MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exintr Structured version   Visualization version   GIF version

Theorem exintr 1896
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) (Proof shortened by BJ, 16-Sep-2022.)
Assertion
Ref Expression
exintr (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))

Proof of Theorem exintr
StepHypRef Expression
1 ancl 544 . 2 ((𝜑𝜓) → (𝜑 → (𝜑𝜓)))
21aleximi 1835 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  equs4v  2004  equs4  2416  eupickbi  2638  barbarilem  2669  ceqsex  3468  ceqsexv  3469  r19.2z  4422  pwpw0  4743  pwsnOLD  4829  bnj1023  32660  bnj1109  32666  pm10.55  41876
  Copyright terms: Public domain W3C validator