| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exnal | Structured version Visualization version GIF version | ||
| Description: Existential quantification of negation is equivalent to negation of universal quantification. Dual of alnex 1781. See also the dual pair df-ex 1780 / alex 1826. Theorem 19.14 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| exnal | ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1826 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: alexn 1845 nfnbi 1855 exanali 1859 19.35 1877 19.30 1881 nfeqf2 2375 nabbib 3028 r2exlem 3122 spc3gv 3567 vn0 4304 notzfaus 5313 dtruALT2 5320 dvdemo1 5323 dtruALT 5338 eunex 5340 reusv2lem2 5349 dtru 5391 dtruOLD 5396 brprcneu 6830 brprcneuALT 6831 dffv2 6938 zfcndpow 10545 hashfun 14378 nmo 32392 bnj1304 34782 bnj1253 34980 onvf1odlem4 35066 axrepprim 35662 axunprim 35663 axregprim 35665 axinfprim 35666 axacprim 35667 dftr6 35711 brtxpsd 35855 elfuns 35876 dfrdg4 35912 relowlpssretop 37325 onsupmaxb 43201 clsk3nimkb 44002 expandexn 44251 vk15.4j 44491 vk15.4jVD 44876 alneu 47098 |
| Copyright terms: Public domain | W3C validator |