| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exnalimn | Structured version Visualization version GIF version | ||
| Description: Existential quantification of a conjunction expressed with only primitive symbols (→, ¬, ∀). (Contributed by NM, 10-May-1993.) State the most general instance. (Revised by BJ, 29-Sep-2019.) |
| Ref | Expression |
|---|---|
| exnalimn | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ¬ ∀𝑥(𝜑 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alinexa 1843 | . 2 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ¬ ∀𝑥(𝜑 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: ax12ev2 2180 r2exlem 3129 |
| Copyright terms: Public domain | W3C validator |