| Step | Hyp | Ref
| Expression |
| 1 | | uneq2 4162 |
. . . . . 6
⊢ (𝑖 = ∅ → ((𝐶‘𝑁) ∪ 𝑖) = ((𝐶‘𝑁) ∪ ∅)) |
| 2 | 1 | sseq1d 4015 |
. . . . 5
⊢ (𝑖 = ∅ → (((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶‘𝑁) ∪ ∅) ⊆ (lastS‘𝑣))) |
| 3 | 2 | anbi2d 630 |
. . . 4
⊢ (𝑖 = ∅ → (((𝑣‘0) = ℚ ∧
((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ ∅) ⊆ (lastS‘𝑣)))) |
| 4 | 3 | rexbidv 3179 |
. . 3
⊢ (𝑖 = ∅ → (∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ ∅) ⊆ (lastS‘𝑣)))) |
| 5 | | uneq2 4162 |
. . . . . 6
⊢ (𝑖 = 𝑔 → ((𝐶‘𝑁) ∪ 𝑖) = ((𝐶‘𝑁) ∪ 𝑔)) |
| 6 | 5 | sseq1d 4015 |
. . . . 5
⊢ (𝑖 = 𝑔 → (((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))) |
| 7 | 6 | anbi2d 630 |
. . . 4
⊢ (𝑖 = 𝑔 → (((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)))) |
| 8 | 7 | rexbidv 3179 |
. . 3
⊢ (𝑖 = 𝑔 → (∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)))) |
| 9 | | fveq1 6905 |
. . . . . . 7
⊢ (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0)) |
| 10 | 9 | eqeq1d 2739 |
. . . . . 6
⊢ (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) =
ℚ)) |
| 11 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢)) |
| 12 | 11 | sseq2d 4016 |
. . . . . 6
⊢ (𝑣 = 𝑢 → (((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢))) |
| 13 | 10, 12 | anbi12d 632 |
. . . . 5
⊢ (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)))) |
| 14 | 13 | cbvrexvw 3238 |
. . . 4
⊢
(∃𝑣 ∈ (
<
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢))) |
| 15 | | uneq2 4162 |
. . . . . . 7
⊢ (𝑖 = (𝑔 ∪ {𝑦}) → ((𝐶‘𝑁) ∪ 𝑖) = ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦}))) |
| 16 | 15 | sseq1d 4015 |
. . . . . 6
⊢ (𝑖 = (𝑔 ∪ {𝑦}) → (((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢) ↔ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))) |
| 17 | 16 | anbi2d 630 |
. . . . 5
⊢ (𝑖 = (𝑔 ∪ {𝑦}) → (((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)) ↔ ((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))) |
| 18 | 17 | rexbidv 3179 |
. . . 4
⊢ (𝑖 = (𝑔 ∪ {𝑦}) → (∃𝑢 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)) ↔ ∃𝑢 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))) |
| 19 | 14, 18 | bitrid 283 |
. . 3
⊢ (𝑖 = (𝑔 ∪ {𝑦}) → (∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))) |
| 20 | | uneq2 4162 |
. . . . . 6
⊢ (𝑖 = (𝐶‘suc 𝑁) → ((𝐶‘𝑁) ∪ 𝑖) = ((𝐶‘𝑁) ∪ (𝐶‘suc 𝑁))) |
| 21 | 20 | sseq1d 4015 |
. . . . 5
⊢ (𝑖 = (𝐶‘suc 𝑁) → (((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶‘𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))) |
| 22 | 21 | anbi2d 630 |
. . . 4
⊢ (𝑖 = (𝐶‘suc 𝑁) → (((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)))) |
| 23 | 22 | rexbidv 3179 |
. . 3
⊢ (𝑖 = (𝐶‘suc 𝑁) → (∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)))) |
| 24 | | fveq1 6905 |
. . . . . 6
⊢ (𝑣 = 𝑅 → (𝑣‘0) = (𝑅‘0)) |
| 25 | 24 | eqeq1d 2739 |
. . . . 5
⊢ (𝑣 = 𝑅 → ((𝑣‘0) = ℚ ↔ (𝑅‘0) = ℚ)) |
| 26 | | fveq2 6906 |
. . . . . 6
⊢ (𝑣 = 𝑅 → (lastS‘𝑣) = (lastS‘𝑅)) |
| 27 | 26 | sseq2d 4016 |
. . . . 5
⊢ (𝑣 = 𝑅 → (((𝐶‘𝑁) ∪ ∅) ⊆ (lastS‘𝑣) ↔ ((𝐶‘𝑁) ∪ ∅) ⊆ (lastS‘𝑅))) |
| 28 | 25, 27 | anbi12d 632 |
. . . 4
⊢ (𝑣 = 𝑅 → (((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ ∅) ⊆ (lastS‘𝑣)) ↔ ((𝑅‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ ∅) ⊆ (lastS‘𝑅)))) |
| 29 | | constrextdg2lem.1 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ( <
Chain(SubDRing‘ℂfld))) |
| 30 | | constrextdg2lem.2 |
. . . . 5
⊢ (𝜑 → (𝑅‘0) = ℚ) |
| 31 | | un0 4394 |
. . . . . 6
⊢ ((𝐶‘𝑁) ∪ ∅) = (𝐶‘𝑁) |
| 32 | | constrextdg2lem.3 |
. . . . . 6
⊢ (𝜑 → (𝐶‘𝑁) ⊆ (lastS‘𝑅)) |
| 33 | 31, 32 | eqsstrid 4022 |
. . . . 5
⊢ (𝜑 → ((𝐶‘𝑁) ∪ ∅) ⊆ (lastS‘𝑅)) |
| 34 | 30, 33 | jca 511 |
. . . 4
⊢ (𝜑 → ((𝑅‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ ∅) ⊆ (lastS‘𝑅))) |
| 35 | 28, 29, 34 | rspcedvdw 3625 |
. . 3
⊢ (𝜑 → ∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ ∅) ⊆ (lastS‘𝑣))) |
| 36 | | fveq1 6905 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑣 → (𝑢‘0) = (𝑣‘0)) |
| 37 | 36 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑢 = 𝑣 → ((𝑢‘0) = ℚ ↔ (𝑣‘0) =
ℚ)) |
| 38 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑣 → (lastS‘𝑢) = (lastS‘𝑣)) |
| 39 | 38 | sseq2d 4016 |
. . . . . . . . 9
