Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exnalimn | Structured version Visualization version GIF version |
Description: Existential quantification of a conjunction expressed with only primitive symbols (→, ¬, ∀). (Contributed by NM, 10-May-1993.) State the most general instance. (Revised by BJ, 29-Sep-2019.) |
Ref | Expression |
---|---|
exnalimn | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ¬ ∀𝑥(𝜑 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alinexa 1845 | . 2 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) | |
2 | 1 | con2bii 358 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ¬ ∀𝑥(𝜑 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: r2exlem 3231 |
Copyright terms: Public domain | W3C validator |