| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfimd | Structured version Visualization version GIF version | ||
| Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 → 𝜒). Deduction form of nfim 1896. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) Eliminate curried form of nfimt 1895. (Revised by Wolf Lammen, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfimd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfimd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfimd | ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1877 | . . . 4 ⊢ (∃𝑥(𝜓 → 𝜒) ↔ (∀𝑥𝜓 → ∃𝑥𝜒)) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (∃𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∃𝑥𝜒)) |
| 3 | nfimd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfrd 1791 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| 5 | nfimd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 6 | 5 | nfrd 1791 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜒 → ∀𝑥𝜒)) |
| 7 | 4, 6 | imim12d 81 | . . 3 ⊢ (𝜑 → ((∀𝑥𝜓 → ∃𝑥𝜒) → (∃𝑥𝜓 → ∀𝑥𝜒))) |
| 8 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜓 → ∀𝑥𝜒) → ∀𝑥(𝜓 → 𝜒)) | |
| 9 | 2, 7, 8 | syl56 36 | . 2 ⊢ (𝜑 → (∃𝑥(𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| 10 | 9 | nfd 1790 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfimt 1895 nfand 1897 nfbid 1902 nfim1 2200 hbimd 2299 dvelimhw 2347 dvelimf 2453 nfmod2 2558 nfmodv 2559 nfabdw 2921 nfraldw 3293 nfrald 3356 nfifd 4535 nfixpw 8935 nfixp 8936 axrepndlem1 10611 axrepndlem2 10612 axunndlem1 10614 axunnd 10615 axpowndlem2 10617 axpowndlem3 10618 axpowndlem4 10619 axregndlem2 10622 axregnd 10623 axinfndlem1 10624 axinfnd 10625 axacndlem4 10629 axacndlem5 10630 axacnd 10631 bj-dvelimdv 36874 wl-mo2df 37593 wl-mo2t 37598 riotasv2d 38980 nfintd 49504 |
| Copyright terms: Public domain | W3C validator |