Proof of Theorem eu6lem
Step | Hyp | Ref
| Expression |
1 | | 19.42v 2052 |
. . . 4
⊢
(∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧 𝑦 = 𝑧)) |
2 | | pm3.33 781 |
. . . . . . . . 9
⊢ (((𝑥 = 𝑦 → 𝜑) ∧ (𝜑 → 𝑥 = 𝑧)) → (𝑥 = 𝑦 → 𝑥 = 𝑧)) |
3 | 2 | alanimi 1915 |
. . . . . . . 8
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) → ∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧)) |
4 | | equvelv 2137 |
. . . . . . . 8
⊢
(∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑧) ↔ 𝑦 = 𝑧) |
5 | 3, 4 | sylib 210 |
. . . . . . 7
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) → 𝑦 = 𝑧) |
6 | 5 | pm4.71i 555 |
. . . . . 6
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ ((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ∧ 𝑦 = 𝑧)) |
7 | | albiim 1991 |
. . . . . . . . 9
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
8 | 7 | biancomi 456 |
. . . . . . . 8
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
9 | | equequ2 2130 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
10 | 9 | imbi2d 332 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝑧))) |
11 | 10 | albidv 2019 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑧))) |
12 | 11 | anbi2d 622 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → ((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑦)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)))) |
13 | 8, 12 | syl5bb 275 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)))) |
14 | 13 | pm5.32ri 571 |
. . . . . 6
⊢
((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧) ↔ ((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ∧ 𝑦 = 𝑧)) |
15 | 6, 14 | bitr4i 270 |
. . . . 5
⊢
((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) |
16 | 15 | exbii 1947 |
. . . 4
⊢
(∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ 𝑦 = 𝑧)) |
17 | | ax6evr 2119 |
. . . . 5
⊢
∃𝑧 𝑦 = 𝑧 |
18 | 17 | biantru 525 |
. . . 4
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧 𝑦 = 𝑧)) |
19 | 1, 16, 18 | 3bitr4ri 296 |
. . 3
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧))) |
20 | 19 | exbii 1947 |
. 2
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑦∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧))) |
21 | | exdistrv 2054 |
. 2
⊢
(∃𝑦∃𝑧(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) |
22 | 20, 21 | bitri 267 |
1
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) |