| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hspmbllem2.i | . . 3
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) | 
| 2 |  | hspmbllem2.f | . . 3
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∈ ℝ) | 
| 3 | 1, 2 | readdcld 11291 | . 2
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ∈ ℝ) | 
| 4 |  | hspmbllem2.r | . . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ) | 
| 5 |  | hspmbllem2.e | . . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) | 
| 6 | 5 | rpred 13078 | . . . 4
⊢ (𝜑 → 𝐸 ∈ ℝ) | 
| 7 | 4, 6 | readdcld 11291 | . . 3
⊢ (𝜑 → (((voln*‘𝑋)‘𝐴) + 𝐸) ∈ ℝ) | 
| 8 |  | nfv 1913 | . . . 4
⊢
Ⅎ𝑗𝜑 | 
| 9 |  | nnex 12273 | . . . . 5
⊢ ℕ
∈ V | 
| 10 | 9 | a1i 11 | . . . 4
⊢ (𝜑 → ℕ ∈
V) | 
| 11 |  | icossicc 13477 | . . . . 5
⊢
(0[,)+∞) ⊆ (0[,]+∞) | 
| 12 |  | hspmbllem2.l | . . . . . 6
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | 
| 13 |  | hspmbllem2.x | . . . . . . 7
⊢ (𝜑 → 𝑋 ∈ Fin) | 
| 14 | 13 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) | 
| 15 |  | hspmbllem2.c | . . . . . . . 8
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑋)) | 
| 16 | 15 | ffvelcdmda 7103 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑋)) | 
| 17 |  | elmapi 8890 | . . . . . . 7
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑋) → (𝐶‘𝑗):𝑋⟶ℝ) | 
| 18 | 16, 17 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑋⟶ℝ) | 
| 19 |  | hspmbllem2.d | . . . . . . . 8
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑋)) | 
| 20 | 19 | ffvelcdmda 7103 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑋)) | 
| 21 |  | elmapi 8890 | . . . . . . 7
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑋) → (𝐷‘𝑗):𝑋⟶ℝ) | 
| 22 | 20, 21 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) | 
| 23 | 12, 14, 18, 22 | hoidmvcl 46602 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,)+∞)) | 
| 24 | 11, 23 | sselid 3980 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,]+∞)) | 
| 25 | 8, 10, 24 | sge0clmpt 46445 | . . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ (0[,]+∞)) | 
| 26 |  | hspmbllem2.k | . . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ 𝑋) | 
| 27 |  | ne0i 4340 | . . . . . . . . 9
⊢ (𝐾 ∈ 𝑋 → 𝑋 ≠ ∅) | 
| 28 | 26, 27 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑋 ≠ ∅) | 
| 29 | 28 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ≠ ∅) | 
| 30 | 12, 14, 29, 18, 22 | hoidmvn0val 46604 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) | 
| 31 | 30 | mpteq2dva 5241 | . . . . 5
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) | 
| 32 | 31 | fveq2d 6909 | . . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))))) | 
| 33 |  | hspmbllem2.g | . . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸)) | 
| 34 | 32, 33 | eqbrtrd 5164 | . . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸)) | 
| 35 | 7, 25, 34 | ge0lere 45550 | . 2
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ ℝ) | 
| 36 |  | hspmbllem2.t | . . . . . . . . 9
⊢ 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) | 
| 37 |  | hspmbllem2.y | . . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ ℝ) | 
| 38 | 37 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑌 ∈ ℝ) | 
| 39 | 36, 38, 14, 22 | hsphoif 46596 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑗)):𝑋⟶ℝ) | 
| 40 | 12, 14, 18, 39 | hoidmvcl 46602 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) | 
| 41 | 11, 40 | sselid 3980 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) | 
| 42 | 8, 10, 41 | sge0clmpt 46445 | . . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) | 
| 43 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (ℝ ↑m 𝑥) = (ℝ ↑m
𝑦)) | 
| 44 |  | eqeq1 2740 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | 
| 45 |  | prodeq1 15944 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) | 
| 46 | 44, 45 | ifbieq2d 4551 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) | 
| 47 | 43, 43, 46 | mpoeq123dv 7509 | . . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑦), 𝑏 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | 
| 48 | 47 | cbvmptv 5254 | . . . . . . . . 9
⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ
↑m 𝑥),
𝑏 ∈ (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑦 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑦), 𝑏 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | 
| 49 | 12, 48 | eqtri 2764 | . . . . . . . 8
⊢ 𝐿 = (𝑦 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑦), 𝑏 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘 ∈ 𝑦 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | 
| 50 |  | diffi 9216 | . . . . . . . . . . 11
⊢ (𝑋 ∈ Fin → (𝑋 ∖ {𝐾}) ∈ Fin) | 
| 51 | 13, 50 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∖ {𝐾}) ∈ Fin) | 
| 52 |  | snfi 9084 | . . . . . . . . . . 11
⊢ {𝐾} ∈ Fin | 
| 53 | 52 | a1i 11 | . . . . . . . . . 10
⊢ (𝜑 → {𝐾} ∈ Fin) | 
| 54 |  | unfi 9212 | . . . . . . . . . 10
⊢ (((𝑋 ∖ {𝐾}) ∈ Fin ∧ {𝐾} ∈ Fin) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin) | 
| 55 | 51, 53, 54 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin) | 
| 56 | 55 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin) | 
| 57 |  | snidg 4659 | . . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝑋 → 𝐾 ∈ {𝐾}) | 
| 58 | 26, 57 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ {𝐾}) | 
| 59 |  | elun2 4182 | . . . . . . . . . . 11
⊢ (𝐾 ∈ {𝐾} → 𝐾 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})) | 
| 60 | 58, 59 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})) | 
| 61 |  | neldifsnd 4792 | . . . . . . . . . 10
⊢ (𝜑 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾})) | 
| 62 | 60, 61 | eldifd 3961 | . . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∖ (𝑋 ∖ {𝐾}))) | 
| 63 | 62 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ (((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∖ (𝑋 ∖ {𝐾}))) | 
| 64 |  | eqid 2736 | . . . . . . . 8
⊢ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ((𝑋 ∖ {𝐾}) ∪ {𝐾}) | 
| 65 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m ((𝑋
∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) | 
| 66 |  | uncom 4157 | . . . . . . . . . . . . 13
⊢ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾})) | 
| 67 | 66 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾}))) | 
| 68 | 26 | snssd 4808 | . . . . . . . . . . . . 13
⊢ (𝜑 → {𝐾} ⊆ 𝑋) | 
| 69 |  | undif 4481 | . . . . . . . . . . . . 13
⊢ ({𝐾} ⊆ 𝑋 ↔ ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋) | 
| 70 | 68, 69 | sylib 218 | . . . . . . . . . . . 12
