Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alsyl | Structured version Visualization version GIF version |
Description: Universally quantified and uncurried (imported) form of syllogism. Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
alsyl | ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜒)) → ∀𝑥(𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.33 762 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜒)) → (𝜑 → 𝜒)) | |
2 | 1 | alanimi 1819 | 1 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜒)) → ∀𝑥(𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: eu6lem 2573 barbara 2664 |
Copyright terms: Public domain | W3C validator |