Proof of Theorem tratrbVD
| Step | Hyp | Ref
| Expression |
| 1 | | hbra1 3301 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑥∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 2 | | alrim3con13v 44553 |
. . . . 5
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑥∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) → ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴))) |
| 3 | 1, 2 | e0a 44792 |
. . . 4
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)) |
| 4 | | ax-5 1910 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴) |
| 5 | | hbra1 3301 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑦∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 6 | 4, 5 | hbral 3308 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 7 | | alrim3con13v 44553 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) → ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴))) |
| 8 | 6, 7 | e0a 44792 |
. . . . 5
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)) |
| 9 | | idn2 44633 |
. . . . . . . . . . 11
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ) |
| 10 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝑦) |
| 11 | 9, 10 | e2 44651 |
. . . . . . . . . 10
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ 𝑥 ∈ 𝑦 ) |
| 12 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 13 | 9, 12 | e2 44651 |
. . . . . . . . . 10
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ 𝑦 ∈ 𝐵 ) |
| 14 | | idn3 44635 |
. . . . . . . . . 10
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) , 𝐵 ∈ 𝑥 ▶ 𝐵 ∈ 𝑥 ) |
| 15 | | pm3.2an3 1341 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑦 → (𝑦 ∈ 𝐵 → (𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)))) |
| 16 | 11, 13, 14, 15 | e223 44655 |
. . . . . . . . 9
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) , 𝐵 ∈ 𝑥 ▶ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥) ) |
| 17 | 16 | in3 44629 |
. . . . . . . 8
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ (𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)) ) |
| 18 | | en3lp 9654 |
. . . . . . . 8
⊢ ¬
(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥) |
| 19 | | con3 153 |
. . . . . . . 8
⊢ ((𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)) → (¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥) → ¬ 𝐵 ∈ 𝑥)) |
| 20 | 17, 18, 19 | e20 44747 |
. . . . . . 7
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ ¬
𝐵 ∈ 𝑥 ) |
| 21 | | idn3 44635 |
. . . . . . . . . . 11
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) , 𝑥 = 𝐵 ▶ 𝑥 = 𝐵 ) |
| 22 | | eleq2 2830 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐵 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐵)) |
| 23 | 22 | biimprcd 250 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐵 → (𝑥 = 𝐵 → 𝑦 ∈ 𝑥)) |
| 24 | 13, 21, 23 | e23 44775 |
. . . . . . . . . 10
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) , 𝑥 = 𝐵 ▶ 𝑦 ∈ 𝑥 ) |
| 25 | | pm3.2 469 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑦 → (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥))) |
| 26 | 11, 24, 25 | e23 44775 |
. . . . . . . . 9
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) , 𝑥 = 𝐵 ▶ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) ) |
| 27 | 26 | in3 44629 |
. . . . . . . 8
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ (𝑥 = 𝐵 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)) ) |
| 28 | | en2lp 9646 |
. . . . . . . 8
⊢ ¬
(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) |
| 29 | | con3 153 |
. . . . . . . 8
⊢ ((𝑥 = 𝐵 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)) → (¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑥 = 𝐵)) |
| 30 | 27, 28, 29 | e20 44747 |
. . . . . . 7
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ ¬
𝑥 = 𝐵 ) |
| 31 | | idn1 44594 |
. . . . . . . . 9
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ) |
| 32 | | simp3 1139 |
. . . . . . . . 9
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) |
| 33 | 31, 32 | e1a 44647 |
. . . . . . . 8
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ 𝐵 ∈ 𝐴 ) |
| 34 | | simp2 1138 |
. . . . . . . . . . . 12
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 35 | 31, 34 | e1a 44647 |
. . . . . . . . . . 11
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ) |
| 36 | | ralcom 3289 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 37 | 36 | biimpi 216 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 38 | 35, 37 | e1a 44647 |
. . . . . . . . . 10
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ) |
| 39 | | simp1 1137 |
. . . . . . . . . . . 12
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐴) |
| 40 | 31, 39 | e1a 44647 |
. . . . . . . . . . 11
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ Tr 𝐴 ) |
| 41 | | trel 5268 |
. . . . . . . . . . . . 13
⊢ (Tr 𝐴 → ((𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
| 42 | 41 | expd 415 |
. . . . . . . . . . . 12
⊢ (Tr 𝐴 → (𝑦 ∈ 𝐵 → (𝐵 ∈ 𝐴 → 𝑦 ∈ 𝐴))) |
| 43 | 40, 13, 33, 42 | e121 44676 |
. . . . . . . . . . 11
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ 𝑦 ∈ 𝐴 ) |
| 44 | | trel 5268 |
. . . . . . . . . . . 12
⊢ (Tr 𝐴 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| 45 | 44 | expd 415 |
. . . . . . . . . . 11
⊢ (Tr 𝐴 → (𝑥 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐴))) |
| 46 | 40, 11, 43, 45 | e122 44673 |
. . . . . . . . . 10
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ 𝑥 ∈ 𝐴 ) |
| 47 | | rspsbc2 44554 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝐴 → (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)))) |
| 48 | 47 | com13 88 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝐵 ∈ 𝐴 → [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)))) |
| 49 | 38, 46, 33, 48 | e121 44676 |
. . . . . . . . 9
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ) |
| 50 | | equid 2011 |
. . . . . . . . . . 11
⊢ 𝑥 = 𝑥 |
| 51 | | sbceq2a 3800 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑥 → ([𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ [𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦))) |
| 52 | 50, 51 | ax-mp 5 |
. . . . . . . . . 10
⊢
([𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ [𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 53 | 52 | biimpi 216 |
. . . . . . . . 9
⊢
([𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → [𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
| 54 | 49, 53 | e2 44651 |
. . . . . . . 8
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ [𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ) |
| 55 | | sbcoreleleq 44555 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝐴 → ([𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵))) |
| 56 | 55 | biimpd 229 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝐴 → ([𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵))) |
| 57 | 33, 54, 56 | e12 44744 |
. . . . . . 7
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵) ) |
| 58 | | 3ornot23 44529 |
. . . . . . . 8
⊢ ((¬
𝐵 ∈ 𝑥 ∧ ¬ 𝑥 = 𝐵) → ((𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵) → 𝑥 ∈ 𝐵)) |
| 59 | 58 | ex 412 |
. . . . . . 7
⊢ (¬
𝐵 ∈ 𝑥 → (¬ 𝑥 = 𝐵 → ((𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵) → 𝑥 ∈ 𝐵))) |
| 60 | 20, 30, 57, 59 | e222 44656 |
. . . . . 6
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) , (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ▶ 𝑥 ∈ 𝐵 ) |
| 61 | 60 | in2 44625 |
. . . . 5
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) ) |
| 62 | 8, 61 | gen11nv 44637 |
. . . 4
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) ) |
| 63 | 3, 62 | gen11nv 44637 |
. . 3
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) ) |
| 64 | | dftr2 5261 |
. . . 4
⊢ (Tr 𝐵 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
| 65 | 64 | biimpri 228 |
. . 3
⊢
(∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) → Tr 𝐵) |
| 66 | 63, 65 | e1a 44647 |
. 2
⊢ ( (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) ▶ Tr 𝐵 ) |
| 67 | 66 | in1 44591 |
1
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐵) |