MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exnalimn Structured version   Visualization version   GIF version

Theorem exnalimn 1849
Description: Existential quantification of a conjunction expressed with only primitive symbols (, ¬, ). (Contributed by NM, 10-May-1993.) State the most general instance. (Revised by BJ, 29-Sep-2019.)
Assertion
Ref Expression
exnalimn (∃𝑥(𝜑𝜓) ↔ ¬ ∀𝑥(𝜑 → ¬ 𝜓))

Proof of Theorem exnalimn
StepHypRef Expression
1 alinexa 1848 . 2 (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
21con2bii 357 1 (∃𝑥(𝜑𝜓) ↔ ¬ ∀𝑥(𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1539  wex 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786
This theorem is referenced by:  r2exlem  3232
  Copyright terms: Public domain W3C validator