![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version |
Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1784. See also the dual pair df-ex 1783 / alex 1829. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1829 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 358 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: alexn 1848 nfnbi 1858 exanali 1863 19.35 1881 19.30 1885 nfeqf2 2377 nabbib 3046 r2exlem 3144 spc3gv 3595 vn0 4339 notzfaus 5362 dtruALT2 5369 dvdemo1 5372 dtruALT 5387 eunex 5389 reusv2lem2 5398 dtru 5437 dtruOLD 5442 brprcneu 6882 brprcneuALT 6883 dffv2 6987 zfcndpow 10611 hashfun 14397 nmo 31761 bnj1304 33861 bnj1253 34059 axrepprim 34702 axunprim 34703 axregprim 34705 axinfprim 34706 axacprim 34707 dftr6 34752 brtxpsd 34897 elfuns 34918 dfrdg4 34954 relowlpssretop 36293 onsupmaxb 42036 clsk3nimkb 42839 expandexn 43096 vk15.4j 43337 vk15.4jVD 43723 alneu 45880 |
Copyright terms: Public domain | W3C validator |