⊢ (𝜑 → ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋) | 
| 71 | 67, 70 | eqtrd 2776 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋) | 
| 72 | 71 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋) | 
| 73 | 72 | feq2d 6721 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ ↔ (𝐶‘𝑗):𝑋⟶ℝ)) | 
| 74 | 18, 73 | mpbird 257 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ) | 
| 75 | 72 | feq2d 6721 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ ↔ (𝐷‘𝑗):𝑋⟶ℝ)) | 
| 76 | 22, 75 | mpbird 257 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ) | 
| 77 | 49, 56, 63, 64, 38, 65, 74, 76 | hsphoidmvle 46606 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷‘𝑗))) | 
| 78 | 71 | fveq2d 6909 | . . . . . . . . . 10
⊢ (𝜑 → (𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (𝐿‘𝑋)) | 
| 79 |  | eqidd 2737 | . . . . . . . . . 10
⊢ (𝜑 → (𝐶‘𝑗) = (𝐶‘𝑗)) | 
| 80 | 36 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))) | 
| 81 | 71 | oveq2d 7448 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℝ
↑m ((𝑋
∖ {𝐾}) ∪ {𝐾})) = (ℝ
↑m 𝑋)) | 
| 82 | 71 | mpteq1d 5236 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) | 
| 83 | 81, 82 | mpteq12dv 5232 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) | 
| 84 | 83 | eqcomd 2742 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) = (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) | 
| 85 | 84 | mpteq2dv 5243 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))) | 
| 86 | 80, 85 | eqtr2d 2777 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) = 𝑇) | 
| 87 | 86 | fveq1d 6907 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌) = (𝑇‘𝑌)) | 
| 88 | 87 | fveq1d 6907 | . . . . . . . . . 10
⊢ (𝜑 → (((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗)) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) | 
| 89 | 78, 79, 88 | oveq123d 7453 | . . . . . . . . 9
⊢ (𝜑 → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) | 
| 90 | 89 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) | 
| 91 | 78 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (𝐿‘𝑋)) | 
| 92 | 91 | oveqd 7449 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷‘𝑗)) = ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) | 
| 93 | 90, 92 | breq12d 5155 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ (ℎ ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))))‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷‘𝑗)) ↔ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) | 
| 94 | 77, 93 | mpbid 232 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) | 
| 95 | 8, 10, 41, 24, 94 | sge0lempt 46430 | . . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) | 
| 96 | 35, 42, 95 | ge0lere 45550 | . . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) ∈ ℝ) | 
| 97 |  | hspmbllem2.s | . . . . . . . . . 10
⊢ 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ = 𝐾, if(𝑥 ≤ (𝑐‘ℎ), (𝑐‘ℎ), 𝑥), (𝑐‘ℎ))))) | 
| 98 | 97, 38, 14, 18 | hoidifhspf 46638 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑆‘𝑌)‘(𝐶‘𝑗)):𝑋⟶ℝ) | 
| 99 | 12, 14, 98, 22 | hoidmvcl 46602 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,)+∞)) | 
| 100 | 99 | fmpttd 7134 | . . . . . . 7
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))):ℕ⟶(0[,)+∞)) | 
| 101 | 11 | a1i 11 | . . . . . . 7
⊢ (𝜑 → (0[,)+∞) ⊆
(0[,]+∞)) | 
| 102 | 100, 101 | fssd 6752 | . . . . . 6
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))):ℕ⟶(0[,]+∞)) | 
| 103 | 10, 102 | sge0cl 46401 | . . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ (0[,]+∞)) | 
| 104 | 11, 99 | sselid 3980 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,]+∞)) | 
| 105 | 26 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ 𝑋) | 
| 106 | 12, 14, 18, 22, 105, 97, 38 | hoidifhspdmvle 46640 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)) ≤ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) | 
| 107 | 8, 10, 104, 24, 106 | sge0lempt 46430 | . . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) | 
| 108 | 35, 103, 107 | ge0lere 45550 | . . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ ℝ) | 
| 109 | 37 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → 𝑌 ∈ ℝ) | 
| 110 | 13 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → 𝑋 ∈ Fin) | 
| 111 |  | eleq1w 2823 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑙 → (𝑗 ∈ ℕ ↔ 𝑙 ∈ ℕ)) | 
| 112 | 111 | anbi2d 630 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑙 → ((𝜑 ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ 𝑙 ∈ ℕ))) | 
| 113 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑙 → (𝐷‘𝑗) = (𝐷‘𝑙)) | 
| 114 | 113 | feq1d 6719 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑙 → ((𝐷‘𝑗):𝑋⟶ℝ ↔ (𝐷‘𝑙):𝑋⟶ℝ)) | 
| 115 | 112, 114 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑗 = 𝑙 → (((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) ↔ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐷‘𝑙):𝑋⟶ℝ))) | 
| 116 | 115, 22 | chvarvv 1997 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐷‘𝑙):𝑋⟶ℝ) | 
| 117 | 36, 109, 110, 116 | hsphoif 46596 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑙)):𝑋⟶ℝ) | 
| 118 |  | reex 11247 | . . . . . . . . . . . 12
⊢ ℝ
∈ V | 
| 119 | 118 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈
V) | 
| 120 | 119, 13 | jca 511 | . . . . . . . . . 10
⊢ (𝜑 → (ℝ ∈ V ∧
𝑋 ∈
Fin)) | 
| 121 | 120 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (ℝ ∈ V
∧ 𝑋 ∈
Fin)) | 
| 122 |  | elmapg 8880 | . . . . . . . . 9
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → (((𝑇‘𝑌)‘(𝐷‘𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑇‘𝑌)‘(𝐷‘𝑙)):𝑋⟶ℝ)) | 
| 123 | 121, 122 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (((𝑇‘𝑌)‘(𝐷‘𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑇‘𝑌)‘(𝐷‘𝑙)):𝑋⟶ℝ)) | 
| 124 | 117, 123 | mpbird 257 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑙)) ∈ (ℝ ↑m 𝑋)) | 
| 125 | 124 | fmpttd 7134 | . . . . . 6
⊢ (𝜑 → (𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙))):ℕ⟶(ℝ
↑m 𝑋)) | 
| 126 |  | simpl 482 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝜑) | 
| 127 |  | elinel1 4200 | . . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ 𝐴) | 
| 128 | 127 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ 𝐴) | 
| 129 |  | hspmbllem2.a | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 130 | 129 | sselda 3982 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 131 |  | eliun 4994 | . . . . . . . . . . . . 13
⊢ (𝑓 ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 132 | 130, 131 | sylib 218 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 133 | 126, 128,
132 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 134 |  | simpll 766 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝜑) | 
| 135 |  | elinel2 4201 | . . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) | 
| 136 | 135 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) | 
| 137 | 136 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) | 
| 138 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) | 
| 139 |  | ixpfn 8944 | . . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 Fn 𝑋) | 
| 140 | 139 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 Fn 𝑋) | 
| 141 |  | nfv 1913 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) | 
| 142 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘𝑓 | 
| 143 |  | nfixp1 8959 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) | 
| 144 | 142, 143 | nfel 2919 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) | 
| 145 | 141, 144 | nfan 1898 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 146 | 18 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (𝐶‘𝑗):𝑋⟶ℝ) | 
| 147 |  | simp3 1138 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | 
| 148 | 146, 147 | ffvelcdmd 7104 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈ ℝ) | 
| 149 | 148 | rexrd 11312 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈
ℝ*) | 
| 150 | 149 | ad5ant135 1369 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈
ℝ*) | 
| 151 | 39 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝑇‘𝑌)‘(𝐷‘𝑗)):𝑋⟶ℝ) | 
| 152 | 151, 147 | ffvelcdmd 7104 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) ∈ ℝ) | 
| 153 | 152 | rexrd 11312 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) ∈
ℝ*) | 
| 154 | 153 | ad5ant135 1369 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) ∈
ℝ*) | 
| 155 |  | iftrue 4530 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌)) | 
| 156 |  | ioossre 13449 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(-∞(,)𝑌)
⊆ ℝ | 
| 157 | 156 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝐾 → (-∞(,)𝑌) ⊆ ℝ) | 
| 158 | 155, 157 | eqsstrd 4017 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) | 
| 159 |  | iffalse 4533 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = ℝ) | 
| 160 |  | ssid 4005 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ℝ
⊆ ℝ | 
| 161 | 160 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑘 = 𝐾 → ℝ ⊆
ℝ) | 
| 162 | 159, 161 | eqsstrd 4017 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆
ℝ) | 
| 163 | 158, 162 | pm2.61i 182 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ | 
| 164 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) | 
| 165 |  | hspmbllem2.h | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝐻 = (𝑥 ∈ Fin ↦ (𝑙 ∈ 𝑥, 𝑦 ∈ ℝ ↦ X𝑘 ∈
𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) | 
| 166 | 165, 13, 26, 37 | hspval 46629 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐾(𝐻‘𝑋)𝑌) = X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 167 | 166 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → (𝐾(𝐻‘𝑋)𝑌) = X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 168 | 164, 167 | eleqtrd 2842 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 169 | 168 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → 𝑓 ∈ X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 170 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | 
| 171 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑓 ∈ V | 
| 172 | 171 | elixp 8945 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) | 
| 173 | 172 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) | 
| 174 | 173 | simprd 495 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 175 | 174 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 176 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | 
| 177 |  | rspa 3247 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((∀𝑘 ∈
𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 178 | 175, 176,
177 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 179 | 169, 170,
178 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 180 | 163, 179 | sselid 3980 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ℝ) | 
| 181 | 180 | rexrd 11312 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) | 
| 182 | 181 | ad4ant14 752 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) | 
| 183 | 149 | ad4ant124 1173 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈
ℝ*) | 
| 184 | 22 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (𝐷‘𝑗):𝑋⟶ℝ) | 
| 185 | 184, 147 | ffvelcdmd 7104 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈ ℝ) | 
| 186 | 185 | rexrd 11312 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) | 
| 187 | 186 | ad4ant124 1173 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) | 
| 188 | 171 | elixp 8945 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) | 
| 189 | 188 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) | 
| 190 | 189 | simprd 495 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 191 | 190 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 192 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | 
| 193 |  | rspa 3247 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((∀𝑘 ∈
𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 194 | 191, 192,
193 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 195 | 194 | adantll 714 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 196 |  | icogelb 13439 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ* ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ* ∧ (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) | 
| 197 | 183, 187,
195, 196 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) | 
| 198 | 197 | adantl3r 750 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) | 
| 199 |  | icoltub 45526 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ* ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ* ∧ (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) | 
| 200 | 183, 187,
195, 199 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) | 
| 201 | 200 | adantl3r 750 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) | 
| 202 | 201 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) | 
| 203 |  | simpll 766 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → 𝜑) | 
| 204 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) | 
| 205 | 203, 204 | jca 511 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → (𝜑 ∧ 𝑗 ∈ ℕ)) | 
