| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atnaiana | Structured version Visualization version GIF version | ||
| Description: Given a, it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| Ref | Expression |
|---|---|
| atnaiana.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| atnaiana | ⊢ ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atnaiana.1 | . . . 4 ⊢ 𝜑 | |
| 2 | 1 | bitru 1549 | . . 3 ⊢ (𝜑 ↔ ⊤) |
| 3 | pm3.24 402 | . . . 4 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
| 4 | 3 | bifal 1556 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜑) ↔ ⊥) |
| 5 | 2, 4 | aifftbifffaibif 46950 | . 2 ⊢ ((𝜑 → (𝜑 ∧ ¬ 𝜑)) ↔ ⊥) |
| 6 | 5 | aisfina 46927 | 1 ⊢ ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: ainaiaandna 46953 confun5 46972 |
| Copyright terms: Public domain | W3C validator |