| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version | ||
| Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1781. See also the dual pair df-ex 1780 / alex 1826. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1826 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: alexn 1845 nfnbi 1855 exanali 1859 19.35 1877 19.30 1881 nfeqf2 2375 nabbib 3028 r2exlem 3118 spc3gv 3561 vn0 4298 notzfaus 5305 dtruALT2 5312 dvdemo1 5315 dtruALT 5330 eunex 5332 reusv2lem2 5341 dtru 5383 dtruOLD 5388 brprcneu 6816 brprcneuALT 6817 dffv2 6922 zfcndpow 10529 hashfun 14362 nmo 32452 bnj1304 34788 bnj1253 34986 axregs 35076 onvf1odlem4 35081 axrepprim 35677 axunprim 35678 axregprim 35680 axinfprim 35681 axacprim 35682 dftr6 35726 brtxpsd 35870 elfuns 35891 dfrdg4 35927 relowlpssretop 37340 onsupmaxb 43215 clsk3nimkb 44016 expandexn 44265 vk15.4j 44505 vk15.4jVD 44890 alneu 47112 |
| Copyright terms: Public domain | W3C validator |