Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version |
Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1785. See also the dual pair df-ex 1784 / alex 1829. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1829 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: alexn 1848 nfnbi 1858 exanali 1863 19.35 1881 19.30 1885 nfeqf2 2377 nabbi 3046 r2exlem 3230 spc3gv 3533 vn0 4269 notzfaus 5280 dtru 5288 dvdemo1 5291 dtruALT 5306 eunex 5308 reusv2lem2 5317 dtruALT2 5353 brprcneu 6747 fvprc 6748 dffv2 6845 zfcndpow 10303 hashfun 14080 nmo 30739 bnj1304 32699 bnj1253 32897 axrepprim 33543 axunprim 33544 axregprim 33546 axinfprim 33547 axacprim 33548 dftr6 33624 brtxpsd 34123 elfuns 34144 dfrdg4 34180 bj-dtru 34926 relowlpssretop 35462 sn-dtru 40116 clsk3nimkb 41539 expandexn 41796 vk15.4j 42037 vk15.4jVD 42423 alneu 44503 |
Copyright terms: Public domain | W3C validator |