Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrextdg2lem Structured version   Visualization version   GIF version

Theorem constrextdg2lem 33721
Description: Lemma for constrextdg2 33722 (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
constrextdg2lem.1 (𝜑𝑅 ∈ ( < Chain(SubDRing‘ℂfld)))
constrextdg2lem.2 (𝜑 → (𝑅‘0) = ℚ)
constrextdg2lem.3 (𝜑 → (𝐶𝑁) ⊆ (lastS‘𝑅))
Assertion
Ref Expression
constrextdg2lem (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑁,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑣,𝑅   𝜑,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrextdg2lem
Dummy variables 𝑔 𝑦 𝑖 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 4113 . . . . . 6 (𝑖 = ∅ → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ ∅))
21sseq1d 3967 . . . . 5 (𝑖 = ∅ → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)))
32anbi2d 630 . . . 4 (𝑖 = ∅ → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣))))
43rexbidv 3153 . . 3 (𝑖 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣))))
5 uneq2 4113 . . . . . 6 (𝑖 = 𝑔 → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ 𝑔))
65sseq1d 3967 . . . . 5 (𝑖 = 𝑔 → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)))
76anbi2d 630 . . . 4 (𝑖 = 𝑔 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))))
87rexbidv 3153 . . 3 (𝑖 = 𝑔 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))))
9 fveq1 6821 . . . . . . 7 (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0))
109eqeq1d 2731 . . . . . 6 (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ))
11 fveq2 6822 . . . . . . 7 (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢))
1211sseq2d 3968 . . . . . 6 (𝑣 = 𝑢 → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)))
1310, 12anbi12d 632 . . . . 5 (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢))))
1413cbvrexvw 3208 . . . 4 (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)))
15 uneq2 4113 . . . . . . 7 (𝑖 = (𝑔 ∪ {𝑦}) → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})))
1615sseq1d 3967 . . . . . 6 (𝑖 = (𝑔 ∪ {𝑦}) → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
1716anbi2d 630 . . . . 5 (𝑖 = (𝑔 ∪ {𝑦}) → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)) ↔ ((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
1817rexbidv 3153 . . . 4 (𝑖 = (𝑔 ∪ {𝑦}) → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
1914, 18bitrid 283 . . 3 (𝑖 = (𝑔 ∪ {𝑦}) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
20 uneq2 4113 . . . . . 6 (𝑖 = (𝐶‘suc 𝑁) → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)))
2120sseq1d 3967 . . . . 5 (𝑖 = (𝐶‘suc 𝑁) → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)))
2221anbi2d 630 . . . 4 (𝑖 = (𝐶‘suc 𝑁) → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))))
2322rexbidv 3153 . . 3 (𝑖 = (𝐶‘suc 𝑁) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))))
24 fveq1 6821 . . . . . 6 (𝑣 = 𝑅 → (𝑣‘0) = (𝑅‘0))
2524eqeq1d 2731 . . . . 5 (𝑣 = 𝑅 → ((𝑣‘0) = ℚ ↔ (𝑅‘0) = ℚ))
26 fveq2 6822 . . . . . 6 (𝑣 = 𝑅 → (lastS‘𝑣) = (lastS‘𝑅))
2726sseq2d 3968 . . . . 5 (𝑣 = 𝑅 → (((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅)))
2825, 27anbi12d 632 . . . 4 (𝑣 = 𝑅 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)) ↔ ((𝑅‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅))))
29 constrextdg2lem.1 . . . 4 (𝜑𝑅 ∈ ( < Chain(SubDRing‘ℂfld)))
30 constrextdg2lem.2 . . . . 5 (𝜑 → (𝑅‘0) = ℚ)
31 un0 4345 . . . . . 6 ((𝐶𝑁) ∪ ∅) = (𝐶𝑁)
32 constrextdg2lem.3 . . . . . 6 (𝜑 → (𝐶𝑁) ⊆ (lastS‘𝑅))
3331, 32eqsstrid 3974 . . . . 5 (𝜑 → ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅))
3430, 33jca 511 . . . 4 (𝜑 → ((𝑅‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅)))
3528, 29, 34rspcedvdw 3580 . . 3 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)))
36 fveq1 6821 . . . . . . . . . 10 (𝑢 = 𝑣 → (𝑢‘0) = (𝑣‘0))
3736eqeq1d 2731 . . . . . . . . 9 (𝑢 = 𝑣 → ((𝑢‘0) = ℚ ↔ (𝑣‘0) = ℚ))
38 fveq2 6822 . . . . . . . . . 10 (𝑢 = 𝑣 → (lastS‘𝑢) = (lastS‘𝑣))
3938sseq2d 3968 . . . . . . . . 9 (𝑢 = 𝑣 → (((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣)))
4037, 39anbi12d 632 . . . . . . . 8 (𝑢 = 𝑣 → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣))))
41 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
4241adantr 480 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
43 simpllr 775 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝑣‘0) = ℚ)
44 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
4544unssad 4144 . . . . . . . . . . 11 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (𝐶𝑁) ⊆ (lastS‘𝑣))
4645adantr 480 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝐶𝑁) ⊆ (lastS‘𝑣))
47 simplr 768 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
4847unssbd 4145 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑔 ⊆ (lastS‘𝑣))
