MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexn Structured version   Visualization version   GIF version

Theorem alexn 1845
Description: A relationship between two quantifiers and negation. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
alexn (∀𝑥𝑦 ¬ 𝜑 ↔ ¬ ∃𝑥𝑦𝜑)

Proof of Theorem alexn
StepHypRef Expression
1 exnal 1827 . . 3 (∃𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦𝜑)
21albii 1819 . 2 (∀𝑥𝑦 ¬ 𝜑 ↔ ∀𝑥 ¬ ∀𝑦𝜑)
3 alnex 1781 . 2 (∀𝑥 ¬ ∀𝑦𝜑 ↔ ¬ ∃𝑥𝑦𝜑)
42, 3bitri 275 1 (∀𝑥𝑦 ¬ 𝜑 ↔ ¬ ∃𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  2exnexn  1846  nalset  5270  kmlem2  10111
  Copyright terms: Public domain W3C validator