⊢ (𝑢 = 𝑣 → (((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢) ↔ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣))) |
| 40 | 37, 39 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑢 = 𝑣 → (((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣)))) |
| 41 | | simpllr 776 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) |
| 42 | 41 | adantr 480 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) |
| 43 | | simpllr 776 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝑣‘0) = ℚ) |
| 44 | | simpr 484 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) |
| 45 | 44 | unssad 4193 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (𝐶‘𝑁) ⊆ (lastS‘𝑣)) |
| 46 | 45 | adantr 480 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝐶‘𝑁) ⊆ (lastS‘𝑣)) |
| 47 | | simplr 769 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) |
| 48 | 47 | unssbd 4194 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑔 ⊆ (lastS‘𝑣)) |
| 49 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑦 ∈ (lastS‘𝑣)) |
| 50 | 49 | snssd 4809 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → {𝑦} ⊆ (lastS‘𝑣)) |
| 51 | 48, 50 | unssd 4192 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝑔 ∪ {𝑦}) ⊆ (lastS‘𝑣)) |
| 52 | 46, 51 | unssd 4192 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣)) |
| 53 | 43, 52 | jca 511 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣))) |
| 54 | 40, 42, 53 | rspcedvdw 3625 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ∃𝑢 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))) |
| 55 | | fveq1 6905 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)
→ (𝑢‘0) =
((𝑣 ++
〈“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”〉)‘0)) |
| 56 | 55 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑢 = (𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)
→ ((𝑢‘0) =
ℚ ↔ ((𝑣 ++
〈“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”〉)‘0) =
ℚ)) |
| 57 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)
→ (lastS‘𝑢) =
(lastS‘(𝑣 ++
〈“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”〉))) |
| 58 | 57 | sseq2d 4016 |
. . . . . . . . 9
⊢ (𝑢 = (𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)
→ (((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢) ↔ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)))) |
| 59 | 56, 58 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑢 = (𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)
→ (((𝑢‘0) =
ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)) ↔ (((𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)‘0) = ℚ ∧
((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉))))) |
| 60 | | cnfldbas 21368 |
. . . . . . . . . 10
⊢ ℂ =
(Base‘ℂfld) |
| 61 | | cndrng 21411 |
. . . . . . . . . . 11
⊢
ℂfld ∈ DivRing |
| 62 | 61 | a1i 11 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ℂfld ∈
DivRing) |
| 63 | 41 | chnwrd 32997 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ∈ Word
(SubDRing‘ℂfld)) |
| 64 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → 𝑣 = ∅) |
| 65 | 64 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) =
(lastS‘∅)) |
| 66 | | lsw0g 14604 |
. . . . . . . . . . . . . . . . . . 19
⊢
(lastS‘∅) = ∅ |
| 67 | 65, 66 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) = ∅) |
| 68 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) |
| 69 | | ssun1 4178 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐶‘𝑁) ⊆ ((𝐶‘𝑁) ∪ 𝑔) |
| 70 | | constr0.1 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧
(ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
| 71 | | constrextdg2.n |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑁 ∈ ω) |
| 72 | | nnon 7893 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ω → 𝑁 ∈ On) |
| 73 | 71, 72 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑁 ∈ On) |
| 74 | 70, 73 | constr01 33783 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {0, 1} ⊆ (𝐶‘𝑁)) |
| 75 | | c0ex 11255 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
V |
| 76 | 75 | prnz 4777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {0, 1}
≠ ∅ |
| 77 | | ssn0 4404 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({0, 1}
⊆ (𝐶‘𝑁) ∧ {0, 1} ≠ ∅)
