Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbllem2 Structured version   Visualization version   GIF version

Theorem hspmbllem2 44055
Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. This is Step (b) of Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbllem2.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
hspmbllem2.x (𝜑𝑋 ∈ Fin)
hspmbllem2.k (𝜑𝐾𝑋)
hspmbllem2.y (𝜑𝑌 ∈ ℝ)
hspmbllem2.e (𝜑𝐸 ∈ ℝ+)
hspmbllem2.c (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑋))
hspmbllem2.d (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑋))
hspmbllem2.a (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
hspmbllem2.g (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))
hspmbllem2.r (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
hspmbllem2.i (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
hspmbllem2.f (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
hspmbllem2.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hspmbllem2.t 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
hspmbllem2.s 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
Assertion
Ref Expression
hspmbllem2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐶,𝑎,𝑏,𝑐,,𝑘,𝑙   𝐷,𝑎,𝑏,𝑐,,𝑗,𝑘,𝑙   𝑗,𝐻,𝑘   𝐾,𝑎,𝑏,𝑐,,𝑗,𝑘,𝑙,𝑥,𝑦   𝑆,𝑎,𝑏,𝑘,𝑙   𝑇,𝑎,𝑏,𝑘,𝑙   𝑋,𝑎,𝑏,𝑐,,𝑗,𝑘,𝑙,𝑥,𝑦   𝑌,𝑎,𝑏,𝑐,,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑎,𝑏,𝑐,,𝑗,𝑘,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,,𝑎,𝑏,𝑐,𝑙)   𝐶(𝑥,𝑦,𝑗)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦,,𝑗,𝑐)   𝑇(𝑥,𝑦,,𝑗,𝑐)   𝐸(𝑥,𝑦,,𝑗,𝑘,𝑎,𝑏,𝑐,𝑙)   𝐻(𝑥,𝑦,,𝑎,𝑏,𝑐,𝑙)   𝐿(𝑥,𝑦,,𝑗,𝑘,𝑎,𝑏,𝑐,𝑙)

Proof of Theorem hspmbllem2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 hspmbllem2.i . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
2 hspmbllem2.f . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
31, 2readdcld 10935 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ)
4 hspmbllem2.r . . . 4 (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
5 hspmbllem2.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
65rpred 12701 . . . 4 (𝜑𝐸 ∈ ℝ)
74, 6readdcld 10935 . . 3 (𝜑 → (((voln*‘𝑋)‘𝐴) + 𝐸) ∈ ℝ)
8 nfv 1918 . . . 4 𝑗𝜑
9 nnex 11909 . . . . 5 ℕ ∈ V
109a1i 11 . . . 4 (𝜑 → ℕ ∈ V)
11 icossicc 13097 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
12 hspmbllem2.l . . . . . 6 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
13 hspmbllem2.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
1413adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
15 hspmbllem2.c . . . . . . . 8 (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑋))
1615ffvelrnda 6943 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑m 𝑋))
17 elmapi 8595 . . . . . . 7 ((𝐶𝑗) ∈ (ℝ ↑m 𝑋) → (𝐶𝑗):𝑋⟶ℝ)
1816, 17syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑋⟶ℝ)
19 hspmbllem2.d . . . . . . . 8 (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑋))
2019ffvelrnda 6943 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑m 𝑋))
21 elmapi 8595 . . . . . . 7 ((𝐷𝑗) ∈ (ℝ ↑m 𝑋) → (𝐷𝑗):𝑋⟶ℝ)
2220, 21syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ)
2312, 14, 18, 22hoidmvcl 44010 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,)+∞))
2411, 23sselid 3915 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) ∈ (0[,]+∞))
258, 10, 24sge0clmpt 43853 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ (0[,]+∞))
26 hspmbllem2.k . . . . . . . . 9 (𝜑𝐾𝑋)
27 ne0i 4265 . . . . . . . . 9 (𝐾𝑋𝑋 ≠ ∅)
2826, 27syl 17 . . . . . . . 8 (𝜑𝑋 ≠ ∅)
2928adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑋 ≠ ∅)
3012, 14, 29, 18, 22hoidmvn0val 44012 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) = ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
3130mpteq2dva 5170 . . . . 5 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))))
3231fveq2d 6760 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))))
33 hspmbllem2.g . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))
3432, 33eqbrtrd 5092 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))
357, 25, 34ge0lere 42960 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ)
36 hspmbllem2.t . . . . . . . . 9 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
37 hspmbllem2.y . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
3837adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑌 ∈ ℝ)
3936, 38, 14, 22hsphoif 44004 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝑇𝑌)‘(𝐷𝑗)):𝑋⟶ℝ)
4012, 14, 18, 39hoidmvcl 44010 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) ∈ (0[,)+∞))
4111, 40sselid 3915 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) ∈ (0[,]+∞))
428, 10, 41sge0clmpt 43853 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) ∈ (0[,]+∞))
43 oveq2 7263 . . . . . . . . . . 11 (𝑥 = 𝑦 → (ℝ ↑m 𝑥) = (ℝ ↑m 𝑦))
44 eqeq1 2742 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
45 prodeq1 15547 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))) = ∏𝑘𝑦 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
4644, 45ifbieq2d 4482 . . . . . . . . . . 11 (𝑥 = 𝑦 → if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))) = if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
4743, 43, 46mpoeq123dv 7328 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))) = (𝑎 ∈ (ℝ ↑m 𝑦), 𝑏 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
4847cbvmptv 5183 . . . . . . . . 9 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑦 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑦), 𝑏 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
4912, 48eqtri 2766 . . . . . . . 8 𝐿 = (𝑦 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑦), 𝑏 ∈ (ℝ ↑m 𝑦) ↦ if(𝑦 = ∅, 0, ∏𝑘𝑦 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
50 diffi 8979 . . . . . . . . . . 11 (𝑋 ∈ Fin → (𝑋 ∖ {𝐾}) ∈ Fin)
5113, 50syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 ∖ {𝐾}) ∈ Fin)
52 snfi 8788 . . . . . . . . . . 11 {𝐾} ∈ Fin
5352a1i 11 . . . . . . . . . 10 (𝜑 → {𝐾} ∈ Fin)
54 unfi 8917 . . . . . . . . . 10 (((𝑋 ∖ {𝐾}) ∈ Fin ∧ {𝐾} ∈ Fin) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin)
5551, 53, 54syl2anc 583 . . . . . . . . 9 (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin)
5655adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∈ Fin)
57 snidg 4592 . . . . . . . . . . . 12 (𝐾𝑋𝐾 ∈ {𝐾})
5826, 57syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ {𝐾})
59 elun2 4107 . . . . . . . . . . 11 (𝐾 ∈ {𝐾} → 𝐾 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}))
6058, 59syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}))
61 neldifsnd 4723 . . . . . . . . . 10 (𝜑 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾}))
