| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version | ||
| Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1781. See also the dual pair df-ex 1780 / alex 1826. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1826 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: alexn 1845 nfnbi 1855 exanali 1859 19.35 1877 19.30 1881 nfeqf2 2381 nabbib 3035 r2exlem 3129 spc3gv 3583 vn0 4320 notzfaus 5333 dtruALT2 5340 dvdemo1 5343 dtruALT 5358 eunex 5360 reusv2lem2 5369 dtru 5411 dtruOLD 5416 brprcneu 6865 brprcneuALT 6866 dffv2 6973 zfcndpow 10628 hashfun 14453 nmo 32417 bnj1304 34796 bnj1253 34994 axrepprim 35665 axunprim 35666 axregprim 35668 axinfprim 35669 axacprim 35670 dftr6 35714 brtxpsd 35858 elfuns 35879 dfrdg4 35915 relowlpssretop 37328 onsupmaxb 43210 clsk3nimkb 44011 expandexn 44261 vk15.4j 44501 vk15.4jVD 44886 alneu 47101 |
| Copyright terms: Public domain | W3C validator |