MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfimd Structured version   Visualization version   GIF version

Theorem nfimd 1894
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). Deduction form of nfim 1896. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) Eliminate curried form of nfimt 1895. (Revised by Wolf Lammen, 10-Jul-2022.)
Hypotheses
Ref Expression
nfimd.1 (𝜑 → Ⅎ𝑥𝜓)
nfimd.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfimd (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfimd
StepHypRef Expression
1 19.35 1877 . . . 4 (∃𝑥(𝜓𝜒) ↔ (∀𝑥𝜓 → ∃𝑥𝜒))
21biimpi 216 . . 3 (∃𝑥(𝜓𝜒) → (∀𝑥𝜓 → ∃𝑥𝜒))
3 nfimd.1 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfrd 1791 . . . 4 (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
5 nfimd.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
65nfrd 1791 . . . 4 (𝜑 → (∃𝑥𝜒 → ∀𝑥𝜒))
74, 6imim12d 81 . . 3 (𝜑 → ((∀𝑥𝜓 → ∃𝑥𝜒) → (∃𝑥𝜓 → ∀𝑥𝜒)))
8 19.38 1839 . . 3 ((∃𝑥𝜓 → ∀𝑥𝜒) → ∀𝑥(𝜓𝜒))
92, 7, 8syl56 36 . 2 (𝜑 → (∃𝑥(𝜓𝜒) → ∀𝑥(𝜓𝜒)))
109nfd 1790 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfimt  1895  nfand  1897  nfbid  1902  nfim1  2200  hbimd  2298  dvelimhw  2343  dvelimf  2446  nfmod2  2551  nfmodv  2552  nfabdw  2913  nfraldw  3281  nfrald  3343  nfifd  4514  nfixpw  8866  nfixp  8867  axrepndlem1  10521  axrepndlem2  10522  axunndlem1  10524  axunnd  10525  axpowndlem2  10527  axpowndlem3  10528  axpowndlem4  10529  axregndlem2  10532  axregnd  10533  axinfndlem1  10534  axinfnd  10535  axacndlem4  10539  axacndlem5  10540  axacnd  10541  bj-dvelimdv  36832  wl-mo2df  37551  wl-mo2t  37556  riotasv2d  38943  nfintd  49655
  Copyright terms: Public domain W3C validator