Step | Hyp | Ref
| Expression |
1 | | ineq2 4137 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → (𝑧 ∩ 𝑦) = (𝑧 ∩ 𝑣)) |
2 | 1 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → (𝑤 ∈ (𝑧 ∩ 𝑦) ↔ 𝑤 ∈ (𝑧 ∩ 𝑣))) |
3 | 2 | eubidv 2586 |
. . . . . 6
⊢ (𝑦 = 𝑣 → (∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦) ↔ ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑣))) |
4 | 3 | imbi2d 340 |
. . . . 5
⊢ (𝑦 = 𝑣 → ((𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑣)))) |
5 | 4 | ralbidv 3120 |
. . . 4
⊢ (𝑦 = 𝑣 → (∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑣)))) |
6 | 5 | cbvexvw 2041 |
. . 3
⊢
(∃𝑦∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ ∃𝑣∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑣))) |
7 | | indi 4204 |
. . . . . . . . . . . 12
⊢ (𝑧 ∩ (𝑣 ∪ {𝑢})) = ((𝑧 ∩ 𝑣) ∪ (𝑧 ∩ {𝑢})) |
8 | | elssuni 4868 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝑥 → 𝑧 ⊆ ∪ 𝑥) |
9 | 8 | ssneld 3919 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑥 → (¬ 𝑢 ∈ ∪ 𝑥 → ¬ 𝑢 ∈ 𝑧)) |
10 | | disjsn 4644 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∩ {𝑢}) = ∅ ↔ ¬ 𝑢 ∈ 𝑧) |
11 | 9, 10 | syl6ibr 251 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑥 → (¬ 𝑢 ∈ ∪ 𝑥 → (𝑧 ∩ {𝑢}) = ∅)) |
12 | 11 | impcom 407 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑢 ∈ ∪ 𝑥
∧ 𝑧 ∈ 𝑥) → (𝑧 ∩ {𝑢}) = ∅) |
13 | 12 | uneq2d 4093 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑢 ∈ ∪ 𝑥
∧ 𝑧 ∈ 𝑥) → ((𝑧 ∩ 𝑣) ∪ (𝑧 ∩ {𝑢})) = ((𝑧 ∩ 𝑣) ∪ ∅)) |
14 | | un0 4321 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∩ 𝑣) ∪ ∅) = (𝑧 ∩ 𝑣) |
15 | 13, 14 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ ((¬
𝑢 ∈ ∪ 𝑥
∧ 𝑧 ∈ 𝑥) → ((𝑧 ∩ 𝑣) ∪ (𝑧 ∩ {𝑢})) = (𝑧 ∩ 𝑣)) |
16 | 7, 15 | eqtr2id 2792 |
. . . . . . . . . . 11
⊢ ((¬
𝑢 ∈ ∪ 𝑥
∧ 𝑧 ∈ 𝑥) → (𝑧 ∩ 𝑣) = (𝑧 ∩ (𝑣 ∪ {𝑢}))) |
17 | 16 | eleq2d 2824 |
. . . . . . . . . 10
⊢ ((¬
𝑢 ∈ ∪ 𝑥
∧ 𝑧 ∈ 𝑥) → (𝑤 ∈ (𝑧 ∩ 𝑣) ↔ 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))) |
18 | 17 | eubidv 2586 |
. . . . . . . . 9
⊢ ((¬
𝑢 ∈ ∪ 𝑥
∧ 𝑧 ∈ 𝑥) → (∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑣) ↔ ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))) |
19 | 18 | imbi2d 340 |
. . . . . . . 8
⊢ ((¬
𝑢 ∈ ∪ 𝑥
∧ 𝑧 ∈ 𝑥) → ((𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑣)) ↔ (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))))) |
20 | 19 | ralbidva 3119 |
. . . . . . 7
⊢ (¬
𝑢 ∈ ∪ 𝑥
→ (∀𝑧 ∈
𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑣)) ↔ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))))) |
21 | | vsnid 4595 |
. . . . . . . . . . . 12
⊢ 𝑢 ∈ {𝑢} |
22 | 21 | olci 862 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ 𝑣 ∨ 𝑢 ∈ {𝑢}) |
23 | | elun 4079 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ (𝑣 ∪ {𝑢}) ↔ (𝑢 ∈ 𝑣 ∨ 𝑢 ∈ {𝑢})) |
24 | 22, 23 | mpbir 230 |
. . . . . . . . . 10
⊢ 𝑢 ∈ (𝑣 ∪ {𝑢}) |
25 | | elssuni 4868 |
. . . . . . . . . . 11
⊢ ((𝑣 ∪ {𝑢}) ∈ 𝑥 → (𝑣 ∪ {𝑢}) ⊆ ∪ 𝑥) |
26 | 25 | sseld 3916 |
. . . . . . . . . 10
⊢ ((𝑣 ∪ {𝑢}) ∈ 𝑥 → (𝑢 ∈ (𝑣 ∪ {𝑢}) → 𝑢 ∈ ∪ 𝑥)) |
27 | 24, 26 | mpi 20 |
. . . . . . . . 9
⊢ ((𝑣 ∪ {𝑢}) ∈ 𝑥 → 𝑢 ∈ ∪ 𝑥) |
28 | 27 | con3i 154 |
. . . . . . . 8
⊢ (¬
𝑢 ∈ ∪ 𝑥
→ ¬ (𝑣 ∪
{𝑢}) ∈ 𝑥) |
29 | 28 | biantrurd 532 |
. . . . . . 7
⊢ (¬
𝑢 ∈ ∪ 𝑥
→ (∀𝑧 ∈
𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))) ↔ (¬ (𝑣 ∪ {𝑢}) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))))) |
30 | 20, 29 | bitrd 278 |
. . . . . 6
⊢ (¬
𝑢 ∈ ∪ 𝑥
→ (∀𝑧 ∈
𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑣)) ↔ (¬ (𝑣 ∪ {𝑢}) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))))) |
31 | | vex 3426 |
. . . . . . . 8
⊢ 𝑣 ∈ V |
32 | | snex 5349 |
. . . . . . . 8
⊢ {𝑢} ∈ V |
33 | 31, 32 | unex 7574 |
. . . . . . 7
⊢ (𝑣 ∪ {𝑢}) ∈ V |
34 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑦 = (𝑣 ∪ {𝑢}) → (𝑦 ∈ 𝑥 ↔ (𝑣 ∪ {𝑢}) ∈ 𝑥)) |
35 | 34 | notbid 317 |
. . . . . . . 8
⊢ (𝑦 = (𝑣 ∪ {𝑢}) → (¬ 𝑦 ∈ 𝑥 ↔ ¬ (𝑣 ∪ {𝑢}) ∈ 𝑥)) |
36 | | ineq2 4137 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑣 ∪ {𝑢}) → (𝑧 ∩ 𝑦) = (𝑧 ∩ (𝑣 ∪ {𝑢}))) |
37 | 36 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑣 ∪ {𝑢}) → (𝑤 ∈ (𝑧 ∩ 𝑦) ↔ 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))) |
38 | 37 | eubidv 2586 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑣 ∪ {𝑢}) → (∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦) ↔ ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))) |
39 | 38 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑦 = (𝑣 ∪ {𝑢}) → ((𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))))) |
40 | 39 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑦 = (𝑣 ∪ {𝑢}) → (∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))))) |
41 | 35, 40 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = (𝑣 ∪ {𝑢}) → ((¬ 𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))) ↔ (¬ (𝑣 ∪ {𝑢}) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))))) |
42 | 33, 41 | spcev 3535 |
. . . . . 6
⊢ ((¬
(𝑣 ∪ {𝑢}) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))) → ∃𝑦(¬ 𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
43 | 30, 42 | syl6bi 252 |
. . . . 5
⊢ (¬
𝑢 ∈ ∪ 𝑥
→ (∀𝑧 ∈
𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑣)) → ∃𝑦(¬ 𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))))) |
44 | | vuniex 7570 |
. . . . . 6
⊢ ∪ 𝑥
∈ V |
45 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑦 = ∪
𝑥 → (𝑢 ∈ 𝑦 ↔ 𝑢 ∈ ∪ 𝑥)) |
46 | 45 | notbid 317 |
. . . . . . 7
⊢ (𝑦 = ∪
𝑥 → (¬ 𝑢 ∈ 𝑦 ↔ ¬ 𝑢 ∈ ∪ 𝑥)) |
47 | 46 | exbidv 1925 |
. . . . . 6
⊢ (𝑦 = ∪
𝑥 → (∃𝑢 ¬ 𝑢 ∈ 𝑦 ↔ ∃𝑢 ¬ 𝑢 ∈ ∪ 𝑥)) |
48 | | nalset 5232 |
. . . . . . . 8
⊢ ¬
∃𝑦∀𝑢 𝑢 ∈ 𝑦 |
49 | | alexn 1848 |
. . . . . . . 8
⊢
(∀𝑦∃𝑢 ¬ 𝑢 ∈ 𝑦 ↔ ¬ ∃𝑦∀𝑢 𝑢 ∈ 𝑦) |
50 | 48, 49 | mpbir 230 |
. . . . . . 7
⊢
∀𝑦∃𝑢 ¬ 𝑢 ∈ 𝑦 |
51 | 50 | spi 2179 |
. . . . . 6
⊢
∃𝑢 ¬ 𝑢 ∈ 𝑦 |
52 | 44, 47, 51 | vtocl 3488 |
. . . . 5
⊢
∃𝑢 ¬ 𝑢 ∈ ∪ 𝑥 |
53 | 43, 52 | exlimiiv 1935 |
. . . 4
⊢
(∀𝑧 ∈
𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑣)) → ∃𝑦(¬ 𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
54 | 53 | exlimiv 1934 |
. . 3
⊢
(∃𝑣∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑣)) → ∃𝑦(¬ 𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
55 | 6, 54 | sylbi 216 |
. 2
⊢
(∃𝑦∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) → ∃𝑦(¬ 𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
56 | | exsimpr 1873 |
. 2
⊢
(∃𝑦(¬
𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))) → ∃𝑦∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))) |
57 | 55, 56 | impbii 208 |
1
⊢
(∃𝑦∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ ∃𝑦(¬ 𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |