![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfimd | Structured version Visualization version GIF version |
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 → 𝜒). Deduction form of nfim 1895. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) df-nf 1782 changed. (Revised by Wolf Lammen, 18-Sep-2021.) Eliminate curried form of nfimt 1894. (Revised by Wolf Lammen, 10-Jul-2022.) |
Ref | Expression |
---|---|
nfimd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
nfimd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
nfimd | ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 1876 | . . . 4 ⊢ (∃𝑥(𝜓 → 𝜒) ↔ (∀𝑥𝜓 → ∃𝑥𝜒)) | |
2 | 1 | biimpi 216 | . . 3 ⊢ (∃𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∃𝑥𝜒)) |
3 | nfimd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 3 | nfrd 1789 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
5 | nfimd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
6 | 5 | nfrd 1789 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜒 → ∀𝑥𝜒)) |
7 | 4, 6 | imim12d 81 | . . 3 ⊢ (𝜑 → ((∀𝑥𝜓 → ∃𝑥𝜒) → (∃𝑥𝜓 → ∀𝑥𝜒))) |
8 | 19.38 1837 | . . 3 ⊢ ((∃𝑥𝜓 → ∀𝑥𝜒) → ∀𝑥(𝜓 → 𝜒)) | |
9 | 2, 7, 8 | syl56 36 | . 2 ⊢ (𝜑 → (∃𝑥(𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
10 | 9 | nfd 1788 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfimt 1894 nfand 1896 nfbid 1901 nfim1 2200 hbimd 2302 dvelimhw 2351 dvelimf 2456 nfmod2 2561 nfmodv 2562 nfabdw 2932 nfraldw 3315 nfraldwOLD 3328 nfrald 3380 nfifd 4577 nfixpw 8974 nfixp 8975 axrepndlem1 10661 axrepndlem2 10662 axunndlem1 10664 axunnd 10665 axpowndlem2 10667 axpowndlem3 10668 axpowndlem4 10669 axregndlem2 10672 axregnd 10673 axinfndlem1 10674 axinfnd 10675 axacndlem4 10679 axacndlem5 10680 axacnd 10681 bj-dvelimdv 36817 wl-mo2df 37524 wl-mo2t 37529 riotasv2d 38913 nfintd 48765 |
Copyright terms: Public domain | W3C validator |