Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfimd | Structured version Visualization version GIF version |
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 → 𝜒). Deduction form of nfim 1899. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) df-nf 1787 changed. (Revised by Wolf Lammen, 18-Sep-2021.) Eliminate curried form of nfimt 1898. (Revised by Wolf Lammen, 10-Jul-2022.) |
Ref | Expression |
---|---|
nfimd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
nfimd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
nfimd | ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 1880 | . . . 4 ⊢ (∃𝑥(𝜓 → 𝜒) ↔ (∀𝑥𝜓 → ∃𝑥𝜒)) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (∃𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∃𝑥𝜒)) |
3 | nfimd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfrd 1794 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
5 | nfimd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
6 | 5 | nfrd 1794 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜒 → ∀𝑥𝜒)) |
7 | 4, 6 | imim12d 81 | . . 3 ⊢ (𝜑 → ((∀𝑥𝜓 → ∃𝑥𝜒) → (∃𝑥𝜓 → ∀𝑥𝜒))) |
8 | 19.38 1841 | . . 3 ⊢ ((∃𝑥𝜓 → ∀𝑥𝜒) → ∀𝑥(𝜓 → 𝜒)) | |
9 | 2, 7, 8 | syl56 36 | . 2 ⊢ (𝜑 → (∃𝑥(𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
10 | 9 | nfd 1793 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfimt 1898 nfand 1900 nfbid 1905 nfim1 2192 hbimd 2295 dvelimhw 2343 dvelimf 2448 nfmod2 2558 nfmodv 2559 nfabdw 2930 nfraldw 3148 nfraldwOLD 3149 nfrald 3150 nfifd 4488 nfixpw 8704 nfixp 8705 axrepndlem1 10348 axrepndlem2 10349 axunndlem1 10351 axunnd 10352 axpowndlem2 10354 axpowndlem3 10355 axpowndlem4 10356 axregndlem2 10359 axregnd 10360 axinfndlem1 10361 axinfnd 10362 axacndlem4 10366 axacndlem5 10367 axacnd 10368 bj-dvelimdv 35035 wl-mo2df 35725 wl-mo2t 35730 riotasv2d 36971 nfintd 46379 |
Copyright terms: Public domain | W3C validator |