6260, 61eldifd 3894 . . . . . . . . 9 (𝜑𝐾 ∈ (((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∖ (𝑋 ∖ {𝐾})))
6362adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝐾 ∈ (((𝑋 ∖ {𝐾}) ∪ {𝐾}) ∖ (𝑋 ∖ {𝐾})))
64 eqid 2738 . . . . . . . 8 ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ((𝑋 ∖ {𝐾}) ∪ {𝐾})
65 eqid 2738 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
66 uncom 4083 . . . . . . . . . . . . 13 ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾}))
6766a1i 11 . . . . . . . . . . . 12 (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾})))
6826snssd 4739 . . . . . . . . . . . . 13 (𝜑 → {𝐾} ⊆ 𝑋)
69 undif 4412 . . . . . . . . . . . . 13 ({𝐾} ⊆ 𝑋 ↔ ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋)
7068, 69sylib 217 . . . . . . . . . . . 12 (𝜑 → ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋)
7167, 70eqtrd 2778 . . . . . . . . . . 11 (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋)
7271adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋)
7372feq2d 6570 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ ↔ (𝐶𝑗):𝑋⟶ℝ))
7418, 73mpbird 256 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ)
7572feq2d 6570 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((𝐷𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ ↔ (𝐷𝑗):𝑋⟶ℝ))
7622, 75mpbird 256 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):((𝑋 ∖ {𝐾}) ∪ {𝐾})⟶ℝ)
7749, 56, 63, 64, 38, 65, 74, 76hsphoidmvle 44014 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷𝑗)))
7871fveq2d 6760 . . . . . . . . . 10 (𝜑 → (𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (𝐿𝑋))
79 eqidd 2739 . . . . . . . . . 10 (𝜑 → (𝐶𝑗) = (𝐶𝑗))
8036a1i 11 . . . . . . . . . . . . 13 (𝜑𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))))
8171oveq2d 7271 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (ℝ ↑m 𝑋))
8271mpteq1d 5165 . . . . . . . . . . . . . . . 16 (𝜑 → ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))
8381, 82mpteq12dv 5161 . . . . . . . . . . . . . . 15 (𝜑 → (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
8483eqcomd 2744 . . . . . . . . . . . . . 14 (𝜑 → (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))) = (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
8584mpteq2dv 5172 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))))
8680, 85eqtr2d 2779 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))) = 𝑇)
8786fveq1d 6758 . . . . . . . . . . 11 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌) = (𝑇𝑌))
8887fveq1d 6758 . . . . . . . . . 10 (𝜑 → (((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌)‘(𝐷𝑗)) = ((𝑇𝑌)‘(𝐷𝑗)))
8978, 79, 88oveq123d 7276 . . . . . . . . 9 (𝜑 → ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌)‘(𝐷𝑗))) = ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))
9089adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌)‘(𝐷𝑗))) = ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))
9178adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾})) = (𝐿𝑋))
9291oveqd 7272 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷𝑗)) = ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))
9390, 92breq12d 5083 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(((𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m ((𝑋 ∖ {𝐾}) ∪ {𝐾})) ↦ ( ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))‘𝑌)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿‘((𝑋 ∖ {𝐾}) ∪ {𝐾}))(𝐷𝑗)) ↔ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))))
9477, 93mpbid 231 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))
958, 10, 41, 24, 94sge0lempt 43838 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
9635, 42, 95ge0lere 42960 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) ∈ ℝ)
97 hspmbllem2.s . . . . . . . . . 10 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
9897, 38, 14, 18hoidifhspf 44046 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((𝑆𝑌)‘(𝐶𝑗)):𝑋⟶ℝ)
9912, 14, 98, 22hoidmvcl 44010 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)) ∈ (0[,)+∞))
10099fmpttd 6971 . . . . . . 7 (𝜑 → (𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))):ℕ⟶(0[,)+∞))
10111a1i 11 . . . . . . 7 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
102100, 101fssd 6602 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))):ℕ⟶(0[,]+∞))
10310, 102sge0cl 43809 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))) ∈ (0[,]+∞))
10411, 99sselid 3915 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)) ∈ (0[,]+∞))
10526adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐾𝑋)
10612, 14, 18, 22, 105, 97, 38hoidifhspdmvle 44048 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)) ≤ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))
1078, 10, 104, 24, 106sge0lempt 43838 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
10835, 103, 107ge0lere 42960 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))) ∈ ℝ)
10937adantr 480 . . . . . . . . 9 ((𝜑𝑙 ∈ ℕ) → 𝑌 ∈ ℝ)
11013adantr 480 . . . . . . . . 9 ((𝜑𝑙 ∈ ℕ) → 𝑋 ∈ Fin)
111 eleq1w 2821 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝑗 ∈ ℕ ↔ 𝑙 ∈ ℕ))
112111anbi2d 628 . . . . . . . . . . 11 (𝑗 = 𝑙 → ((𝜑𝑗 ∈ ℕ) ↔ (𝜑𝑙 ∈ ℕ)))
113 fveq2 6756 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝐷𝑗) = (𝐷𝑙))
114113feq1d 6569 . . . . . . . . . . 11 (𝑗 = 𝑙 → ((𝐷𝑗):𝑋⟶ℝ ↔ (𝐷𝑙):𝑋⟶ℝ))
115112, 114imbi12d 344 . . . . . . . . . 10 (𝑗 = 𝑙 → (((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑋⟶ℝ) ↔ ((𝜑𝑙 ∈ ℕ) → (𝐷𝑙):𝑋⟶ℝ)))
116115, 22chvarvv 2003 . . . . . . . . 9 ((𝜑𝑙 ∈ ℕ) → (𝐷𝑙):𝑋⟶ℝ)
11736, 109, 110, 116hsphoif 44004 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → ((𝑇𝑌)‘(𝐷𝑙)):𝑋⟶ℝ)
118 reex 10893 . . . . . . . . . . . 12 ℝ ∈ V
119118a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ ∈ V)
120119, 13jca 511 . . . . . . . . . 10 (𝜑 → (ℝ ∈ V ∧ 𝑋 ∈ Fin))
121120adantr 480 . . . . . . . . 9 ((𝜑𝑙 ∈ ℕ) → (ℝ ∈ V ∧ 𝑋 ∈ Fin))
122 elmapg 8586 . . . . . . . . 9 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (((𝑇𝑌)‘(𝐷𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑇𝑌)‘(𝐷𝑙)):𝑋⟶ℝ))
123121, 122syl 17 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → (((𝑇𝑌)‘(𝐷𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑇𝑌)‘(𝐷𝑙)):𝑋⟶ℝ))
124117, 123mpbird 256 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → ((𝑇𝑌)‘(𝐷𝑙)) ∈ (ℝ ↑m 𝑋))
125124fmpttd 6971 . . . . . 6 (𝜑 → (𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙))):ℕ⟶(ℝ ↑m 𝑋))
126 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → 𝜑)
127 elinel1 4125 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) → 𝑓𝐴)
128127adantl 481 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → 𝑓𝐴)