49 simpr 484 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑦 ∈ (lastS‘𝑣))
5049snssd 4760 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → {𝑦} ⊆ (lastS‘𝑣))
5148, 50unssd 4143 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝑔 ∪ {𝑦}) ⊆ (lastS‘𝑣))
5246, 51unssd 4143 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣))
5343, 52jca 511 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣)))
5440, 42, 53rspcedvdw 3580 . . . . . . 7 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
55 fveq1 6821 . . . . . . . . . 10 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (𝑢‘0) = ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0))
5655eqeq1d 2731 . . . . . . . . 9 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → ((𝑢‘0) = ℚ ↔ ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ))
57 fveq2 6822 . . . . . . . . . 10 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (lastS‘𝑢) = (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))
5857sseq2d 3968 . . . . . . . . 9 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩))))
5956, 58anbi12d 632 . . . . . . . 8 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)) ↔ (((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))))
60 cnfldbas 21265 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
61 cndrng 21305 . . . . . . . . . . 11 fld ∈ DivRing
6261a1i 11 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ℂfld ∈ DivRing)
6341chnwrd 32950 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ∈ Word (SubDRing‘ℂfld))
64 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → 𝑣 = ∅)
6564fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) = (lastS‘∅))
66 lsw0g 14473 . . . . . . . . . . . . . . . . . . 19 (lastS‘∅) = ∅
6765, 66eqtrdi 2780 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) = ∅)
68 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
69 ssun1 4129 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶𝑁) ⊆ ((𝐶𝑁) ∪ 𝑔)
70 constr0.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
71 constrextdg2.n . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ω)
72 nnon 7805 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ω → 𝑁 ∈ On)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑁 ∈ On)
7470, 73constr01 33715 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {0, 1} ⊆ (𝐶𝑁))
75 c0ex 11109 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ V
7675prnz 4729 . . . . . . . . . . . . . . . . . . . . . . 23 {0, 1} ≠ ∅
77 ssn0 4355 . . . . . . . . . . . . . . . . . . . . . . 23 (({0, 1} ⊆ (𝐶𝑁) ∧ {0, 1} ≠ ∅) → (𝐶𝑁) ≠ ∅)
7874, 76, 77sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐶𝑁) ≠ ∅)
79 ssn0 4355 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶𝑁) ⊆ ((𝐶𝑁) ∪ 𝑔) ∧ (𝐶𝑁) ≠ ∅) → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
8069, 78, 79sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
8180ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
82 ssn0 4355 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣) ∧ ((𝐶𝑁) ∪ 𝑔) ≠ ∅) → (lastS‘𝑣) ≠ ∅)
8368, 81, 82syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) ≠ ∅)
8483neneqd 2930 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ¬ (lastS‘𝑣) = ∅)
8567, 84pm2.65da 816 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ¬ 𝑣 = ∅)
8685neqned 2932 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ≠ ∅)
8786ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) → 𝑣 ≠ ∅)
8887an62ds 32396 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ≠ ∅)
89 lswcl 14475 . . . . . . . . . . . . . 14 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ 𝑣 ≠ ∅) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9063, 88, 89syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9190adantr 480 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9260sdrgss 20678 . . . . . . . . . . . 12 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ⊆ ℂ)
9391, 92syl 17 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ⊆ ℂ)
94 onsuc 7746 . . . . . . . . . . . . . . . 16 (𝑁 ∈ On → suc 𝑁 ∈ On)
9573, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑 → suc 𝑁 ∈ On)
9670, 95constrsscn 33713 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘suc 𝑁) ⊆ ℂ)
9796ad6antr 736 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶‘suc 𝑁) ⊆ ℂ)
98 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔))
9998eldifad 3915 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑦 ∈ (𝐶‘suc 𝑁))
10099adantr 480 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑦 ∈ (𝐶‘suc 𝑁))
10197, 100sseldd 3936 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑦 ∈ ℂ)
102101snssd 4760 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → {𝑦} ⊆ ℂ)
10393, 102unssd 4143 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((lastS‘𝑣) ∪ {𝑦}) ⊆ ℂ)
10460, 62, 103fldgensdrg 33254 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ (SubDRing‘ℂfld))