| 206 | 205 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝜑 ∧ 𝑗 ∈ ℕ)) | 
| 207 |  | simp2 1137 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑘 = 𝐾) | 
| 208 |  | simp3 1138 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) | 
| 209 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 = 𝐾 → ((𝐷‘𝑗)‘𝑘) = ((𝐷‘𝑗)‘𝐾)) | 
| 210 | 209 | breq1d 5152 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝐾 → (((𝐷‘𝑗)‘𝑘) ≤ 𝑌 ↔ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌)) | 
| 211 | 210 | biimpa 476 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝐾) ≤ 𝑌) | 
| 212 | 211 | iftrued 4532 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = ((𝐷‘𝑗)‘𝐾)) | 
| 213 | 209 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝐾 → ((𝐷‘𝑗)‘𝐾) = ((𝐷‘𝑗)‘𝑘)) | 
| 214 | 213 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝐾) = ((𝐷‘𝑗)‘𝑘)) | 
| 215 | 212, 214 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = ((𝐷‘𝑗)‘𝑘)) | 
| 216 | 215 | 3adant1 1130 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = ((𝐷‘𝑗)‘𝑘)) | 
| 217 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = 𝑌 → ((𝑐‘ℎ) ≤ 𝑦 ↔ (𝑐‘ℎ) ≤ 𝑌)) | 
| 218 |  | id 22 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) | 
| 219 | 217, 218 | ifbieq2d 4551 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = 𝑌 → if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦) = if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)) | 
| 220 | 219 | ifeq2d 4545 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 = 𝑌 → if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)) = if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))) | 
| 221 | 220 | mpteq2dv 5243 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑦 = 𝑌 → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)))) | 
| 222 | 221 | mpteq2dv 5243 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = 𝑌 → (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦)))) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))))) | 
| 223 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (ℝ
↑m 𝑋)
∈ V | 
| 224 | 223 | mptex 7244 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 ∈ (ℝ
↑m 𝑋)
↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)))) ∈ V | 
| 225 | 224 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)))) ∈ V) | 
| 226 | 36, 222, 37, 225 | fvmptd3 7038 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (𝑇‘𝑌) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))))) | 
| 227 | 226 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑌) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))))) | 
| 228 |  | fveq1 6904 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 = (𝐷‘𝑗) → (𝑐‘ℎ) = ((𝐷‘𝑗)‘ℎ)) | 
| 229 | 228 | breq1d 5152 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 = (𝐷‘𝑗) → ((𝑐‘ℎ) ≤ 𝑌 ↔ ((𝐷‘𝑗)‘ℎ) ≤ 𝑌)) | 
| 230 | 229, 228 | ifbieq1d 4549 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 = (𝐷‘𝑗) → if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌) = if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) | 
| 231 | 228, 230 | ifeq12d 4546 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑐 = (𝐷‘𝑗) → if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌)) = if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) | 
| 232 | 231 | mpteq2dv 5243 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑐 = (𝐷‘𝑗) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) | 
| 233 | 232 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑐 = (𝐷‘𝑗)) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑌, (𝑐‘ℎ), 𝑌))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) | 
| 234 |  | mptexg 7242 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑋 ∈ Fin → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) ∈ V) | 
| 235 | 13, 234 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) ∈ V) | 
| 236 | 235 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) ∈ V) | 
| 237 | 227, 233,
20, 236 | fvmptd 7022 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑇‘𝑌)‘(𝐷‘𝑗)) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) | 
| 238 | 237 | fveq1d 6907 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘)) | 
| 239 | 238 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘)) | 
| 240 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝜑) | 
| 241 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) | 
| 242 | 240, 26 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝐾 ∈ 𝑋) | 
| 243 | 241, 242 | eqeltrd 2840 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → 𝑘 ∈ 𝑋) | 
| 244 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌))) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) | 
| 245 |  | eleq1w 2823 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ = 𝑘 → (ℎ ∈ (𝑋 ∖ {𝐾}) ↔ 𝑘 ∈ (𝑋 ∖ {𝐾}))) | 
| 246 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ = 𝑘 → ((𝐷‘𝑗)‘ℎ) = ((𝐷‘𝑗)‘𝑘)) | 
| 247 | 246 | breq1d 5152 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (ℎ = 𝑘 → (((𝐷‘𝑗)‘ℎ) ≤ 𝑌 ↔ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌)) | 
| 248 | 247, 246 | ifbieq1d 4549 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ = 𝑘 → if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌) = if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) | 
| 249 | 245, 246,
248 | ifbieq12d 4553 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (ℎ = 𝑘 → if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) | 
| 250 | 249 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ ℎ = 𝑘) → if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) | 
| 251 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | 
| 252 |  | fvexd 6920 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → ((𝐷‘𝑗)‘𝑘) ∈ V) | 
| 253 | 252, 37 | ifexd 4573 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌) ∈ V) | 
| 254 | 252, 253 | ifexd 4573 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) ∈ V) | 
| 255 | 254 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) ∈ V) | 
| 256 | 244, 250,
251, 255 | fvmptd 7022 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) | 
| 257 | 240, 243,
256 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) | 
| 258 |  | eleq1 2828 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝐾 → (𝑘 ∈ (𝑋 ∖ {𝐾}) ↔ 𝐾 ∈ (𝑋 ∖ {𝐾}))) | 
| 259 | 210, 209 | ifbieq1d 4549 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝐾 → if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌) = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) | 
| 260 | 258, 209,
