![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version |
Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1777. See also the dual pair df-ex 1776 / alex 1822. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1822 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1534 ∃wex 1775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-ex 1776 |
This theorem is referenced by: alexn 1841 nfnbi 1851 exanali 1856 19.35 1874 19.30 1878 nfeqf2 2379 nabbib 3042 r2exlem 3140 spc3gv 3603 vn0 4350 notzfaus 5368 dtruALT2 5375 dvdemo1 5378 dtruALT 5393 eunex 5395 reusv2lem2 5404 dtru 5446 dtruOLD 5451 brprcneu 6896 brprcneuALT 6897 dffv2 7003 zfcndpow 10653 hashfun 14472 nmo 32517 bnj1304 34811 bnj1253 35009 axrepprim 35681 axunprim 35682 axregprim 35684 axinfprim 35685 axacprim 35686 dftr6 35730 brtxpsd 35875 elfuns 35896 dfrdg4 35932 relowlpssretop 37346 onsupmaxb 43227 clsk3nimkb 44029 expandexn 44284 vk15.4j 44525 vk15.4jVD 44911 alneu 47073 |
Copyright terms: Public domain | W3C validator |