MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem2 Structured version   Visualization version   GIF version

Theorem kmlem2 9252
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
kmlem2 (∃𝑦𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
Distinct variable groups:   𝑥,𝑦,𝜑   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)

Proof of Theorem kmlem2
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq2 4001 . . . . . . . 8 (𝑦 = 𝑣 → (𝑧𝑦) = (𝑧𝑣))
21eleq2d 2867 . . . . . . 7 (𝑦 = 𝑣 → (𝑤 ∈ (𝑧𝑦) ↔ 𝑤 ∈ (𝑧𝑣)))
32eubidv 2649 . . . . . 6 (𝑦 = 𝑣 → (∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ ∃!𝑤 𝑤 ∈ (𝑧𝑣)))
43imbi2d 331 . . . . 5 (𝑦 = 𝑣 → ((𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑣))))
54ralbidv 3170 . . . 4 (𝑦 = 𝑣 → (∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑣))))
65cbvexvw 2136 . . 3 (∃𝑦𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑣𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑣)))
7 indi 4069 . . . . . . . . . . . 12 (𝑧 ∩ (𝑣 ∪ {𝑢})) = ((𝑧𝑣) ∪ (𝑧 ∩ {𝑢}))
8 elssuni 4654 . . . . . . . . . . . . . . . . 17 (𝑧𝑥𝑧 𝑥)
98ssneld 3794 . . . . . . . . . . . . . . . 16 (𝑧𝑥 → (¬ 𝑢 𝑥 → ¬ 𝑢𝑧))
10 disjsn 4432 . . . . . . . . . . . . . . . 16 ((𝑧 ∩ {𝑢}) = ∅ ↔ ¬ 𝑢𝑧)
119, 10syl6ibr 243 . . . . . . . . . . . . . . 15 (𝑧𝑥 → (¬ 𝑢 𝑥 → (𝑧 ∩ {𝑢}) = ∅))
1211impcom 396 . . . . . . . . . . . . . 14 ((¬ 𝑢 𝑥𝑧𝑥) → (𝑧 ∩ {𝑢}) = ∅)
1312uneq2d 3960 . . . . . . . . . . . . 13 ((¬ 𝑢 𝑥𝑧𝑥) → ((𝑧𝑣) ∪ (𝑧 ∩ {𝑢})) = ((𝑧𝑣) ∪ ∅))
14 un0 4159 . . . . . . . . . . . . 13 ((𝑧𝑣) ∪ ∅) = (𝑧𝑣)
1513, 14syl6eq 2852 . . . . . . . . . . . 12 ((¬ 𝑢 𝑥𝑧𝑥) → ((𝑧𝑣) ∪ (𝑧 ∩ {𝑢})) = (𝑧𝑣))
167, 15syl5req 2849 . . . . . . . . . . 11 ((¬ 𝑢 𝑥𝑧𝑥) → (𝑧𝑣) = (𝑧 ∩ (𝑣 ∪ {𝑢})))
1716eleq2d 2867 . . . . . . . . . 10 ((¬ 𝑢 𝑥𝑧𝑥) → (𝑤 ∈ (𝑧𝑣) ↔ 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))))
1817eubidv 2649 . . . . . . . . 9 ((¬ 𝑢 𝑥𝑧𝑥) → (∃!𝑤 𝑤 ∈ (𝑧𝑣) ↔ ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))))
1918imbi2d 331 . . . . . . . 8 ((¬ 𝑢 𝑥𝑧𝑥) → ((𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑣)) ↔ (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))))
2019ralbidva 3169 . . . . . . 7 𝑢 𝑥 → (∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑣)) ↔ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))))
21 vsnid 4397 . . . . . . . . . . . 12 𝑢 ∈ {𝑢}
2221olci 884 . . . . . . . . . . 11 (𝑢𝑣𝑢 ∈ {𝑢})
23 elun 3946 . . . . . . . . . . 11 (𝑢 ∈ (𝑣 ∪ {𝑢}) ↔ (𝑢𝑣𝑢 ∈ {𝑢}))
2422, 23mpbir 222 . . . . . . . . . 10 𝑢 ∈ (𝑣 ∪ {𝑢})
25 elssuni 4654 . . . . . . . . . . 11 ((𝑣 ∪ {𝑢}) ∈ 𝑥 → (𝑣 ∪ {𝑢}) ⊆ 𝑥)
2625sseld 3791 . . . . . . . . . 10 ((𝑣 ∪ {𝑢}) ∈ 𝑥 → (𝑢 ∈ (𝑣 ∪ {𝑢}) → 𝑢 𝑥))
2724, 26mpi 20 . . . . . . . . 9 ((𝑣 ∪ {𝑢}) ∈ 𝑥𝑢 𝑥)
2827con3i 151 . . . . . . . 8 𝑢 𝑥 → ¬ (𝑣 ∪ {𝑢}) ∈ 𝑥)
2928biantrurd 524 . . . . . . 7 𝑢 𝑥 → (∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))) ↔ (¬ (𝑣 ∪ {𝑢}) ∈ 𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))))))
3020, 29bitrd 270 . . . . . 6 𝑢 𝑥 → (∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑣)) ↔ (¬ (𝑣 ∪ {𝑢}) ∈ 𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))))))
31 vex 3390 . . . . . . . 8 𝑣 ∈ V
32 snex 5092 . . . . . . . 8 {𝑢} ∈ V
3331, 32unex 7180 . . . . . . 7 (𝑣 ∪ {𝑢}) ∈ V
34 eleq1 2869 . . . . . . . . 9 (𝑦 = (𝑣 ∪ {𝑢}) → (𝑦𝑥 ↔ (𝑣 ∪ {𝑢}) ∈ 𝑥))
3534notbid 309 . . . . . . . 8 (𝑦 = (𝑣 ∪ {𝑢}) → (¬ 𝑦𝑥 ↔ ¬ (𝑣 ∪ {𝑢}) ∈ 𝑥))
36 ineq2 4001 . . . . . . . . . . . 12 (𝑦 = (𝑣 ∪ {𝑢}) → (𝑧𝑦) = (𝑧 ∩ (𝑣 ∪ {𝑢})))
3736eleq2d 2867 . . . . . . . . . . 11 (𝑦 = (𝑣 ∪ {𝑢}) → (𝑤 ∈ (𝑧𝑦) ↔ 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))))
3837eubidv 2649 . . . . . . . . . 10 (𝑦 = (𝑣 ∪ {𝑢}) → (∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))))
3938imbi2d 331 . . . . . . . . 9 (𝑦 = (𝑣 ∪ {𝑢}) → ((𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))))
4039ralbidv 3170 . . . . . . . 8 (𝑦 = (𝑣 ∪ {𝑢}) → (∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))))
4135, 40anbi12d 618 . . . . . . 7 (𝑦 = (𝑣 ∪ {𝑢}) → ((¬ 𝑦𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦))) ↔ (¬ (𝑣 ∪ {𝑢}) ∈ 𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢}))))))
4233, 41spcev 3489 . . . . . 6 ((¬ (𝑣 ∪ {𝑢}) ∈ 𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ (𝑣 ∪ {𝑢})))) → ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
4330, 42syl6bi 244 . . . . 5 𝑢 𝑥 → (∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑣)) → ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦)))))
44 vuniex 7178 . . . . . 6 𝑥 ∈ V
45 eleq2 2870 . . . . . . . 8 (𝑦 = 𝑥 → (𝑢𝑦𝑢 𝑥))
4645notbid 309 . . . . . . 7 (𝑦 = 𝑥 → (¬ 𝑢𝑦 ↔ ¬ 𝑢 𝑥))
4746exbidv 2012 . . . . . 6 (𝑦 = 𝑥 → (∃𝑢 ¬ 𝑢𝑦 ↔ ∃𝑢 ¬ 𝑢 𝑥))
48 nalset 4984 . . . . . . . 8 ¬ ∃𝑦𝑢 𝑢𝑦
49 alexn 1930 . . . . . . . 8 (∀𝑦𝑢 ¬ 𝑢𝑦 ↔ ¬ ∃𝑦𝑢 𝑢𝑦)
5048, 49mpbir 222 . . . . . . 7 𝑦𝑢 ¬ 𝑢𝑦
5150spi 2218 . . . . . 6 𝑢 ¬ 𝑢𝑦
5244, 47, 51vtocl 3448 . . . . 5 𝑢 ¬ 𝑢 𝑥
5343, 52exlimiiv 2021 . . . 4 (∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑣)) → ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
5453exlimiv 2020 . . 3 (∃𝑣𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑣)) → ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
556, 54sylbi 208 . 2 (∃𝑦𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) → ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
56 exsimpr 1957 . 2 (∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦))) → ∃𝑦𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦)))
5755, 56impbii 200 1 (∃𝑦𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑦𝑥 ∧ ∀𝑧𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  wal 1635   = wceq 1637  wex 1859  wcel 2155  ∃!weu 2629  wral 3092  cun 3761  cin 3762  c0 4110  {csn 4364   cuni 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-sep 4968  ax-nul 4977  ax-pr 5090  ax-un 7173
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ral 3097  df-rex 3098  df-v 3389  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-nul 4111  df-sn 4365  df-pr 4367  df-uni 4624
This theorem is referenced by:  kmlem8  9258
  Copyright terms: Public domain W3C validator