| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version | ||
| Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1781. See also the dual pair df-ex 1780 / alex 1826. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1826 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: alexn 1845 nfnbi 1855 exanali 1859 19.35 1877 19.30 1881 nfeqf2 2376 nabbib 3029 r2exlem 3123 spc3gv 3573 vn0 4311 notzfaus 5321 dtruALT2 5328 dvdemo1 5331 dtruALT 5346 eunex 5348 reusv2lem2 5357 dtru 5399 dtruOLD 5404 brprcneu 6851 brprcneuALT 6852 dffv2 6959 zfcndpow 10576 hashfun 14409 nmo 32426 bnj1304 34816 bnj1253 35014 onvf1odlem4 35100 axrepprim 35696 axunprim 35697 axregprim 35699 axinfprim 35700 axacprim 35701 dftr6 35745 brtxpsd 35889 elfuns 35910 dfrdg4 35946 relowlpssretop 37359 onsupmaxb 43235 clsk3nimkb 44036 expandexn 44285 vk15.4j 44525 vk15.4jVD 44910 alneu 47129 |
| Copyright terms: Public domain | W3C validator |