Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tratrbVD Structured version   Visualization version   GIF version

Theorem tratrbVD 42481
Description: Virtual deduction proof of tratrb 42156. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) 𝐵𝐴)   )
2:1,?: e1a 42247 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐴   )
3:1,?: e1a 42247 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
4:1,?: e1a 42247 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝐵𝐴   )
5:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥𝑦𝑦𝐵)   )
6:5,?: e2 42251 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝑦   )
7:5,?: e2 42251 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑦𝐵   )
8:2,7,4,?: e121 42276 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑦𝐴   )
9:2,6,8,?: e122 42273 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝐴   )
10:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝐵𝑥   ▶   𝐵𝑥   )
11:6,7,10,?: e223 42255 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝐵𝑥   ▶   (𝑥𝑦𝑦𝐵𝐵𝑥)   )
12:11: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))   )
13:: ¬ (𝑥𝑦𝑦𝐵 𝐵𝑥)
14:12,13,?: e20 42347 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   ¬ 𝐵𝑥   )
15:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   𝑥 = 𝐵   )
16:7,15,?: e23 42375 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   𝑦𝑥   )
17:6,16,?: e23 42375 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   (𝑥𝑦𝑦𝑥)   )
18:17: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥))   )
19:: ¬ (𝑥𝑦𝑦𝑥)
20:18,19,?: e20 42347 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   ¬ 𝑥 = 𝐵   )
21:3,?: e1a 42247 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑦𝐴 𝑥𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
22:21,9,4,?: e121 42276 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥 𝑥 = 𝑦)   )
23:22,?: e2 42251 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
24:4,23,?: e12 42344 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥𝐵𝐵𝑥𝑥 = 𝐵)   )
25:14,20,24,?: e222 42256 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝐵   )
26:25: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   ((𝑥𝑦 𝑦𝐵) → 𝑥𝐵)   )
27:: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦))
28:27,?: e0a 42392 ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥 𝑥 = 𝑦) ∧ 𝐵𝐴))
29:28,26: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
30:: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦) → ∀𝑥𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦))
31:30,?: e0a 42392 ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴))
32:31,29: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑥 𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
33:32,?: e1a 42247 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐵   )
qed:33: ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tratrbVD ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem tratrbVD
StepHypRef Expression
1 hbra1 3145 . . . . 5 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑥𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
2 alrim3con13v 42153 . . . . 5 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑥𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)))
31, 2e0a 42392 . . . 4 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴))
4 ax-5 1913 . . . . . . 7 (𝑥𝐴 → ∀𝑦 𝑥𝐴)
5 hbra1 3145 . . . . . . 7 (∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
64, 5hbral 3146 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
7 alrim3con13v 42153 . . . . . 6 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)))
86, 7e0a 42392 . . . . 5 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴))
9 idn2 42233 . . . . . . . . . . 11 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   (𝑥𝑦𝑦𝐵)   )
10 simpl 483 . . . . . . . . . . 11 ((𝑥𝑦𝑦𝐵) → 𝑥𝑦)
119, 10e2 42251 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   𝑥𝑦   )
12 simpr 485 . . . . . . . . . . 11 ((𝑥𝑦𝑦𝐵) → 𝑦𝐵)
139, 12e2 42251 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   𝑦𝐵   )
14 idn3 42235 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ,   𝐵𝑥   ▶   𝐵𝑥   )
15 pm3.2an3 1339 . . . . . . . . . 10 (𝑥𝑦 → (𝑦𝐵 → (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))))
1611, 13, 14, 15e223 42255 . . . . . . . . 9 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ,   𝐵𝑥   ▶   (𝑥𝑦𝑦𝐵𝐵𝑥)   )
1716in3 42229 . . . . . . . 8 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))   )
18 en3lp 9372 . . . . . . . 8 ¬ (𝑥𝑦𝑦𝐵𝐵𝑥)
19 con3 153 . . . . . . . 8 ((𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥)) → (¬ (𝑥𝑦𝑦𝐵𝐵𝑥) → ¬ 𝐵𝑥))
2017, 18, 19e20 42347 . . . . . . 7 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶    ¬ 𝐵𝑥   )
21 idn3 42235 . . . . . . . . . . 11 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ,   𝑥 = 𝐵   ▶   𝑥 = 𝐵   )
22 eleq2 2827 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
2322biimprcd 249 . . . . . . . . . . 11 (𝑦𝐵 → (𝑥 = 𝐵𝑦𝑥))
2413, 21, 23e23 42375 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ,   𝑥 = 𝐵   ▶   𝑦𝑥   )
25 pm3.2 470 . . . . . . . . . 10 (𝑥𝑦 → (𝑦𝑥 → (𝑥𝑦𝑦𝑥)))
2611, 24, 25e23 42375 . . . . . . . . 9 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ,   𝑥 = 𝐵   ▶   (𝑥𝑦𝑦𝑥)   )
2726in3 42229 . . . . . . . 8 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   (𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥))   )
28 en2lp 9364 . . . . . . . 8 ¬ (𝑥𝑦𝑦𝑥)
29 con3 153 . . . . . . . 8 ((𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥)) → (¬ (𝑥𝑦𝑦𝑥) → ¬ 𝑥 = 𝐵))
3027, 28, 29e20 42347 . . . . . . 7 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶    ¬ 𝑥 = 𝐵   )
31 idn1 42194 . . . . . . . . 9 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   )
32 simp3 1137 . . . . . . . . 9 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → 𝐵𝐴)
3331, 32e1a 42247 . . . . . . . 8 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝐵𝐴   )
34 simp2 1136 . . . . . . . . . . . 12 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
3531, 34e1a 42247 . . . . . . . . . . 11 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
36 ralcom 3166 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
3736biimpi 215 . . . . . . . . . . 11 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
3835, 37e1a 42247 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
39 simp1 1135 . . . . . . . . . . . 12 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐴)
4031, 39e1a 42247 . . . . . . . . . . 11 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐴   )
41 trel 5198 . . . . . . . . . . . . 13 (Tr 𝐴 → ((𝑦𝐵𝐵𝐴) → 𝑦𝐴))
4241expd 416 . . . . . . . . . . . 12 (Tr 𝐴 → (𝑦𝐵 → (𝐵𝐴𝑦𝐴)))
4340, 13, 33, 42e121 42276 . . . . . . . . . . 11 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   𝑦𝐴   )
44 trel 5198 . . . . . . . . . . . 12 (Tr 𝐴 → ((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
4544expd 416 . . . . . . . . . . 11 (Tr 𝐴 → (𝑥𝑦 → (𝑦𝐴𝑥𝐴)))
4640, 11, 43, 45e122 42273 . . . . . . . . . 10 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   𝑥𝐴   )
47 rspsbc2 42154 . . . . . . . . . . 11 (𝐵𝐴 → (𝑥𝐴 → (∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))))
4847com13 88 . . . . . . . . . 10 (∀𝑦𝐴𝑥𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → (𝑥𝐴 → (𝐵𝐴[𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))))
4938, 46, 33, 48e121 42276 . . . . . . . . 9 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
50 equid 2015 . . . . . . . . . . 11 𝑥 = 𝑥
51 sbceq2a 3728 . . . . . . . . . . 11 (𝑥 = 𝑥 → ([𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
5250, 51ax-mp 5 . . . . . . . . . 10 ([𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))
5352biimpi 215 . . . . . . . . 9 ([𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) → [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦))
5449, 53e2 42251 . . . . . . . 8 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
55 sbcoreleleq 42155 . . . . . . . . 9 (𝐵𝐴 → ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐵𝐵𝑥𝑥 = 𝐵)))
5655biimpd 228 . . . . . . . 8 (𝐵𝐴 → ([𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) → (𝑥𝐵𝐵𝑥𝑥 = 𝐵)))
5733, 54, 56e12 42344 . . . . . . 7 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   (𝑥𝐵𝐵𝑥𝑥 = 𝐵)   )
58 3ornot23 42129 . . . . . . . 8 ((¬ 𝐵𝑥 ∧ ¬ 𝑥 = 𝐵) → ((𝑥𝐵𝐵𝑥𝑥 = 𝐵) → 𝑥𝐵))
5958ex 413 . . . . . . 7 𝐵𝑥 → (¬ 𝑥 = 𝐵 → ((𝑥𝐵𝐵𝑥𝑥 = 𝐵) → 𝑥𝐵)))
6020, 30, 57, 59e222 42256 . . . . . 6 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ,   (𝑥𝑦𝑦𝐵)   ▶   𝑥𝐵   )
6160in2 42225 . . . . 5 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   ((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
628, 61gen11nv 42237 . . . 4 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
633, 62gen11nv 42237 . . 3 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑥𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
64 dftr2 5193 . . . 4 (Tr 𝐵 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
6564biimpri 227 . . 3 (∀𝑥𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵) → Tr 𝐵)
6663, 65e1a 42247 . 2 (   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐵   )
6766in1 42191 1 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wral 3064  [wsbc 3716  Tr wtr 5191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-fr 5544  df-vd1 42190  df-vd2 42198  df-vd3 42210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator