MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exintr Structured version   Visualization version   GIF version

Theorem exintr 1891
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) (Proof shortened by BJ, 16-Sep-2022.)
Assertion
Ref Expression
exintr (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))

Proof of Theorem exintr
StepHypRef Expression
1 ancl 544 . 2 ((𝜑𝜓) → (𝜑 → (𝜑𝜓)))
21aleximi 1830 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778
This theorem is referenced by:  equs4v  1999  equs4  2424  eupickbi  2639  barbarilem  2671  ceqsexOLD  3541  ceqsexvOLD  3543  r19.2z  4518  pwpw0  4838  bnj1023  34756  bnj1109  34762  pm10.55  44338
  Copyright terms: Public domain W3C validator