MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfimd Structured version   Visualization version   GIF version

Theorem nfimd 1898
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). Deduction form of nfim 1900. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) df-nf 1787 changed. (Revised by Wolf Lammen, 18-Sep-2021.) Eliminate curried form of nfimt 1899. (Revised by Wolf Lammen, 10-Jul-2022.)
Hypotheses
Ref Expression
nfimd.1 (𝜑 → Ⅎ𝑥𝜓)
nfimd.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfimd (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfimd
StepHypRef Expression
1 19.35 1881 . . . 4 (∃𝑥(𝜓𝜒) ↔ (∀𝑥𝜓 → ∃𝑥𝜒))
21biimpi 215 . . 3 (∃𝑥(𝜓𝜒) → (∀𝑥𝜓 → ∃𝑥𝜒))
3 nfimd.1 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfrd 1794 . . . 4 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
5 nfimd.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
65nfrd 1794 . . . 4 (𝜑 → (∃𝑥𝜒 → ∀𝑥𝜒))
74, 6imim12d 81 . . 3 (𝜑 → ((∀𝑥𝜓 → ∃𝑥𝜒) → (∃𝑥𝜓 → ∀𝑥𝜒)))
8 19.38 1842 . . 3 ((∃𝑥𝜓 → ∀𝑥𝜒) → ∀𝑥(𝜓𝜒))
92, 7, 8syl56 36 . 2 (𝜑 → (∃𝑥(𝜓𝜒) → ∀𝑥(𝜓𝜒)))
109nfd 1793 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  nfimt  1899  nfand  1901  nfbid  1906  nfim1  2193  hbimd  2295  dvelimhw  2342  dvelimf  2448  nfmod2  2553  nfmodv  2554  nfabdw  2927  nfraldw  3307  nfraldwOLD  3319  nfrald  3369  nfifd  4558  nfixpw  8910  nfixp  8911  axrepndlem1  10587  axrepndlem2  10588  axunndlem1  10590  axunnd  10591  axpowndlem2  10593  axpowndlem3  10594  axpowndlem4  10595  axregndlem2  10598  axregnd  10599  axinfndlem1  10600  axinfnd  10601  axacndlem4  10605  axacndlem5  10606  axacnd  10607  bj-dvelimdv  35730  wl-mo2df  36435  wl-mo2t  36440  riotasv2d  37827  nfintd  47718
  Copyright terms: Public domain W3C validator