| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > al2imVD | Structured version Visualization version GIF version | ||
Description: Virtual deduction proof of al2im 1814. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
|
| Ref | Expression |
|---|---|
| al2imVD | ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44566 | . . . 4 ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒)) ▶ ∀𝑥(𝜑 → (𝜓 → 𝜒)) ) | |
| 2 | alim 1810 | . . . 4 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒))) | |
| 3 | 1, 2 | e1a 44619 | . . 3 ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒)) ▶ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒)) ) |
| 4 | alim 1810 | . . 3 ⊢ (∀𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒)) | |
| 5 | imim1 83 | . . 3 ⊢ ((∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒)) → ((∀𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))) | |
| 6 | 3, 4, 5 | e10 44686 | . 2 ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒)) ▶ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) ) |
| 7 | 6 | in1 44563 | 1 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-vd1 44562 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |