Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exintr | Structured version Visualization version GIF version |
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) (Proof shortened by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
exintr | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancl 544 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜑 ∧ 𝜓))) | |
2 | 1 | aleximi 1835 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: equs4v 2004 equs4 2416 eupickbi 2638 barbarilem 2669 ceqsex 3468 ceqsexv 3469 r19.2z 4422 pwpw0 4743 pwsnOLD 4829 bnj1023 32660 bnj1109 32666 pm10.55 41876 |
Copyright terms: Public domain | W3C validator |