MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexn Structured version   Visualization version   GIF version

Theorem alexn 1848
Description: A relationship between two quantifiers and negation. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
alexn (∀𝑥𝑦 ¬ 𝜑 ↔ ¬ ∃𝑥𝑦𝜑)

Proof of Theorem alexn
StepHypRef Expression
1 exnal 1830 . . 3 (∃𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦𝜑)
21albii 1823 . 2 (∀𝑥𝑦 ¬ 𝜑 ↔ ∀𝑥 ¬ ∀𝑦𝜑)
3 alnex 1785 . 2 (∀𝑥 ¬ ∀𝑦𝜑 ↔ ¬ ∃𝑥𝑦𝜑)
42, 3bitri 274 1 (∀𝑥𝑦 ¬ 𝜑 ↔ ¬ ∃𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  2exnexn  1849  nalset  5232  kmlem2  9838
  Copyright terms: Public domain W3C validator