Proof of Theorem eu6lem
Step | Hyp | Ref
| Expression |
1 | | 19.42v 1958 |
. . . 4
⊢
(∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧 𝑦 = 𝑧)) |
2 | | alsyl 1897 |
. . . . . . . 8
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) → ∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧)) |
3 | | equvelv 2035 |
. . . . . . . 8
⊢
(∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧) ↔ 𝑦 = 𝑧) |
4 | 2, 3 | sylib 217 |
. . . . . . 7
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) → 𝑦 = 𝑧) |
5 | 4 | pm4.71i 559 |
. . . . . 6
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ ((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ∧ 𝑦 = 𝑧)) |
6 | | albiim 1893 |
. . . . . . . . 9
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
7 | 6 | biancomi 462 |
. . . . . . . 8
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
8 | | equequ2 2030 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
9 | 8 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝑧))) |
10 | 9 | albidv 1924 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑧))) |
11 | 10 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → ((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑦)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)))) |
12 | 7, 11 | syl5bb 282 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)))) |
13 | 12 | pm5.32ri 575 |
. . . . . 6
⊢
((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧) ↔ ((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ∧ 𝑦 = 𝑧)) |
14 | 5, 13 | bitr4i 277 |
. . . . 5
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) |
15 | 14 | exbii 1851 |
. . . 4
⊢
(∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) |
16 | | ax6evr 2019 |
. . . . 5
⊢
∃𝑧 𝑦 = 𝑧 |
17 | 16 | biantru 529 |
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧 𝑦 = 𝑧)) |
18 | 1, 15, 17 | 3bitr4ri 303 |
. . 3
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧))) |
19 | 18 | exbii 1851 |
. 2
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑦∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧))) |
20 | | exdistrv 1960 |
. 2
⊢
(∃𝑦∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) |
21 | 19, 20 | bitri 274 |
1
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) |