MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfimd Structured version   Visualization version   GIF version

Theorem nfimd 1895
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). Deduction form of nfim 1897. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) df-nf 1785 changed. (Revised by Wolf Lammen, 18-Sep-2021.) Eliminate curried form of nfimt 1896. (Revised by Wolf Lammen, 10-Jul-2022.)
Hypotheses
Ref Expression
nfimd.1 (𝜑 → Ⅎ𝑥𝜓)
nfimd.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfimd (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfimd
StepHypRef Expression
1 19.35 1878 . . . 4 (∃𝑥(𝜓𝜒) ↔ (∀𝑥𝜓 → ∃𝑥𝜒))
21biimpi 216 . . 3 (∃𝑥(𝜓𝜒) → (∀𝑥𝜓 → ∃𝑥𝜒))
3 nfimd.1 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfrd 1792 . . . 4 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
5 nfimd.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
65nfrd 1792 . . . 4 (𝜑 → (∃𝑥𝜒 → ∀𝑥𝜒))
74, 6imim12d 81 . . 3 (𝜑 → ((∀𝑥𝜓 → ∃𝑥𝜒) → (∃𝑥𝜓 → ∀𝑥𝜒)))
8 19.38 1840 . . 3 ((∃𝑥𝜓 → ∀𝑥𝜒) → ∀𝑥(𝜓𝜒))
92, 7, 8syl56 36 . 2 (𝜑 → (∃𝑥(𝜓𝜒) → ∀𝑥(𝜓𝜒)))
109nfd 1791 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-nf 1785
This theorem is referenced by:  nfimt  1896  nfand  1898  nfbid  1903  nfim1  2202  hbimd  2300  dvelimhw  2345  dvelimf  2448  nfmod2  2553  nfmodv  2554  nfabdw  2916  nfraldw  3277  nfrald  3338  nfifd  4502  nfixpw  8840  nfixp  8841  axrepndlem1  10483  axrepndlem2  10484  axunndlem1  10486  axunnd  10487  axpowndlem2  10489  axpowndlem3  10490  axpowndlem4  10491  axregndlem2  10494  axregnd  10495  axinfndlem1  10496  axinfnd  10497  axacndlem4  10501  axacndlem5  10502  axacnd  10503  bj-dvelimdv  36895  wl-mo2df  37614  wl-mo2t  37619  riotasv2d  39066  nfintd  49784
  Copyright terms: Public domain W3C validator