MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nalset Structured version   Visualization version   GIF version

Theorem nalset 5246
Description: No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.) Remove use of ax-12 2180 and ax-13 2372. (Revised by BJ, 31-May-2019.)
Assertion
Ref Expression
nalset ¬ ∃𝑥𝑦 𝑦𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem nalset
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alexn 1846 . 2 (∀𝑥𝑦 ¬ 𝑦𝑥 ↔ ¬ ∃𝑥𝑦 𝑦𝑥)
2 ax-sep 5229 . . 3 𝑦𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧))
3 elequ1 2118 . . . . . 6 (𝑧 = 𝑦 → (𝑧𝑦𝑦𝑦))
4 elequ1 2118 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑥𝑦𝑥))
5 elequ1 2118 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝑧𝑦𝑧))
6 elequ2 2126 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
75, 6bitrd 279 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧𝑧𝑦𝑦))
87notbid 318 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑧𝑧 ↔ ¬ 𝑦𝑦))
94, 8anbi12d 632 . . . . . 6 (𝑧 = 𝑦 → ((𝑧𝑥 ∧ ¬ 𝑧𝑧) ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)))
103, 9bibi12d 345 . . . . 5 (𝑧 = 𝑦 → ((𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) ↔ (𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦))))
1110spvv 1989 . . . 4 (∀𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) → (𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)))
12 pclem6 1027 . . . 4 ((𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)) → ¬ 𝑦𝑥)
1311, 12syl 17 . . 3 (∀𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) → ¬ 𝑦𝑥)
142, 13eximii 1838 . 2 𝑦 ¬ 𝑦𝑥
151, 14mpgbi 1799 1 ¬ ∃𝑥𝑦 𝑦𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-sep 5229
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  vnex  5247  kmlem2  10038  iota0ndef  47070  aiota0ndef  47128
  Copyright terms: Public domain W3C validator