259 | ifbieq12d 4553 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 𝐾 → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) | 
| 261 | 260 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) | 
| 262 | 257, 261 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑘 = 𝐾) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) | 
| 263 | 262 | 3adant2 1131 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → ((ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))‘𝑘) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌))) | 
| 264 |  | neldifsnd 4792 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 = 𝐾 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾})) | 
| 265 | 264 | iffalsed 4535 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝐾 → if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) | 
| 266 | 265 | 3ad2ant3 1135 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝐾), if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) | 
| 267 | 239, 263,
266 | 3eqtrrd 2781 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 268 | 267 | 3expa 1118 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 269 | 268 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 270 | 216, 269 | eqtr3d 2778 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 271 | 206, 207,
208, 270 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 272 | 271 | ad5ant145 1370 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 273 | 202, 272 | breqtrd 5168 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 274 |  | mnfxr 11319 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ -∞
∈ ℝ* | 
| 275 | 274 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → -∞ ∈
ℝ*) | 
| 276 | 37 | rexrd 11312 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑌 ∈
ℝ*) | 
| 277 | 276 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) → 𝑌 ∈
ℝ*) | 
| 278 | 277 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → 𝑌 ∈
ℝ*) | 
| 279 | 179 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 280 | 155 | 3ad2ant3 1135 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌)) | 
| 281 | 279, 280 | eleqtrd 2842 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ (-∞(,)𝑌)) | 
| 282 |  | iooltub 45528 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((-∞ ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ (𝑓‘𝑘) ∈ (-∞(,)𝑌)) → (𝑓‘𝑘) < 𝑌) | 
| 283 | 275, 278,
281, 282 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) | 
| 284 | 283 | 3adant1r 1177 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) | 
| 285 | 284 | ad4ant123 1172 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < 𝑌) | 
| 286 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) | 
| 287 | 210 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝐾 → (¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌 ↔ ¬ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌)) | 
| 288 | 287 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌 ↔ ¬ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌)) | 
| 289 | 286, 288 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → ¬ ((𝐷‘𝑗)‘𝐾) ≤ 𝑌) | 
| 290 | 289 | iffalsed 4535 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = 𝑌) | 
| 291 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = 𝑌) | 
| 292 | 290, 291 | eqtr2d 2777 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 = 𝐾 ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) | 
| 293 | 292 | adantll 714 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌)) | 
| 294 | 268 | adantlr 715 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 295 | 294 | adantl3r 750 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 296 | 295 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷‘𝑗)‘𝐾) ≤ 𝑌, ((𝐷‘𝑗)‘𝐾), 𝑌) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 297 | 293, 296 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 298 | 285, 297 | breqtrd 5168 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 299 | 298 | adantl3r 750 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷‘𝑗)‘𝑘) ≤ 𝑌) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 300 | 273, 299 | pm2.61dan 812 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 301 | 201 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) | 
| 302 | 237 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝑇‘𝑌)‘(𝐷‘𝑗)) = (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)))) | 
| 303 | 249 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) ∧ ℎ = 𝑘) → if(ℎ ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘ℎ), if(((𝐷‘𝑗)‘ℎ) ≤ 𝑌, ((𝐷‘𝑗)‘ℎ), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) | 
| 304 | 255 | 3adant2 1131 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) ∈ V) | 
| 305 | 302, 303,
147, 304 | fvmptd 7022 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) | 
| 306 | 305 | 3expa 1118 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) | 
| 307 | 306 | adantllr 719 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) | 
| 308 | 307 | ad4ant13 751 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌))) | 
| 309 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ 𝑋) | 
| 310 |  | neqne 2947 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
𝑘 = 𝐾 → 𝑘 ≠ 𝐾) | 
| 311 |  | nelsn 4665 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ≠ 𝐾 → ¬ 𝑘 ∈ {𝐾}) | 
| 312 | 310, 311 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (¬
𝑘 = 𝐾 → ¬ 𝑘 ∈ {𝐾}) | 
| 313 | 312 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → ¬ 𝑘 ∈ {𝐾}) | 
| 314 | 309, 313 | eldifd 3961 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑋 ∖ {𝐾})) | 
| 315 | 314 | iftrued 4532 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ 𝑋 ∧ ¬ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = ((𝐷‘𝑗)‘𝑘)) | 
| 316 | 315 | adantll 714 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑌, ((𝐷‘𝑗)‘𝑘), 𝑌)) = ((𝐷‘𝑗)‘𝑘)) | 
| 317 | 308, 316 | eqtr2d 2777 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → ((𝐷‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 318 | 301, 317 | breqtrd 5168 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 319 | 300, 318 | pm2.61dan 812 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 320 | 150, 154,
182, 198, 319 | elicod 13438 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) | 
| 321 | 320 | ex 412 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑘 ∈ 𝑋 → (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) | 
| 322 | 145, 321 | ralrimi 3256 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) | 
| 323 | 140, 322 | jca 511 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) | 