10541adantr 480 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
10691elexd 3460 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ∈ V)
107104elexd 3460 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V)
108 eqid 2729 . . . . . . . . . . . 12 (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣))
109 eqid 2729 . . . . . . . . . . . 12 (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
110 cnfldfld 33281 . . . . . . . . . . . . 13 fld ∈ Field
111110a1i 11 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ℂfld ∈ Field)
11260, 108, 109, 111, 91, 102fldgenfldext 33641 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)))
113 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)
114 constrextdg2.1 . . . . . . . . . . . . . . . 16 𝐸 = (ℂflds 𝑒)
115 constrextdg2.2 . . . . . . . . . . . . . . . 16 𝐹 = (ℂflds 𝑓)
116114, 115breq12i 5101 . . . . . . . . . . . . . . 15 (𝐸/FldExt𝐹 ↔ (ℂflds 𝑒)/FldExt(ℂflds 𝑓))
117 oveq2 7357 . . . . . . . . . . . . . . . . 17 (𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) → (ℂflds 𝑒) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
118117adantl 481 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (ℂflds 𝑒) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
119 oveq2 7357 . . . . . . . . . . . . . . . . 17 (𝑓 = (lastS‘𝑣) → (ℂflds 𝑓) = (ℂflds (lastS‘𝑣)))
120119adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (ℂflds 𝑓) = (ℂflds (lastS‘𝑣)))
121118, 120breq12d 5105 . . . . . . . . . . . . . . 15 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((ℂflds 𝑒)/FldExt(ℂflds 𝑓) ↔ (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣))))
122116, 121bitrid 283 . . . . . . . . . . . . . 14 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (𝐸/FldExt𝐹 ↔ (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣))))
123114, 115oveq12i 7361 . . . . . . . . . . . . . . . 16 (𝐸[:]𝐹) = ((ℂflds 𝑒)[:](ℂflds 𝑓))
124118, 120oveq12d 7367 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((ℂflds 𝑒)[:](ℂflds 𝑓)) = ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))))
125123, 124eqtrid 2776 . . . . . . . . . . . . . . 15 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (𝐸[:]𝐹) = ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))))
126125eqeq1d 2731 . . . . . . . . . . . . . 14 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((𝐸[:]𝐹) = 2 ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2))
127122, 126anbi12d 632 . . . . . . . . . . . . 13 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2) ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)))
128 constrextdg2.l . . . . . . . . . . . . 13 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
129127, 128brabga 5477 . . . . . . . . . . . 12 (((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V) → ((lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)))
130129biimpar 477 . . . . . . . . . . 11 ((((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)) → (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
131106, 107, 112, 113, 130syl22anc 838 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
132131olcd 874 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣 = ∅ ∨ (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
133104, 105, 132chnccats1 32958 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) ∈ ( < Chain(SubDRing‘ℂfld)))
13463adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑣 ∈ Word (SubDRing‘ℂfld))
135104s1cld 14510 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩ ∈ Word (SubDRing‘ℂfld))
136 hashgt0 14295 . . . . . . . . . . . . 13 ((𝑣 ∈ ( < Chain(SubDRing‘ℂfld)) ∧ 𝑣 ≠ ∅) → 0 < (♯‘𝑣))
13741, 88, 136syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 0 < (♯‘𝑣))
138137adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 0 < (♯‘𝑣))
139 ccatfv0 14490 . . . . . . . . . . 11 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩ ∈ Word (SubDRing‘ℂfld) ∧ 0 < (♯‘𝑣)) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = (𝑣‘0))
140134, 135, 138, 139syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = (𝑣‘0))
141 simpllr 775 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣‘0) = ℚ)
142140, 141eqtrd 2764 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ)
14345adantr 480 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶𝑁) ⊆ (lastS‘𝑣))
144 ssun3 4131 . . . . . . . . . . . . 13 ((𝐶𝑁) ⊆ (lastS‘𝑣) → (𝐶𝑁) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
145143, 144syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶𝑁) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
146 simplr 768 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
147146unssbd 4145 . . . . . . . . . . . . . 14 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑔 ⊆ (lastS‘𝑣))
