![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exintr | Structured version Visualization version GIF version |
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
exintr | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exintrbi 1993 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ 𝜓))) | |
2 | 1 | biimpd 221 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∀wal 1654 ∃wex 1878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1879 |
This theorem is referenced by: equs4v 2107 equs4 2436 eupickbi 2719 ceqsex 3458 r19.2z 4284 pwpw0 4564 pwsnALT 4653 bnj1023 31393 bnj1109 31399 pm10.55 39403 |
Copyright terms: Public domain | W3C validator |