| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version | ||
| Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1781. See also the dual pair df-ex 1780 / alex 1826. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1826 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: alexn 1845 nfnbi 1855 exanali 1859 19.35 1877 19.30 1881 nfeqf2 2375 nabbib 3028 r2exlem 3122 spc3gv 3570 vn0 4308 notzfaus 5318 dtruALT2 5325 dvdemo1 5328 dtruALT 5343 eunex 5345 reusv2lem2 5354 dtru 5396 dtruOLD 5401 brprcneu 6848 brprcneuALT 6849 dffv2 6956 zfcndpow 10569 hashfun 14402 nmo 32419 bnj1304 34809 bnj1253 35007 onvf1odlem4 35093 axrepprim 35689 axunprim 35690 axregprim 35692 axinfprim 35693 axacprim 35694 dftr6 35738 brtxpsd 35882 elfuns 35903 dfrdg4 35939 relowlpssretop 37352 onsupmaxb 43228 clsk3nimkb 44029 expandexn 44278 vk15.4j 44518 vk15.4jVD 44903 alneu 47125 |
| Copyright terms: Public domain | W3C validator |