| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exintr | Structured version Visualization version GIF version | ||
| Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) (Proof shortened by BJ, 16-Sep-2022.) |
| Ref | Expression |
|---|---|
| exintr | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancl 544 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 2 | 1 | aleximi 1832 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equs4v 1999 equs4 2421 eupickbi 2636 barbarilem 2668 ceqsexOLD 3531 r19.2z 4495 pwpw0 4813 bnj1023 34794 bnj1109 34800 pm10.55 44388 |
| Copyright terms: Public domain | W3C validator |