![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version |
Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1779. See also the dual pair df-ex 1778 / alex 1824. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1824 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: alexn 1843 nfnbi 1853 exanali 1858 19.35 1876 19.30 1880 nfeqf2 2385 nabbib 3051 r2exlem 3149 spc3gv 3617 vn0 4368 notzfaus 5381 dtruALT2 5388 dvdemo1 5391 dtruALT 5406 eunex 5408 reusv2lem2 5417 dtru 5456 dtruOLD 5461 brprcneu 6910 brprcneuALT 6911 dffv2 7017 zfcndpow 10685 hashfun 14486 nmo 32518 bnj1304 34795 bnj1253 34993 axrepprim 35664 axunprim 35665 axregprim 35667 axinfprim 35668 axacprim 35669 dftr6 35713 brtxpsd 35858 elfuns 35879 dfrdg4 35915 relowlpssretop 37330 onsupmaxb 43200 clsk3nimkb 44002 expandexn 44258 vk15.4j 44499 vk15.4jVD 44885 alneu 47039 |
Copyright terms: Public domain | W3C validator |