≤ ((𝐶𝑗)‘𝑘) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) = 𝑌)
397396adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) = 𝑌)
398 simpl1 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → (𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))))
399 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → ¬ 𝑌 ≤ (𝑓𝑘))
400 fveq2 6538 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 = 𝐾 → (𝑓𝑘) = (𝑓𝐾))
401400breq2d 4974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 = 𝐾 → (𝑌 ≤ (𝑓𝑘) ↔ 𝑌 ≤ (𝑓𝐾)))
402401notbid 319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝐾 → (¬ 𝑌 ≤ (𝑓𝑘) ↔ ¬ 𝑌 ≤ (𝑓𝐾)))
403402adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → (¬ 𝑌 ≤ (𝑓𝑘) ↔ ¬ 𝑌 ≤ (𝑓𝐾)))
404399, 403mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → ¬ 𝑌 ≤ (𝑓𝐾))
4054043ad2antl3 1180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → ¬ 𝑌 ≤ (𝑓𝐾))
406400eqcomd 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 = 𝐾 → (𝑓𝐾) = (𝑓𝑘))
4074063ad2ant3 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝐾) = (𝑓𝑘))
408366adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
409 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑗 ∈ ℕ) → (𝜑𝑗 ∈ ℕ))
410409ad4ant13 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑘𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝜑𝑗 ∈ ℕ))
411 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑘𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
412251ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑘𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑘𝑋)
413410, 411, 412, 380syl21anc 834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑘𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑓𝑘) ∈ ℝ)
414413rexlimdva2 3250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑘𝑋) → (∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → (𝑓𝑘) ∈ ℝ))
415414adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋) → (∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → (𝑓𝑘) ∈ ℝ))
416408, 415mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
4174163adant3 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝑘) ∈ ℝ)
418407, 417eqeltrd 2883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝐾) ∈ ℝ)
419418adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → (𝑓𝐾) ∈ ℝ)
420398, 363, 373syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → 𝑌 ∈ ℝ)
421419, 420ltnled 10634 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → ((𝑓𝐾) < 𝑌 ↔ ¬ 𝑌 ≤ (𝑓𝐾)))
422405, 421mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → (𝑓𝐾) < 𝑌)
423367, 366r19.29a 3252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → 𝑓 Fn 𝑋)
424423adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) → 𝑓 Fn 𝑋)
425276a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → -∞ ∈ ℝ*)
426278ad4antr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ∈ ℝ*)
427416ad4ant13 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝑓𝑘) ∈ ℝ)
428427mnfltd 12369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → -∞ < (𝑓𝑘))
429400adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑓𝐾) < 𝑌𝑘 = 𝐾) → (𝑓𝑘) = (𝑓𝐾))
430 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑓𝐾) < 𝑌𝑘 = 𝐾) → (𝑓𝐾) < 𝑌)
431429, 430eqbrtrd 4984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑓𝐾) < 𝑌𝑘 = 𝐾) → (𝑓𝑘) < 𝑌)
432431ad4ant24 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝑓𝑘) < 𝑌)
433425, 426, 427, 428, 432eliood 41334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝑓𝑘) ∈ (-∞(,)𝑌))
434155eqcomd 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 = 𝐾 → (-∞(,)𝑌) = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
435434adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (-∞(,)𝑌) = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
436433, 435eleqtrd 2885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
437416ad4ant13 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓𝑘) ∈ ℝ)
438159eqcomd 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑘 = 𝐾 → ℝ = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
439438adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → ℝ = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
440437, 439eleqtrd 2885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
441436, 440pm2.61dan 809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
442441ralrimiva 3149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
443424, 442jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)))
444398, 422, 443syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)))
445444, 172sylibr 235 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → 𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
446166eqcomd 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻𝑋)𝑌))
447446ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻𝑋)𝑌))
4484473ad2antl1 1178 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻𝑋)𝑌))
449445, 448eleqtrd 2885 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
450 eldifn 4025 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) → ¬ 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
451450adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → ¬ 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
4524513ad2ant1 1126 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) → ¬ 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
453452adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → ¬ 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
454449, 453condan 814 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) → 𝑌 ≤ (𝑓𝑘))
455454ad5ant145 1362 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ≤ (𝑓𝑘))
456455adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → 𝑌 ≤ (𝑓𝑘))
457397, 456eqbrtrd 4984 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) ≤ (𝑓𝑘))
458395, 457pm2.61dan 809 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) ≤ (𝑓𝑘))
459390, 458eqbrtrd 4984 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ≤ (𝑓𝑘))
460385ad5ant124 1358 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)))
461 iffalse 4390 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)) = ((𝐶𝑗)‘𝑘))
462461adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)) = ((𝐶𝑗)‘𝑘))
463460, 462eqtrd 2831 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = ((𝐶𝑗)‘𝑘))
464197adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
465463, 464eqbrtrd 4984 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ≤ (𝑓𝑘))
466465adantl4r 751 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ≤ (𝑓𝑘))
467459, 466pm2.61dan 809 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ≤ (𝑓𝑘))
468200adantl3r 746 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
469373, 374, 382, 467, 468elicod 12637 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
470469ex 413 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑘𝑋 → (𝑓𝑘) ∈ ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘))))
471369, 470ralrimi 3183 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → ∀𝑘𝑋 (𝑓𝑘) ∈ ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
472367, 471jca 512 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘))))
473171elixp 8317 . . . . . . . . . . . . . 14 (𝑓X𝑘𝑋 ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘))))
474472, 473sylibr 235 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓X𝑘𝑋 ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
475 eqidd 2796 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → (𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙))) = (𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙))))
476 2fveq3 6543 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑗 → ((𝑆𝑌)‘(𝐶𝑙)) = ((𝑆𝑌)‘(𝐶𝑗)))
477476adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑙 = 𝑗) → ((𝑆𝑌)‘(𝐶𝑙)) = ((𝑆𝑌)‘(𝐶𝑗)))
478 fvexd 6553 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((𝑆𝑌)‘(𝐶𝑗)) ∈ V)
479475, 477, 340, 478fvmptd 6641 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗) = ((𝑆𝑌)‘(𝐶𝑗)))
480479fveq1d 6540 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘) = (((𝑆𝑌)‘(𝐶𝑗))‘𝑘))
481480oveq1d 7031 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
482481ixpeq2dv 8326 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘𝑋 ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
483482ad2antlr 723 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘𝑋 ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
484483eleq2d 2868 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ 𝑓X𝑘𝑋 ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘))))
485474, 484mpbird 258 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
486485ex 413 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → 𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
487486reximdva 3237 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → (∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
488366, 487mpd 15 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
489 eliun 4829 . . . . . . . . 9 (𝑓 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
490488, 489sylibr 235 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → 𝑓 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
491490ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))𝑓 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
492 dfss3 3878 . . . . . . 7 ((𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ ∀𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))𝑓 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
493491, 492sylibr 235 . . . . . 6 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
49413, 362, 19, 493, 12ovnlecvr2 42454 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)(𝐿𝑋)(𝐷𝑗)))))
495479oveq1d 7031 . . . . . . . 8 (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)(𝐿𝑋)(𝐷𝑗)) = (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))
496495mpteq2ia 5051 . . . . . . 7 (𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))
497496fveq2i 6541 . . . . . 6 ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))
498497a1i 11 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))))
499494, 498breqtrd 4988 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))))
5001, 2, 96, 108, 353, 499leadd12dd 41144 . . 3 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) + (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))))
50114, 105, 38, 18, 22, 12, 36, 97hspmbllem1 42470 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) = (((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) +𝑒 (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))
502501mpteq2dva 5055 . . . . 5 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ (((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) +𝑒 (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))))
503502fveq2d 6542 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) +𝑒 (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))))
5048, 10, 41, 104sge0xadd 42279 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) +𝑒 (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))) = ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) +𝑒^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))))
50596, 108rexaddd 12477 . . . 4 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) +𝑒^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))) = ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) + (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))))
506503, 504, 5053eqtrrd 2836 . . 3 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) + (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
507500, 506breqtrd 4988 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
5083, 35, 7, 507, 34letrd 10644 1 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wral 3105  wrex 3106  Vcvv 3437  cdif 3856  cun 3857  cin 3858  wss 3859  c0 4211  ifcif 4381  {csn 4472   ciun 4825   class class class wbr 4962  cmpt 5041   Fn wfn 6220  wf 6221  cfv 6225  (class class class)co 7016  cmpo 7018  𝑚 cmap 8256  Xcixp 8310  Fincfn 8357  cr 10382  0cc0 10383   + caddc 10386  +∞cpnf 10518  -∞cmnf 10519  *cxr 10520   < clt 10521  cle 10522  cn 11486  +crp 12239   +𝑒 cxad 12355  (,)cioo 12588  [,)cico 12590  [,]cicc 12591  cprod 15092  volcvol 23747  Σ^csumge0 42206  voln*covoln 42380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-rlim 14680  df-sum 14877  df-prod 15093  df-rest 16525  df-topgen 16546  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-top 21186  df-topon 21203  df-bases 21238  df-cmp 21679  df-ovol 23748  df-vol 23749  df-sumge0 42207  df-ovoln 42381
This theorem is referenced by:  hspmbllem3  42472
  Copyright terms: Public domain W3C validator