|   | Mathbox for Jarvin Udandy | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atnaiana | Structured version Visualization version GIF version | ||
| Description: Given a, it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020.) | 
| Ref | Expression | 
|---|---|
| atnaiana.1 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| atnaiana | ⊢ ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | atnaiana.1 | . . . 4 ⊢ 𝜑 | |
| 2 | 1 | bitru 1549 | . . 3 ⊢ (𝜑 ↔ ⊤) | 
| 3 | pm3.24 402 | . . . 4 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
| 4 | 3 | bifal 1556 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜑) ↔ ⊥) | 
| 5 | 2, 4 | aifftbifffaibif 46933 | . 2 ⊢ ((𝜑 → (𝜑 ∧ ¬ 𝜑)) ↔ ⊥) | 
| 6 | 5 | aisfina 46910 | 1 ⊢ ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 | 
| This theorem is referenced by: ainaiaandna 46936 confun5 46955 | 
| Copyright terms: Public domain | W3C validator |