| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfimd | Structured version Visualization version GIF version | ||
| Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 → 𝜒). Deduction form of nfim 1897. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) df-nf 1785 changed. (Revised by Wolf Lammen, 18-Sep-2021.) Eliminate curried form of nfimt 1896. (Revised by Wolf Lammen, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfimd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfimd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfimd | ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1878 | . . . 4 ⊢ (∃𝑥(𝜓 → 𝜒) ↔ (∀𝑥𝜓 → ∃𝑥𝜒)) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (∃𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∃𝑥𝜒)) |
| 3 | nfimd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 4 | 3 | nfrd 1792 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| 5 | nfimd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 6 | 5 | nfrd 1792 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜒 → ∀𝑥𝜒)) |
| 7 | 4, 6 | imim12d 81 | . . 3 ⊢ (𝜑 → ((∀𝑥𝜓 → ∃𝑥𝜒) → (∃𝑥𝜓 → ∀𝑥𝜒))) |
| 8 | 19.38 1840 | . . 3 ⊢ ((∃𝑥𝜓 → ∀𝑥𝜒) → ∀𝑥(𝜓 → 𝜒)) | |
| 9 | 2, 7, 8 | syl56 36 | . 2 ⊢ (𝜑 → (∃𝑥(𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| 10 | 9 | nfd 1791 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfimt 1896 nfand 1898 nfbid 1903 nfim1 2202 hbimd 2300 dvelimhw 2345 dvelimf 2448 nfmod2 2553 nfmodv 2554 nfabdw 2916 nfraldw 3277 nfrald 3338 nfifd 4502 nfixpw 8840 nfixp 8841 axrepndlem1 10483 axrepndlem2 10484 axunndlem1 10486 axunnd 10487 axpowndlem2 10489 axpowndlem3 10490 axpowndlem4 10491 axregndlem2 10494 axregnd 10495 axinfndlem1 10496 axinfnd 10497 axacndlem4 10501 axacndlem5 10502 axacnd 10503 bj-dvelimdv 36895 wl-mo2df 37614 wl-mo2t 37619 riotasv2d 39066 nfintd 49784 |
| Copyright terms: Public domain | W3C validator |