MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exintr Structured version   Visualization version   GIF version

Theorem exintr 1886
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) (Proof shortened by BJ, 16-Sep-2022.)
Assertion
Ref Expression
exintr (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))

Proof of Theorem exintr
StepHypRef Expression
1 ancl 547 . 2 ((𝜑𝜓) → (𝜑 → (𝜑𝜓)))
21aleximi 1825 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1528  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1774
This theorem is referenced by:  equs4v  1999  equs4  2431  eupickbi  2715  barbarilem  2749  ceqsex  3539  r19.2z  4438  pwpw0  4738  pwsnALT  4823  bnj1023  32040  bnj1109  32046  pm10.55  40681
  Copyright terms: Public domain W3C validator