![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exintr | Structured version Visualization version GIF version |
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) (Proof shortened by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
exintr | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancl 544 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜑 ∧ 𝜓))) | |
2 | 1 | aleximi 1830 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: equs4v 1999 equs4 2424 eupickbi 2639 barbarilem 2671 ceqsexOLD 3541 ceqsexvOLD 3543 r19.2z 4518 pwpw0 4838 bnj1023 34756 bnj1109 34762 pm10.55 44338 |
Copyright terms: Public domain | W3C validator |