Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnaiana Structured version   Visualization version   GIF version

Theorem atnaiana 44305
Description: Given a, it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020.)
Hypothesis
Ref Expression
atnaiana.1 𝜑
Assertion
Ref Expression
atnaiana ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑))

Proof of Theorem atnaiana
StepHypRef Expression
1 atnaiana.1 . . . 4 𝜑
21bitru 1548 . . 3 (𝜑 ↔ ⊤)
3 pm3.24 402 . . . 4 ¬ (𝜑 ∧ ¬ 𝜑)
43bifal 1555 . . 3 ((𝜑 ∧ ¬ 𝜑) ↔ ⊥)
52, 4aifftbifffaibif 44303 . 2 ((𝜑 → (𝜑 ∧ ¬ 𝜑)) ↔ ⊥)
65aisfina 44280 1 ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552
This theorem is referenced by:  ainaiaandna  44306  confun5  44325
  Copyright terms: Public domain W3C validator