Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  al2imVD Structured version   Visualization version   GIF version

Theorem al2imVD 42482
Description: Virtual deduction proof of al2im 1817. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝑥(𝜑 → (𝜓𝜒))    ▶   𝑥(𝜑 → (𝜓𝜒))   )
2:1,?: e1a 42247 (   𝑥(𝜑 → (𝜓𝜒))    ▶   (∀𝑥𝜑 → ∀𝑥(𝜓𝜒))   )
3:: (∀𝑥(𝜓𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒))
4:2,3,?: e10 42314 (   𝑥(𝜑 → (𝜓𝜒))    ▶   (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))   )
qed:4: (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
al2imVD (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))

Proof of Theorem al2imVD
StepHypRef Expression
1 idn1 42194 . . . 4 (   𝑥(𝜑 → (𝜓𝜒))   ▶   𝑥(𝜑 → (𝜓𝜒))   )
2 alim 1813 . . . 4 (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → ∀𝑥(𝜓𝜒)))
31, 2e1a 42247 . . 3 (   𝑥(𝜑 → (𝜓𝜒))   ▶   (∀𝑥𝜑 → ∀𝑥(𝜓𝜒))   )
4 alim 1813 . . 3 (∀𝑥(𝜓𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒))
5 imim1 83 . . 3 ((∀𝑥𝜑 → ∀𝑥(𝜓𝜒)) → ((∀𝑥(𝜓𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))))
63, 4, 5e10 42314 . 2 (   𝑥(𝜑 → (𝜓𝜒))   ▶   (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))   )
76in1 42191 1 (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-vd1 42190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator