MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfimd Structured version   Visualization version   GIF version

Theorem nfimd 1893
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). Deduction form of nfim 1895. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) df-nf 1782 changed. (Revised by Wolf Lammen, 18-Sep-2021.) Eliminate curried form of nfimt 1894. (Revised by Wolf Lammen, 10-Jul-2022.)
Hypotheses
Ref Expression
nfimd.1 (𝜑 → Ⅎ𝑥𝜓)
nfimd.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfimd (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfimd
StepHypRef Expression
1 19.35 1876 . . . 4 (∃𝑥(𝜓𝜒) ↔ (∀𝑥𝜓 → ∃𝑥𝜒))
21biimpi 216 . . 3 (∃𝑥(𝜓𝜒) → (∀𝑥𝜓 → ∃𝑥𝜒))
3 nfimd.1 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfrd 1789 . . . 4 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
5 nfimd.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
65nfrd 1789 . . . 4 (𝜑 → (∃𝑥𝜒 → ∀𝑥𝜒))
74, 6imim12d 81 . . 3 (𝜑 → ((∀𝑥𝜓 → ∃𝑥𝜒) → (∃𝑥𝜓 → ∀𝑥𝜒)))
8 19.38 1837 . . 3 ((∃𝑥𝜓 → ∀𝑥𝜒) → ∀𝑥(𝜓𝜒))
92, 7, 8syl56 36 . 2 (𝜑 → (∃𝑥(𝜓𝜒) → ∀𝑥(𝜓𝜒)))
109nfd 1788 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782
This theorem is referenced by:  nfimt  1894  nfand  1896  nfbid  1901  nfim1  2200  hbimd  2302  dvelimhw  2351  dvelimf  2456  nfmod2  2561  nfmodv  2562  nfabdw  2932  nfraldw  3315  nfraldwOLD  3328  nfrald  3380  nfifd  4577  nfixpw  8974  nfixp  8975  axrepndlem1  10661  axrepndlem2  10662  axunndlem1  10664  axunnd  10665  axpowndlem2  10667  axpowndlem3  10668  axpowndlem4  10669  axregndlem2  10672  axregnd  10673  axinfndlem1  10674  axinfnd  10675  axacndlem4  10679  axacndlem5  10680  axacnd  10681  bj-dvelimdv  36817  wl-mo2df  37524  wl-mo2t  37529  riotasv2d  38913  nfintd  48765
  Copyright terms: Public domain W3C validator