129 hspmbllem2.a . . . . . . . . . . . . . 14 (𝜑𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
130129sselda 3917 . . . . . . . . . . . . 13 ((𝜑𝑓𝐴) → 𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
131 eliun 4925 . . . . . . . . . . . . 13 (𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
132130, 131sylib 217 . . . . . . . . . . . 12 ((𝜑𝑓𝐴) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
133126, 128, 132syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
134 simpll 763 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝜑)
135 elinel2 4126 . . . . . . . . . . . . . . 15 (𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) → 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
136135adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
137136adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
138 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
139 ixpfn 8649 . . . . . . . . . . . . . . . . 17 (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → 𝑓 Fn 𝑋)
140139adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓 Fn 𝑋)
141 nfv 1918 . . . . . . . . . . . . . . . . . 18 𝑘((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ)
142 nfcv 2906 . . . . . . . . . . . . . . . . . . 19 𝑘𝑓
143 nfixp1 8664 . . . . . . . . . . . . . . . . . . 19 𝑘X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))
144142, 143nfel 2920 . . . . . . . . . . . . . . . . . 18 𝑘 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))
145141, 144nfan 1903 . . . . . . . . . . . . . . . . 17 𝑘(((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
146183adant3 1130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (𝐶𝑗):𝑋⟶ℝ)
147 simp3 1136 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → 𝑘𝑋)
148146, 147ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ)
149148rexrd 10956 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ*)
150149ad5ant135 1366 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ*)
151393adant3 1130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝑇𝑌)‘(𝐷𝑗)):𝑋⟶ℝ)
152151, 147ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) ∈ ℝ)
153152rexrd 10956 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) ∈ ℝ*)
154153ad5ant135 1366 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) ∈ ℝ*)
155 iftrue 4462 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌))
156 ioossre 13069 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-∞(,)𝑌) ⊆ ℝ
157156a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝐾 → (-∞(,)𝑌) ⊆ ℝ)
158155, 157eqsstrd 3955 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
159 iffalse 4465 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = ℝ)
160 ssid 3939 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ ⊆ ℝ
161160a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = 𝐾 → ℝ ⊆ ℝ)
162159, 161eqsstrd 3955 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 = 𝐾 → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
163158, 162pm2.61i 182 . . . . . . . . . . . . . . . . . . . . . 22 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
164 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) → 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
165 hspmbllem2.h . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
166165, 13, 26, 37hspval 44037 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐾(𝐻𝑋)𝑌) = X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
167166adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) → (𝐾(𝐻𝑋)𝑌) = X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
168164, 167eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) → 𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
169168adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
170 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋) → 𝑘𝑋)
171 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑓 ∈ V
172171elixp 8650 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)))
173172biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)))
174173simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
175174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘𝑋) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
176 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘𝑋) → 𝑘𝑋)
177 rspa 3130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
178175, 176, 177syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
179169, 170, 178syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
180163, 179sselid 3915 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
181180rexrd 10956 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ*)
182181ad4ant14 748 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ*)
183149ad4ant124 1171 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ*)
184223adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (𝐷𝑗):𝑋⟶ℝ)
185184, 147ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ)
186185rexrd 10956 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
187186ad4ant124 1171 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
188171elixp 8650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
189188biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
190189simprd 495 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
191190adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ∧ 𝑘𝑋) → ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
192 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ∧ 𝑘𝑋) → 𝑘𝑋)
193 rspa 3130 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
194191, 192, 193syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
195194adantll 710 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
196 icogelb 13059 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶𝑗)‘𝑘) ∈ ℝ* ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ* ∧ (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
197183, 187, 195, 196syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
198197adantl3r 746 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
199 icoltub 42936 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐶𝑗)‘𝑘) ∈ ℝ* ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ* ∧ (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
200183, 187, 195, 199syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
201200adantl3r 746 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
202201ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
203 simpll 763 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → 𝜑)
204 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
205203, 204jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → (𝜑𝑗 ∈ ℕ))