148 ssun3 4131 . . . . . . . . . . . . . 14 (𝑔 ⊆ (lastS‘𝑣) → 𝑔 ⊆ ((lastS‘𝑣) ∪ {𝑦}))
149147, 148syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑔 ⊆ ((lastS‘𝑣) ∪ {𝑦}))
150 ssun2 4130 . . . . . . . . . . . . . 14 {𝑦} ⊆ ((lastS‘𝑣) ∪ {𝑦})
151150a1i 11 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → {𝑦} ⊆ ((lastS‘𝑣) ∪ {𝑦}))
152149, 151unssd 4143 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑔 ∪ {𝑦}) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
153145, 152unssd 4143 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
15460, 62, 103fldgenssid 33253 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((lastS‘𝑣) ∪ {𝑦}) ⊆ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
155153, 154sstrd 3946 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
156 lswccats1 14541 . . . . . . . . . . 11 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ (SubDRing‘ℂfld)) → (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)) = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
157134, 104, 156syl2anc 584 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)) = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
158155, 157sseqtrrd 3973 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))
159142, 158jca 511 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩))))
16059, 133, 159rspcedvdw 3580 . . . . . . 7 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
16173ad5antr 734 . . . . . . . 8 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑁 ∈ On)
16270, 108, 109, 90, 161, 45, 99constrelextdg2 33720 . . . . . . 7 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (𝑦 ∈ (lastS‘𝑣) ∨ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2))
16354, 160, 162mpjaodan 960 . . . . . 6 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
164163anasss 466 . . . . 5 (((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
165164rexlimdva2 3132 . . . 4 (((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
166165anasss 466 . . 3 ((𝜑 ∧ (𝑔 ⊆ (𝐶‘suc 𝑁) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔))) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
167 peano2 7823 . . . . 5 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
16871, 167syl 17 . . . 4 (𝜑 → suc 𝑁 ∈ ω)
16970, 168constrfin 33719 . . 3 (𝜑 → (𝐶‘suc 𝑁) ∈ Fin)
1704, 8, 19, 23, 35, 166, 169findcard2d 9080 . 2 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)))
171 simpr 484 . . . . . 6 (((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))
172171unssbd 4145 . . . . 5 (((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))
173172ex 412 . . . 4 ((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) → (((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣) → (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
174173anim2d 612 . . 3 ((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))))
175174reximdva 3142 . 2 (𝜑 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))))
176170, 175mpd 15 1 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  cun 3901  wss 3903  c0 4284  {csn 4577  {cpr 4579   class class class wbr 5092  {copab 5154  cmpt 5173  Oncon0 6307  suc csuc 6309  cfv 6482  (class class class)co 7349  ωcom 7799  reccrdg 8331  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cmin 11347  2c2 12183  cq 12849  chash 14237  Word cword 14420  lastSclsw 14469   ++ cconcat 14477  ⟨“cs1 14502  ccj 15003  cim 15005  abscabs 15141  s cress 17141  DivRingcdr 20614  Fieldcfield 20615  SubDRingcsdrg 20671  fldccnfld 21261  Chaincchn 32947   fldGen cfldgen 33250  /FldExtcfldext 33611  [:]cextdg 33613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-rpss 7659  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-r1 9660  df-rank 9661  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mre 17488  df-mrc 17489  df-mri 17490  df-acs 17491  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-gim 19138  df-cntz 19196  df-oppg 19225  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-irred 20244  df-invr 20273  df-dvr 20286  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-sdrg 20672  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lmhm 20926  df-lmim 20927  df-lmic 20928  df-lbs 20979  df-lvec 21007  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-2idl 21157  df-lpidl 21229  df-lpir 21230  df-pid 21244  df-cnfld 21262  df-dsmm 21639  df-frlm 21654  df-uvc 21690  df-lindf 21713  df-linds 21714  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evls1 22200  df-evl1 22201  df-mdeg 25958  df-deg1 25959  df-mon1 26034  df-uc1p 26035  df-q1p 26036  df-r1p 26037  df-ig1p 26038  df-chn 32948  df-fldgen 33251  df-mxidl 33398  df-dim 33572  df-fldext 33614  df-extdg 33615  df-irng 33657  df-minply 33673
This theorem is referenced by:  constrextdg2  33722
  Copyright terms: Public domain W3C validator