Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > al2imVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of al2im 1818. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
|
Ref | Expression |
---|---|
al2imVD | ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 42083 | . . . 4 ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒)) ▶ ∀𝑥(𝜑 → (𝜓 → 𝜒)) ) | |
2 | alim 1814 | . . . 4 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒))) | |
3 | 1, 2 | e1a 42136 | . . 3 ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒)) ▶ (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒)) ) |
4 | alim 1814 | . . 3 ⊢ (∀𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒)) | |
5 | imim1 83 | . . 3 ⊢ ((∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒)) → ((∀𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))) | |
6 | 3, 4, 5 | e10 42203 | . 2 ⊢ ( ∀𝑥(𝜑 → (𝜓 → 𝜒)) ▶ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) ) |
7 | 6 | in1 42080 | 1 ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-vd1 42079 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |