| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version | ||
| Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1782. See also the dual pair df-ex 1781 / alex 1827. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1827 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: alexn 1846 nfnbi 1856 exanali 1860 19.35 1878 19.30 1882 nfeqf2 2379 nabbib 3032 r2exlem 3122 spc3gv 3555 vn0 4294 notzfaus 5305 dtruALT2 5312 dvdemo1 5315 dtruALT 5330 eunex 5332 reusv2lem2 5341 dtru 5383 brprcneu 6821 brprcneuALT 6822 dffv2 6926 zfcndpow 10518 hashfun 14351 nmo 32490 bnj1304 34903 bnj1253 35101 axregs 35217 onvf1odlem4 35222 axrepprim 35818 axunprim 35819 axregprim 35821 axinfprim 35822 axacprim 35823 dftr6 35867 brtxpsd 36008 elfuns 36029 dfrdg4 36067 relowlpssretop 37481 onsupmaxb 43396 clsk3nimkb 44197 expandexn 44446 vk15.4j 44685 vk15.4jVD 45070 alneu 47286 |
| Copyright terms: Public domain | W3C validator |