| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfimd | Structured version Visualization version GIF version | ||
| Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 → 𝜒). Deduction form of nfim 1896. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) Eliminate curried form of nfimt 1895. (Revised by Wolf Lammen, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfimd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfimd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfimd | ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1877 | . . . 4 ⊢ (∃𝑥(𝜓 → 𝜒) ↔ (∀𝑥𝜓 → ∃𝑥𝜒)) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (∃𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∃𝑥𝜒)) |
| 3 | nfimd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfrd 1791 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| 5 | nfimd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 6 | 5 | nfrd 1791 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜒 → ∀𝑥𝜒)) |
| 7 | 4, 6 | imim12d 81 | . . 3 ⊢ (𝜑 → ((∀𝑥𝜓 → ∃𝑥𝜒) → (∃𝑥𝜓 → ∀𝑥𝜒))) |
| 8 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜓 → ∀𝑥𝜒) → ∀𝑥(𝜓 → 𝜒)) | |
| 9 | 2, 7, 8 | syl56 36 | . 2 ⊢ (𝜑 → (∃𝑥(𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| 10 | 9 | nfd 1790 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfimt 1895 nfand 1897 nfbid 1902 nfim1 2200 hbimd 2298 dvelimhw 2343 dvelimf 2446 nfmod2 2551 nfmodv 2552 nfabdw 2913 nfraldw 3283 nfrald 3346 nfifd 4518 nfixpw 8889 nfixp 8890 axrepndlem1 10545 axrepndlem2 10546 axunndlem1 10548 axunnd 10549 axpowndlem2 10551 axpowndlem3 10552 axpowndlem4 10553 axregndlem2 10556 axregnd 10557 axinfndlem1 10558 axinfnd 10559 axacndlem4 10563 axacndlem5 10564 axacnd 10565 bj-dvelimdv 36839 wl-mo2df 37558 wl-mo2t 37563 riotasv2d 38950 nfintd 49659 |
| Copyright terms: Public domain | W3C validator |