| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version | ||
| Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1782. See also the dual pair df-ex 1781 / alex 1827. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1827 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: alexn 1846 nfnbi 1856 exanali 1860 19.35 1878 19.30 1882 nfeqf2 2377 nabbib 3031 r2exlem 3121 spc3gv 3554 vn0 4290 notzfaus 5296 dtruALT2 5303 dvdemo1 5306 dtruALT 5321 eunex 5323 reusv2lem2 5332 dtru 5374 brprcneu 6807 brprcneuALT 6808 dffv2 6912 zfcndpow 10502 hashfun 14339 nmo 32461 bnj1304 34823 bnj1253 35021 axregs 35137 onvf1odlem4 35142 axrepprim 35738 axunprim 35739 axregprim 35741 axinfprim 35742 axacprim 35743 dftr6 35787 brtxpsd 35928 elfuns 35949 dfrdg4 35985 relowlpssretop 37398 onsupmaxb 43272 clsk3nimkb 44073 expandexn 44322 vk15.4j 44561 vk15.4jVD 44946 alneu 47155 |
| Copyright terms: Public domain | W3C validator |