| 324 | 171 | elixp 8945 | . . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) | 
| 325 | 323, 324 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) | 
| 326 | 325 | ex 412 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → (𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) | 
| 327 | 134, 137,
138, 326 | syl21anc 837 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → (𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) | 
| 328 | 327 | reximdva 3167 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)))) | 
| 329 | 133, 328 | mpd 15 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) | 
| 330 |  | eliun 4994 | . . . . . . . . . 10
⊢ (𝑓 ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) | 
| 331 | 329, 330 | sylibr 234 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) | 
| 332 | 331 | ralrimiva 3145 | . . . . . . . 8
⊢ (𝜑 → ∀𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) | 
| 333 |  | dfss3 3971 | . . . . . . . 8
⊢ ((𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) ↔ ∀𝑓 ∈ (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) | 
| 334 | 332, 333 | sylibr 234 | . . . . . . 7
⊢ (𝜑 → (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) | 
| 335 |  | eqidd 2737 | . . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙))) = (𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))) | 
| 336 |  | 2fveq3 6910 | . . . . . . . . . . . . 13
⊢ (𝑙 = 𝑗 → ((𝑇‘𝑌)‘(𝐷‘𝑙)) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) | 
| 337 | 336 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℕ ∧ 𝑙 = 𝑗) → ((𝑇‘𝑌)‘(𝐷‘𝑙)) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) | 
| 338 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) | 
| 339 |  | fvexd 6920 | . . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → ((𝑇‘𝑌)‘(𝐷‘𝑗)) ∈ V) | 
| 340 | 335, 337,
338, 339 | fvmptd 7022 | . . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → ((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗) = ((𝑇‘𝑌)‘(𝐷‘𝑗))) | 
| 341 | 340 | fveq1d 6907 | . . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘) = (((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 342 | 341 | oveq2d 7448 | . . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) | 
| 343 | 342 | ixpeq2dv 8954 | . . . . . . . 8
⊢ (𝑗 ∈ ℕ → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘))) | 
| 344 | 343 | iuneq2i 5012 | . . . . . . 7
⊢ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑇‘𝑌)‘(𝐷‘𝑗))‘𝑘)) | 
| 345 | 334, 344 | sseqtrrdi 4024 | . . . . . 6
⊢ (𝜑 → (𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)‘𝑘))) | 
| 346 | 13, 15, 125, 345, 12 | ovnlecvr2 46630 | . . . . 5
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗))))) | 
| 347 | 340 | oveq2d 7448 | . . . . . . . 8
⊢ (𝑗 ∈ ℕ → ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)) = ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) | 
| 348 | 347 | mpteq2ia 5244 | . . . . . . 7
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))) | 
| 349 | 348 | fveq2i 6908 | . . . . . 6
⊢
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) | 
| 350 | 349 | a1i 11 | . . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑙 ∈ ℕ ↦ ((𝑇‘𝑌)‘(𝐷‘𝑙)))‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))))) | 
| 351 | 346, 350 | breqtrd 5168 | . . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗)))))) | 
| 352 | 15 | ffvelcdmda 7103 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐶‘𝑙) ∈ (ℝ ↑m 𝑋)) | 
| 353 |  | elmapi 8890 | . . . . . . . . . 10
⊢ ((𝐶‘𝑙) ∈ (ℝ ↑m 𝑋) → (𝐶‘𝑙):𝑋⟶ℝ) | 
| 354 | 352, 353 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (𝐶‘𝑙):𝑋⟶ℝ) | 
| 355 | 97, 109, 110, 354 | hoidifhspf 46638 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ) | 
| 356 |  | elmapg 8880 | . . . . . . . . . 10
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → (((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ)) | 
| 357 | 120, 356 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ)) | 
| 358 | 357 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → (((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑆‘𝑌)‘(𝐶‘𝑙)):𝑋⟶ℝ)) | 
| 359 | 355, 358 | mpbird 257 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑙 ∈ ℕ) → ((𝑆‘𝑌)‘(𝐶‘𝑙)) ∈ (ℝ ↑m 𝑋)) | 
| 360 | 359 | fmpttd 7134 | . . . . . 6
⊢ (𝜑 → (𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙))):ℕ⟶(ℝ
↑m 𝑋)) | 
| 361 |  | simpl 482 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝜑) | 
| 362 |  | eldifi 4130 | . . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) → 𝑓 ∈ 𝐴) | 
| 363 | 362 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ 𝐴) | 
| 364 | 361, 363,
132 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 365 | 139 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 Fn 𝑋) | 
| 366 |  | nfv 1913 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) | 
| 367 | 366, 144 | nfan 1898 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 368 | 98 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → ((𝑆‘𝑌)‘(𝐶‘𝑗)):𝑋⟶ℝ) | 
| 369 | 368, 147 | ffvelcdmd 7104 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ∈ ℝ) | 
| 370 | 369 | rexrd 11312 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ∈
ℝ*) | 
| 371 | 370 | ad5ant135 1369 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ∈
ℝ*) | 
| 372 | 187 | adantl3r 750 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) | 
| 373 | 148 | 3expa 1118 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈ ℝ) | 
| 374 | 186 | 3expa 1118 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) | 
| 375 |  | icossre 13469 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ*) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) | 
| 376 | 373, 374,
375 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) | 
| 377 | 376 | adantlr 715 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) | 
| 378 | 377, 195 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ℝ) | 
| 379 | 378 | rexrd 11312 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) | 
| 380 | 379 | adantl3r 750 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈
ℝ*) | 
| 381 | 38 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → 𝑌 ∈ ℝ) | 
| 382 | 14 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → 𝑋 ∈ Fin) | 
| 383 | 97, 381, 382, 146, 147 | hoidifhspval3 46639 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘))) | 
| 384 | 383 | ad5ant134 1368 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘))) | 
| 385 |  | iftrue 4530 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) | 
| 386 | 385 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) | 
| 387 | 384, 386 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) | 
| 388 | 387 | adantllr 719 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌)) | 
| 389 |  | iftrue 4530 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑌 ≤ ((𝐶‘𝑗)‘𝑘) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = ((𝐶‘𝑗)‘𝑘)) | 
| 390 | 389 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = ((𝐶‘𝑗)‘𝑘)) | 
| 391 | 197 | adantl3r 750 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) | 
| 392 | 391 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) | 
| 393 | 390, 392 | eqbrtrd 5164 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) ≤ (𝑓‘𝑘)) | 
| 394 |  | iffalse 4533 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑌 ≤ ((𝐶‘𝑗)‘𝑘) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = 𝑌) | 
| 395 | 394 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) = 𝑌) | 
| 396 |  | simpl1 1191 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) | 
| 397 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑌 ≤ (𝑓‘𝑘)) | 
| 398 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 = 𝐾 → (𝑓‘𝑘) = (𝑓‘𝐾)) | 
| 399 | 398 | breq2d 5154 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝐾 → (𝑌 ≤ (𝑓‘𝑘) ↔ 𝑌 ≤ (𝑓‘𝐾))) | 
| 400 | 399 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝐾 → (¬ 𝑌 ≤ (𝑓‘𝑘) ↔ ¬ 𝑌 ≤ (𝑓‘𝐾))) | 
| 401 | 400 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (¬ 𝑌 ≤ (𝑓‘𝑘) ↔ ¬ 𝑌 ≤ (𝑓‘𝐾))) | 
| 402 | 397, 401 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑌 ≤ (𝑓‘𝐾)) | 
| 403 | 402 | 3ad2antl3 1187 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑌 ≤ (𝑓‘𝐾)) | 
| 404 | 398 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝐾 → (𝑓‘𝐾) = (𝑓‘𝑘)) | 
| 405 | 404 | 3ad2ant3 1135 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝐾) = (𝑓‘𝑘)) | 
| 406 | 364 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 407 |  | id 22 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝜑 ∧ 𝑗 ∈ ℕ)) | 
| 408 | 407 | ad4ant13 751 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝜑 ∧ 𝑗 ∈ ℕ)) | 
| 409 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 410 | 251 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑘 ∈ 𝑋) | 
| 411 | 408, 409,
410, 378 | syl21anc 837 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓‘𝑘) ∈ ℝ) | 
| 412 | 411 | rexlimdva2 3156 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝑓‘𝑘) ∈ ℝ)) | 
| 413 | 412 | adantlr 715 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → (𝑓‘𝑘) ∈ ℝ)) | 
| 414 | 406, 413 | mpd 15 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ℝ) | 
| 415 | 414 | 3adant3 1132 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ ℝ) | 
| 416 | 405, 415 | eqeltrd 2840 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → (𝑓‘𝐾) ∈ ℝ) | 
| 417 | 416 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝑓‘𝐾) ∈ ℝ) | 
| 418 | 396, 361,
37 | 3syl 18 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → 𝑌 ∈ ℝ) | 
| 419 | 417, 418 | ltnled 11409 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ((𝑓‘𝐾) < 𝑌 ↔ ¬ 𝑌 ≤ (𝑓‘𝐾))) | 
| 420 | 403, 419 | mpbird 257 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝑓‘𝐾) < 𝑌) | 
| 421 | 365, 364 | r19.29a 3161 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 Fn 𝑋) | 
| 422 | 421 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) → 𝑓 Fn 𝑋) | 
| 423 | 274 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → -∞ ∈
ℝ*) | 
| 424 | 276 | ad4antr 732 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ∈
ℝ*) | 
| 425 | 414 | ad4ant13 751 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ ℝ) | 
| 426 | 425 | mnfltd 13167 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → -∞ < (𝑓‘𝑘)) | 
| 427 | 398 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓‘𝐾) < 𝑌 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) = (𝑓‘𝐾)) | 
| 428 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓‘𝐾) < 𝑌 ∧ 𝑘 = 𝐾) → (𝑓‘𝐾) < 𝑌) | 
| 429 | 427, 428 | eqbrtrd 5164 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓‘𝐾) < 𝑌 ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) | 
| 430 | 429 | ad4ant24 754 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) < 𝑌) | 
| 431 | 423, 424,
425, 426, 430 | eliood 45516 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ (-∞(,)𝑌)) | 
| 432 | 155 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = 𝐾 → (-∞(,)𝑌) = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 433 | 432 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (-∞(,)𝑌) = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 434 | 431, 433 | eleqtrd 2842 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 435 | 414 | ad4ant13 751 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ ℝ) | 
| 436 | 159 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑘 = 𝐾 → ℝ = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 437 | 436 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → ℝ = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 438 | 435, 437 | eleqtrd 2842 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 439 | 434, 438 | pm2.61dan 812 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 440 | 439 | ralrimiva 3145 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 441 | 422, 440 | jca 511 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ (𝑓‘𝐾) < 𝑌) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) | 
| 442 | 396, 420,
441 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))) | 
| 443 | 442, 172 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)) | 
| 444 | 166 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → X𝑘 ∈
𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻‘𝑋)𝑌)) | 
| 445 | 444 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻‘𝑋)𝑌)) | 
| 446 | 445 | 3ad2antl1 1185 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → X𝑘 ∈ 𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻‘𝑋)𝑌)) | 
| 447 | 443, 446 | eleqtrd 2842 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) | 
| 448 |  | eldifn 4131 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) | 
| 449 | 448 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) | 
| 450 | 449 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) | 
| 451 | 450 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓‘𝑘)) → ¬ 𝑓 ∈ (𝐾(𝐻‘𝑋)𝑌)) | 
| 452 | 447, 451 | condan 817 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑘 ∈ 𝑋 ∧ 𝑘 = 𝐾) → 𝑌 ≤ (𝑓‘𝑘)) | 
| 453 | 452 | ad5ant145 1370 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ≤ (𝑓‘𝑘)) | 