2062053ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝜑𝑗 ∈ ℕ))
207 simp2 1135 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → 𝑘 = 𝐾)
208 simp3 1136 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝑘) ≤ 𝑌)
209 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 𝐾 → ((𝐷𝑗)‘𝑘) = ((𝐷𝑗)‘𝐾))
210209breq1d 5080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝐾 → (((𝐷𝑗)‘𝑘) ≤ 𝑌 ↔ ((𝐷𝑗)‘𝐾) ≤ 𝑌))
211210biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝐾) ≤ 𝑌)
212211iftrued 4464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = ((𝐷𝑗)‘𝐾))
213209eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 𝐾 → ((𝐷𝑗)‘𝐾) = ((𝐷𝑗)‘𝑘))
214213adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝐾) = ((𝐷𝑗)‘𝑘))
215212, 214eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = ((𝐷𝑗)‘𝑘))
2162153adant1 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = ((𝐷𝑗)‘𝑘))
217 breq2 5074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = 𝑌 → ((𝑐) ≤ 𝑦 ↔ (𝑐) ≤ 𝑌))
218 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = 𝑌𝑦 = 𝑌)
219217, 218ifbieq2d 4482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 = 𝑌 → if((𝑐) ≤ 𝑦, (𝑐), 𝑦) = if((𝑐) ≤ 𝑌, (𝑐), 𝑌))
220219ifeq2d 4476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = 𝑌 → if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)) = if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))
221220mpteq2dv 5172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = 𝑌 → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌))))
222221mpteq2dv 5172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = 𝑌 → (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))))
223 ovex 7288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (ℝ ↑m 𝑋) ∈ V
224223mptex 7081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))) ∈ V
225224a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))) ∈ V)
22636, 222, 37, 225fvmptd3 6880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑇𝑌) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))))
227226adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑌) = (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)))))
228 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = (𝐷𝑗) → (𝑐) = ((𝐷𝑗)‘))
229228breq1d 5080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = (𝐷𝑗) → ((𝑐) ≤ 𝑌 ↔ ((𝐷𝑗)‘) ≤ 𝑌))
230229, 228ifbieq1d 4480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = (𝐷𝑗) → if((𝑐) ≤ 𝑌, (𝑐), 𝑌) = if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))
231228, 230ifeq12d 4477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = (𝐷𝑗) → if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌)) = if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))
232231mpteq2dv 5172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = (𝐷𝑗) → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌))) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))))
233232adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ ℕ) ∧ 𝑐 = (𝐷𝑗)) → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑌, (𝑐), 𝑌))) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))))
234 mptexg 7079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑋 ∈ Fin → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))) ∈ V)
23513, 234syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))) ∈ V)
236235adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑗 ∈ ℕ) → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))) ∈ V)
237227, 233, 20, 236fvmptd 6864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑗 ∈ ℕ) → ((𝑇𝑌)‘(𝐷𝑗)) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))))
238237fveq1d 6758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑗 ∈ ℕ) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘))
2392383adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘))
240 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑘 = 𝐾) → 𝜑)
241 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑘 = 𝐾) → 𝑘 = 𝐾)
242240, 26syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑘 = 𝐾) → 𝐾𝑋)
243241, 242eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑘 = 𝐾) → 𝑘𝑋)
244 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑘𝑋) → (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))))
245 eleq1w 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ( = 𝑘 → ( ∈ (𝑋 ∖ {𝐾}) ↔ 𝑘 ∈ (𝑋 ∖ {𝐾})))
246 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ( = 𝑘 → ((𝐷𝑗)‘) = ((𝐷𝑗)‘𝑘))
247246breq1d 5080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ( = 𝑘 → (((𝐷𝑗)‘) ≤ 𝑌 ↔ ((𝐷𝑗)‘𝑘) ≤ 𝑌))
248247, 246ifbieq1d 4480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ( = 𝑘 → if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌) = if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌))
249245, 246, 248ifbieq12d 4484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ( = 𝑘 → if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
250249adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑘𝑋) ∧ = 𝑘) → if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
251 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑘𝑋) → 𝑘𝑋)
252 fvexd 6771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → ((𝐷𝑗)‘𝑘) ∈ V)
253252, 37ifexd 4504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌) ∈ V)
254252, 253ifexd 4504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) ∈ V)
255254adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑘𝑋) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) ∈ V)
256244, 250, 251, 255fvmptd 6864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑘𝑋) → ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
257240, 243, 256syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑘 = 𝐾) → ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
258 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝐾 → (𝑘 ∈ (𝑋 ∖ {𝐾}) ↔ 𝐾 ∈ (𝑋 ∖ {𝐾})))
259210, 209ifbieq1d 4480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝐾 → if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌) = if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌))
260258, 209, 259ifbieq12d 4484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝐾 → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)))
261260adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)))
262257, 261eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑘 = 𝐾) → ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)))
2632623adant2 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → ((𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)))‘𝑘) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)))
264 neldifsnd 4723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 𝐾 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾}))
265264iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝐾 → if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)) = if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌))
2662653ad2ant3 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → if(𝐾 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝐾), if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌)) = if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌))
267239, 263, 2663eqtrrd 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ ℕ ∧ 𝑘 = 𝐾) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
2682673expa 1116 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
2692683adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
270216, 269eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝑘) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
271206, 207, 208, 270syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝐾 ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝑘) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
272271ad5ant145 1367 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ((𝐷𝑗)‘𝑘) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
273202, 272breqtrd 5096 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
274 mnfxr 10963 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 -∞ ∈ ℝ*
275274a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → -∞ ∈ ℝ*)
27637rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑌 ∈ ℝ*)
277276adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) → 𝑌 ∈ ℝ*)
2782773ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → 𝑌 ∈ ℝ*)
2791793adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
2801553ad2ant3 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌))
281279, 280eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝑘) ∈ (-∞(,)𝑌))
282 iooltub 42938 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-∞ ∈ ℝ*𝑌 ∈ ℝ* ∧ (𝑓𝑘) ∈ (-∞(,)𝑌)) → (𝑓𝑘) < 𝑌)
283275, 278, 281, 282syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝑘) < 𝑌)
2842833adant1r 1175 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝑘) < 𝑌)
285284ad4ant123 1170 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝑓𝑘) < 𝑌)
286 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌)
287210notbid 317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝐾 → (¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌 ↔ ¬ ((𝐷𝑗)‘𝐾) ≤ 𝑌))
288287adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌 ↔ ¬ ((𝐷𝑗)‘𝐾) ≤ 𝑌))
289286, 288mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → ¬ ((𝐷𝑗)‘𝐾) ≤ 𝑌)
290289iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = 𝑌)
291 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = 𝑌)
292290, 291eqtr2d 2779 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 = 𝐾 ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌))
293292adantll 710 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌))
294268adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
295294adantl3r 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
296295adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → if(((𝐷𝑗)‘𝐾) ≤ 𝑌, ((𝐷𝑗)‘𝐾), 𝑌) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
297293, 296eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → 𝑌 = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
298285, 297breqtrd 5096 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
299298adantl3r 746 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ ((𝐷𝑗)‘𝑘) ≤ 𝑌) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
300273, 299pm2.61dan 809 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
301201adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
3022373adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝑇𝑌)‘(𝐷𝑗)) = (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌))))
303249adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) ∧ = 𝑘) → if( ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘), if(((𝐷𝑗)‘) ≤ 𝑌, ((𝐷𝑗)‘), 𝑌)) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
3042553adant2 1129 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) ∈ V)
305302, 303, 147, 304fvmptd 6864 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
3063053expa 1116 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
307306adantllr 715 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
308307ad4ant13 747 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑇𝑌)‘(𝐷𝑗))‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)))
309 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘𝑋 ∧ ¬ 𝑘 = 𝐾) → 𝑘𝑋)
310 neqne 2950 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑘 = 𝐾𝑘𝐾)
311 nelsn 4598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘𝐾 → ¬ 𝑘 ∈ {𝐾})
312310, 311syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑘 = 𝐾 → ¬ 𝑘 ∈ {𝐾})
313312adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘𝑋 ∧ ¬ 𝑘 = 𝐾) → ¬ 𝑘 ∈ {𝐾})
314309, 313eldifd 3894 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘𝑋 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑋 ∖ {𝐾}))
315314iftrued 4464 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘𝑋 ∧ ¬ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) = ((𝐷𝑗)‘𝑘))
316315adantll 710 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), ((𝐷𝑗)‘𝑘), if(((𝐷𝑗)‘𝑘) ≤ 𝑌, ((𝐷𝑗)‘𝑘), 𝑌)) = ((𝐷𝑗)‘𝑘))
317308, 316eqtr2d 2779 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → ((𝐷𝑗)‘𝑘) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
318301, 317breqtrd 5096 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
319300, 318pm2.61dan 809 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) < (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
320150, 154, 182, 198, 319elicod 13058 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
321320ex 412 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑘𝑋 → (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
322145, 321ralrimi 3139 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
323140, 322jca 511 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
324171elixp 8650 . . . . . . . . . . . . . . 15 (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
325323, 324sylibr 233 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
326325ex 412 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝐾(𝐻𝑋)𝑌)) ∧ 𝑗 ∈ ℕ) → (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
327134, 137, 138, 326syl21anc 834 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
328327reximdva 3202 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → (∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))))
329133, 328mpd 15 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
330 eliun 4925 . . . . . . . . . 10 (𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
331329, 330sylibr 233 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) → 𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
332331ralrimiva 3107 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
333 dfss3 3905 . . . . . . . 8 ((𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)) ↔ ∀𝑓 ∈ (𝐴 ∩ (𝐾(𝐻𝑋)𝑌))𝑓 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
334332, 333sylibr 233 . . . . . . 7 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
335 eqidd 2739 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙))) = (𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙))))
336 2fveq3 6761 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → ((𝑇𝑌)‘(𝐷𝑙)) = ((𝑇𝑌)‘(𝐷𝑗)))
337336adantl 481 . . . . . . . . . . . 12 ((𝑗 ∈ ℕ ∧ 𝑙 = 𝑗) → ((𝑇𝑌)‘(𝐷𝑙)) = ((𝑇𝑌)‘(𝐷𝑗)))
338 id 22 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
339 fvexd 6771 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((𝑇𝑌)‘(𝐷𝑗)) ∈ V)
340335, 337, 338, 339fvmptd 6864 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗) = ((𝑇𝑌)‘(𝐷𝑗)))
341340fveq1d 6758 . . . . . . . . . 10 (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)‘𝑘) = (((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
342341oveq2d 7271 . . . . . . . . 9 (𝑗 ∈ ℕ → (((𝐶𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)‘𝑘)) = (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
343342ixpeq2dv 8659 . . . . . . . 8 (𝑗 ∈ ℕ → X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)‘𝑘)) = X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘)))
344343iuneq2i 4942 . . . . . . 7 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)‘𝑘)) = 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑇𝑌)‘(𝐷𝑗))‘𝑘))
345334, 344sseqtrrdi 3968 . . . . . 6 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)(((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)‘𝑘)))
34613, 15, 125, 345, 12ovnlecvr2 44038 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)))))
347340oveq2d 7271 . . . . . . . 8 (𝑗 ∈ ℕ → ((𝐶𝑗)(𝐿𝑋)((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)) = ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))
348347mpteq2ia 5173 . . . . . . 7 (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))
349348fveq2i 6759 . . . . . 6 ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗)))))
350349a1i 11 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑙 ∈ ℕ ↦ ((𝑇𝑌)‘(𝐷𝑙)))‘𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))))
351346, 350breqtrd 5096 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))))
35215ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑙 ∈ ℕ) → (𝐶𝑙) ∈ (ℝ ↑m 𝑋))
353 elmapi 8595 . . . . . . . . . 10 ((𝐶𝑙) ∈ (ℝ ↑m 𝑋) → (𝐶𝑙):𝑋⟶ℝ)
354352, 353syl 17 . . . . . . . . 9 ((𝜑𝑙 ∈ ℕ) → (𝐶𝑙):𝑋⟶ℝ)
35597, 109, 110, 354hoidifhspf 44046 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → ((𝑆𝑌)‘(𝐶𝑙)):𝑋⟶ℝ)
356 elmapg 8586 . . . . . . . . . 10 ((ℝ ∈ V ∧ 𝑋 ∈ Fin) → (((𝑆𝑌)‘(𝐶𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑆𝑌)‘(𝐶𝑙)):𝑋⟶ℝ))
357120, 356syl 17 . . . . . . . . 9 (𝜑 → (((𝑆𝑌)‘(𝐶𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑆𝑌)‘(𝐶𝑙)):𝑋⟶ℝ))
358357adantr 480 . . . . . . . 8 ((𝜑𝑙 ∈ ℕ) → (((𝑆𝑌)‘(𝐶𝑙)) ∈ (ℝ ↑m 𝑋) ↔ ((𝑆𝑌)‘(𝐶𝑙)):𝑋⟶ℝ))
359355, 358mpbird 256 . . . . . . 7 ((𝜑𝑙 ∈ ℕ) → ((𝑆𝑌)‘(𝐶𝑙)) ∈ (ℝ ↑m 𝑋))
360359fmpttd 6971 . . . . . 6 (𝜑 → (𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙))):ℕ⟶(ℝ ↑m 𝑋))
361 simpl 482 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → 𝜑)
362 eldifi 4057 . . . . . . . . . . . 12 (𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) → 𝑓𝐴)
363362adantl 481 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → 𝑓𝐴)
364361, 363, 132syl2anc 583 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
365139adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓 Fn 𝑋)
366 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑘((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ)
367366, 144nfan 1903 . . . . . . . . . . . . . . . 16 𝑘(((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
368983adant3 1130 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → ((𝑆𝑌)‘(𝐶𝑗)):𝑋⟶ℝ)
369368, 147ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ∈ ℝ)
370369rexrd 10956 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ∈ ℝ*)
371370ad5ant135 1366 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ∈ ℝ*)
372187adantl3r 746 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
3731483expa 1116 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ∈ ℝ)
3741863expa 1116 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((𝐷𝑗)‘𝑘) ∈ ℝ*)
375 icossre 13089 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐶𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷𝑗)‘𝑘) ∈ ℝ*) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
376373, 374, 375syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
377376adantlr 711 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ⊆ ℝ)
378377, 195sseldd 3918 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
379378rexrd 10956 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ*)
380379adantl3r 746 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ*)
381383adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → 𝑌 ∈ ℝ)
382143adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → 𝑋 ∈ Fin)
38397, 381, 382, 146, 147hoidifhspval3 44047 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ ℕ ∧ 𝑘𝑋) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)))
384383ad5ant134 1365 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)))
385 iftrue 4462 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)) = if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌))
386385adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)) = if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌))
387384, 386eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌))
388387adantllr 715 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌))
389 iftrue 4462 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ≤ ((𝐶𝑗)‘𝑘) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) = ((𝐶𝑗)‘𝑘))
390389adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) = ((𝐶𝑗)‘𝑘))
391197adantl3r 746 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
392391ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
393390, 392eqbrtrd 5092 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) ≤ (𝑓𝑘))
394 iffalse 4465 . . . . . . . . . . . . . . . . . . . . . . 23 𝑌 ≤ ((𝐶𝑗)‘𝑘) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) = 𝑌)
395394adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) = 𝑌)
396 simpl1 1189 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → (𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))))
397 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → ¬ 𝑌 ≤ (𝑓𝑘))
398 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 = 𝐾 → (𝑓𝑘) = (𝑓𝐾))
399398breq2d 5082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 = 𝐾 → (𝑌 ≤ (𝑓𝑘) ↔ 𝑌 ≤ (𝑓𝐾)))
400399notbid 317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝐾 → (¬ 𝑌 ≤ (𝑓𝑘) ↔ ¬ 𝑌 ≤ (𝑓𝐾)))
401400adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → (¬ 𝑌 ≤ (𝑓𝑘) ↔ ¬ 𝑌 ≤ (𝑓𝐾)))
402397, 401mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑘 = 𝐾 ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → ¬ 𝑌 ≤ (𝑓𝐾))
4034023ad2antl3 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → ¬ 𝑌 ≤ (𝑓𝐾))
404398eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 = 𝐾 → (𝑓𝐾) = (𝑓𝑘))
4054043ad2ant3 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝐾) = (𝑓𝑘))
406364adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
407 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑗 ∈ ℕ) → (𝜑𝑗 ∈ ℕ))
408407ad4ant13 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑘𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝜑𝑗 ∈ ℕ))
409 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑘𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
410251ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑘𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑘𝑋)
411408, 409, 410, 378syl21anc 834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑘𝑋) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑓𝑘) ∈ ℝ)
412411rexlimdva2 3215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑘𝑋) → (∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → (𝑓𝑘) ∈ ℝ))
413412adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋) → (∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → (𝑓𝑘) ∈ ℝ))
414406, 413mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
4154143adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝑘) ∈ ℝ)
416405, 415eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) → (𝑓𝐾) ∈ ℝ)
417416adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → (𝑓𝐾) ∈ ℝ)
418396, 361, 373syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → 𝑌 ∈ ℝ)
419417, 418ltnled 11052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → ((𝑓𝐾) < 𝑌 ↔ ¬ 𝑌 ≤ (𝑓𝐾)))
420403, 419mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → (𝑓𝐾) < 𝑌)
421365, 364r19.29a 3217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → 𝑓 Fn 𝑋)
422421adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) → 𝑓 Fn 𝑋)
423274a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → -∞ ∈ ℝ*)
424276ad4antr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ∈ ℝ*)
425414ad4ant13 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝑓𝑘) ∈ ℝ)
426425mnfltd 12789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → -∞ < (𝑓𝑘))
427398adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑓𝐾) < 𝑌𝑘 = 𝐾) → (𝑓𝑘) = (𝑓𝐾))
428 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑓𝐾) < 𝑌𝑘 = 𝐾) → (𝑓𝐾) < 𝑌)
429427, 428eqbrtrd 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑓𝐾) < 𝑌𝑘 = 𝐾) → (𝑓𝑘) < 𝑌)
430429ad4ant24 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝑓𝑘) < 𝑌)
431423, 424, 425, 426, 430eliood 42926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝑓𝑘) ∈ (-∞(,)𝑌))
432155eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 = 𝐾 → (-∞(,)𝑌) = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
433432adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (-∞(,)𝑌) = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
434431, 433eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
435414ad4ant13 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓𝑘) ∈ ℝ)
436159eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑘 = 𝐾 → ℝ = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
437436adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → ℝ = if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
438435, 437eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
439434, 438pm2.61dan 809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
440439ralrimiva 3107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
441422, 440jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ (𝑓𝐾) < 𝑌) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)))
442396, 420, 441syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ)))
443442, 172sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → 𝑓X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ))
444166eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻𝑋)𝑌))
445444ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻𝑋)𝑌))
4464453ad2antl1 1183 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → X𝑘𝑋 if(𝑘 = 𝐾, (-∞(,)𝑌), ℝ) = (𝐾(𝐻𝑋)𝑌))
447443, 446eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
448 eldifn 4058 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) → ¬ 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
449448adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → ¬ 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
4504493ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) → ¬ 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
451450adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ (𝑓𝑘)) → ¬ 𝑓 ∈ (𝐾(𝐻𝑋)𝑌))
452447, 451condan 814 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑘𝑋𝑘 = 𝐾) → 𝑌 ≤ (𝑓𝑘))
453452ad5ant145 1367 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ≤ (𝑓𝑘))
454453adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → 𝑌 ≤ (𝑓𝑘))
455395, 454eqbrtrd 5092 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) ∧ ¬ 𝑌 ≤ ((𝐶𝑗)‘𝑘)) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) ≤ (𝑓𝑘))
456393, 455pm2.61dan 809 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌) ≤ (𝑓𝑘))
457388, 456eqbrtrd 5092 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ≤ (𝑓𝑘))
458383ad5ant124 1363 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)))
459 iffalse 4465 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)) = ((𝐶𝑗)‘𝑘))
460459adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ ((𝐶𝑗)‘𝑘), ((𝐶𝑗)‘𝑘), 𝑌), ((𝐶𝑗)‘𝑘)) = ((𝐶𝑗)‘𝑘))
461458, 460eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) = ((𝐶𝑗)‘𝑘))
462197adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → ((𝐶𝑗)‘𝑘) ≤ (𝑓𝑘))
463461, 462eqbrtrd 5092 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ≤ (𝑓𝑘))
464463adantl4r 751 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ≤ (𝑓𝑘))
465457, 464pm2.61dan 809 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (((𝑆𝑌)‘(𝐶𝑗))‘𝑘) ≤ (𝑓𝑘))
466200adantl3r 746 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) < ((𝐷𝑗)‘𝑘))
467371, 372, 380, 465, 466elicod 13058 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
468467ex 412 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑘𝑋 → (𝑓𝑘) ∈ ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘))))
469367, 468ralrimi 3139 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → ∀𝑘𝑋 (𝑓𝑘) ∈ ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
470365, 469jca 511 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘))))
471171elixp 8650 . . . . . . . . . . . . . 14 (𝑓X𝑘𝑋 ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘))))
472470, 471sylibr 233 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓X𝑘𝑋 ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
473 eqidd 2739 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → (𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙))) = (𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙))))
474 2fveq3 6761 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑗 → ((𝑆𝑌)‘(𝐶𝑙)) = ((𝑆𝑌)‘(𝐶𝑗)))
475474adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑙 = 𝑗) → ((𝑆𝑌)‘(𝐶𝑙)) = ((𝑆𝑌)‘(𝐶𝑗)))
476 fvexd 6771 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((𝑆𝑌)‘(𝐶𝑗)) ∈ V)
477473, 475, 338, 476fvmptd 6864 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗) = ((𝑆𝑌)‘(𝐶𝑗)))
478477fveq1d 6758 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘) = (((𝑆𝑌)‘(𝐶𝑗))‘𝑘))
479478oveq1d 7270 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
480479ixpeq2dv 8659 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘𝑋 ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
481480ad2antlr 723 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) = X𝑘𝑋 ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘)))
482481eleq2d 2824 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → (𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ 𝑓X𝑘𝑋 ((((𝑆𝑌)‘(𝐶𝑗))‘𝑘)[,)((𝐷𝑗)‘𝑘))))
483472, 482mpbird 256 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) ∧ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))) → 𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
484483ex 412 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∧ 𝑗 ∈ ℕ) → (𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → 𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
485484reximdva 3202 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → (∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘))))
486364, 485mpd 15 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
487 eliun 4925 . . . . . . . . 9 (𝑓 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ ∃𝑗 ∈ ℕ 𝑓X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
488486, 487sylibr 233 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) → 𝑓 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
489488ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))𝑓 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
490 dfss3 3905 . . . . . . 7 ((𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)) ↔ ∀𝑓 ∈ (𝐴 ∖ (𝐾(𝐻𝑋)𝑌))𝑓 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
491489, 490sylibr 233 . . . . . 6 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑗 ∈ ℕ X𝑘𝑋 ((((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
49213, 360, 19, 491, 12ovnlecvr2 44038 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)(𝐿𝑋)(𝐷𝑗)))))
493477oveq1d 7270 . . . . . . . 8 (𝑗 ∈ ℕ → (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)(𝐿𝑋)(𝐷𝑗)) = (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))
494493mpteq2ia 5173 . . . . . . 7 (𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))
495494fveq2i 6759 . . . . . 6 ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))
496495a1i 11 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑙 ∈ ℕ ↦ ((𝑆𝑌)‘(𝐶𝑙)))‘𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))))
497492, 496breqtrd 5096 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))))
4981, 2, 96, 108, 351, 497leadd12dd 42745 . . 3 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) + (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))))
49914, 105, 38, 18, 22, 12, 36, 97hspmbllem1 44054 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)) = (((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) +𝑒 (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))
500499mpteq2dva 5170 . . . . 5 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗))) = (𝑗 ∈ ℕ ↦ (((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) +𝑒 (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗)))))
501500fveq2d 6760 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) +𝑒 (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))))
5028, 10, 41, 104sge0xadd 43863 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ (((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))) +𝑒 (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))) = ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) +𝑒^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))))
50396, 108rexaddd 12897 . . . 4 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) +𝑒^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))) = ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) + (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))))
504501, 502, 5033eqtrrd 2783 . . 3 (𝜑 → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)((𝑇𝑌)‘(𝐷𝑗))))) + (Σ^‘(𝑗 ∈ ℕ ↦ (((𝑆𝑌)‘(𝐶𝑗))(𝐿𝑋)(𝐷𝑗))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
505498, 504breqtrd 5096 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑋)(𝐷𝑗)))))
5063, 35, 7, 505, 34letrd 11062 1 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  ifcif 4456  {csn 4558   ciun 4921   class class class wbr 5070  cmpt 5153   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  Xcixp 8643  Fincfn 8691  cr 10801  0cc0 10802   + caddc 10805  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  cn 11903  +crp 12659   +𝑒 cxad 12775  (,)cioo 13008  [,)cico 13010  [,]cicc 13011  cprod 15543  volcvol 24532  Σ^csumge0 43790  voln*covoln 43964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-prod 15544  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-sumge0 43791  df-ovoln 43965
This theorem is referenced by:  hspmbllem3  44056
  Copyright terms: Public domain W3C validator