| 454 | 453 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → 𝑌 ≤ (𝑓‘𝑘)) | 
| 455 | 395, 454 | eqbrtrd 5164 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶‘𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) ≤ (𝑓‘𝑘)) | 
| 456 | 393, 455 | pm2.61dan 812 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌) ≤ (𝑓‘𝑘)) | 
| 457 | 388, 456 | eqbrtrd 5164 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) | 
| 458 | 383 | ad5ant124 1366 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘))) | 
| 459 |  | iffalse 4533 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = ((𝐶‘𝑗)‘𝑘)) | 
| 460 | 459 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶‘𝑗)‘𝑘), ((𝐶‘𝑗)‘𝑘), 𝑌), ((𝐶‘𝑗)‘𝑘)) = ((𝐶‘𝑗)‘𝑘)) | 
| 461 | 458, 460 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) = ((𝐶‘𝑗)‘𝑘)) | 
| 462 | 197 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → ((𝐶‘𝑗)‘𝑘) ≤ (𝑓‘𝑘)) | 
| 463 | 461, 462 | eqbrtrd 5164 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) | 
| 464 | 463 | adantl4r 755 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) | 
| 465 | 457, 464 | pm2.61dan 812 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘) ≤ (𝑓‘𝑘)) | 
| 466 | 200 | adantl3r 750 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) < ((𝐷‘𝑗)‘𝑘)) | 
| 467 | 371, 372,
380, 465, 466 | elicod 13438 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) ∧ 𝑘 ∈ 𝑋) → (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 468 | 467 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑘 ∈ 𝑋 → (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) | 
| 469 | 367, 468 | ralrimi 3256 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 470 | 365, 469 | jca 511 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) | 
| 471 | 171 | elixp 8945 | . . . . . . . . . . . . . 14
⊢ (𝑓 ∈ X𝑘 ∈
𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘 ∈ 𝑋 (𝑓‘𝑘) ∈ ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) | 
| 472 | 470, 471 | sylibr 234 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 473 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → (𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙))) = (𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))) | 
| 474 |  | 2fveq3 6910 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 = 𝑗 → ((𝑆‘𝑌)‘(𝐶‘𝑙)) = ((𝑆‘𝑌)‘(𝐶‘𝑗))) | 
| 475 | 474 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ ℕ ∧ 𝑙 = 𝑗) → ((𝑆‘𝑌)‘(𝐶‘𝑙)) = ((𝑆‘𝑌)‘(𝐶‘𝑗))) | 
| 476 |  | fvexd 6920 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → ((𝑆‘𝑌)‘(𝐶‘𝑗)) ∈ V) | 
| 477 | 473, 475,
338, 476 | fvmptd 7022 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → ((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗) = ((𝑆‘𝑌)‘(𝐶‘𝑗))) | 
| 478 | 477 | fveq1d 6907 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘) = (((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)) | 
| 479 | 478 | oveq1d 7447 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 480 | 479 | ixpeq2dv 8954 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 481 | 480 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 482 | 481 | eleq2d 2826 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → (𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑆‘𝑌)‘(𝐶‘𝑗))‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) | 
| 483 | 472, 482 | mpbird 257 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) → 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 484 | 483 | ex 412 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → (𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) | 
| 485 | 484 | reximdva 3167 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → (∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) | 
| 486 | 364, 485 | mpd 15 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 487 |  | eliun 4994 | . . . . . . . . 9
⊢ (𝑓 ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓 ∈ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 488 | 486, 487 | sylibr 234 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) → 𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 489 | 488 | ralrimiva 3145 | . . . . . . 7
⊢ (𝜑 → ∀𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 490 |  | dfss3 3971 | . . . . . . 7
⊢ ((𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ↔ ∀𝑓 ∈ (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))𝑓 ∈ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 491 | 489, 490 | sylibr 234 | . . . . . 6
⊢ (𝜑 → (𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 492 | 13, 360, 19, 491, 12 | ovnlecvr2 46630 | . . . . 5
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) | 
| 493 | 477 | oveq1d 7447 | . . . . . . . 8
⊢ (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))) | 
| 494 | 493 | mpteq2ia 5244 | . . . . . . 7
⊢ (𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))) | 
| 495 | 494 | fveq2i 6908 | . . . . . 6
⊢
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) | 
| 496 | 495 | a1i 11 | . . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆‘𝑌)‘(𝐶‘𝑙)))‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) | 
| 497 | 492, 496 | breqtrd 5168 | . . . 4
⊢ (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) | 
| 498 | 1, 2, 96, 108, 351, 497 | leadd12dd 45333 | . . 3
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) | 
| 499 | 14, 105, 38, 18, 22, 12, 36, 97 | hspmbllem1 46646 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))) | 
| 500 | 499 | mpteq2dva 5241 | . . . . 5
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) | 
| 501 | 500 | fveq2d 6909 | . . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) | 
| 502 | 8, 10, 41, 104 | sge0xadd 46455 | . . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))) +𝑒 (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) =
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) | 
| 503 | 96, 108 | rexaddd 13277 | . . . 4
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) =
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗)))))) | 
| 504 | 501, 502,
503 | 3eqtrrd 2781 | . . 3
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)((𝑇‘𝑌)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆‘𝑌)‘(𝐶‘𝑗))(𝐿‘𝑋)(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) | 
| 505 | 498, 504 | breqtrd 5168 | . 2
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) | 
| 506 | 3, 35, 7, 505, 34 | letrd 11419 | 1
⊢ (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻‘𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻‘𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸)) |