→ (𝐶‘𝑁) ≠ ∅) |
| 78 | 74, 76, 77 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐶‘𝑁) ≠ ∅) |
| 79 | | ssn0 4404 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐶‘𝑁) ⊆ ((𝐶‘𝑁) ∪ 𝑔) ∧ (𝐶‘𝑁) ≠ ∅) → ((𝐶‘𝑁) ∪ 𝑔) ≠ ∅) |
| 80 | 69, 78, 79 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐶‘𝑁) ∪ 𝑔) ≠ ∅) |
| 81 | 80 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ((𝐶‘𝑁) ∪ 𝑔) ≠ ∅) |
| 82 | | ssn0 4404 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣) ∧ ((𝐶‘𝑁) ∪ 𝑔) ≠ ∅) → (lastS‘𝑣) ≠ ∅) |
| 83 | 68, 81, 82 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) ≠ ∅) |
| 84 | 83 | neneqd 2945 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ¬ (lastS‘𝑣) = ∅) |
| 85 | 67, 84 | pm2.65da 817 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ¬ 𝑣 = ∅) |
| 86 | 85 | neqned 2947 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ≠ ∅) |
| 87 | 86 | ad4antr 732 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) → 𝑣 ≠ ∅) |
| 88 | 87 | an62ds 32471 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ≠ ∅) |
| 89 | | lswcl 14606 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ Word
(SubDRing‘ℂfld) ∧ 𝑣 ≠ ∅) → (lastS‘𝑣) ∈
(SubDRing‘ℂfld)) |
| 90 | 63, 88, 89 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (lastS‘𝑣) ∈
(SubDRing‘ℂfld)) |
| 91 | 90 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (lastS‘𝑣) ∈
(SubDRing‘ℂfld)) |
| 92 | 60 | sdrgss 20794 |
. . . . . . . . . . . 12
⊢
((lastS‘𝑣)
∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ⊆
ℂ) |
| 93 | 91, 92 | syl 17 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (lastS‘𝑣) ⊆
ℂ) |
| 94 | | onsuc 7831 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ On → suc 𝑁 ∈ On) |
| 95 | 73, 94 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → suc 𝑁 ∈ On) |
| 96 | 70, 95 | constrsscn 33781 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐶‘suc 𝑁) ⊆ ℂ) |
| 97 | 96 | ad6antr 736 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (𝐶‘suc 𝑁) ⊆ ℂ) |
| 98 | | simp-4r 784 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) |
| 99 | 98 | eldifad 3963 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑦 ∈ (𝐶‘suc 𝑁)) |
| 100 | 99 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → 𝑦 ∈ (𝐶‘suc 𝑁)) |
| 101 | 97, 100 | sseldd 3984 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → 𝑦 ∈ ℂ) |
| 102 | 101 | snssd 4809 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → {𝑦} ⊆ ℂ) |
| 103 | 93, 102 | unssd 4192 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ((lastS‘𝑣) ∪ {𝑦}) ⊆ ℂ) |
| 104 | 60, 62, 103 | fldgensdrg 33316 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦})) ∈
(SubDRing‘ℂfld)) |
| 105 | 41 | adantr 480 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) |
| 106 | 91 | elexd 3504 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (lastS‘𝑣) ∈ V) |
| 107 | 104 | elexd 3504 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦})) ∈
V) |
| 108 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(ℂfld ↾s (lastS‘𝑣)) = (ℂfld
↾s (lastS‘𝑣)) |
| 109 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(ℂfld ↾s (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) =
(ℂfld ↾s (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) |
| 110 | | cnfldfld 33371 |
. . . . . . . . . . . . 13
⊢
ℂfld ∈ Field |
| 111 | 110 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ℂfld ∈
Field) |
| 112 | 60, 108, 109, 111, 91, 102 | fldgenfldext 33718 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂfld
↾s (lastS‘𝑣))) |
| 113 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) |
| 114 | | constrextdg2.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐸 = (ℂfld
↾s 𝑒) |
| 115 | | constrextdg2.2 |
. . . . . . . . . . . . . . . 16
⊢ 𝐹 = (ℂfld
↾s 𝑓) |
| 116 | 114, 115 | breq12i 5152 |
. . . . . . . . . . . . . . 15
⊢ (𝐸/FldExt𝐹 ↔ (ℂfld
↾s 𝑒)/FldExt(ℂfld
↾s 𝑓)) |
| 117 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦})) →
(ℂfld ↾s 𝑒) = (ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))) |
| 118 | 117 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) →
(ℂfld ↾s 𝑒) = (ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))) |
| 119 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (lastS‘𝑣) → (ℂfld
↾s 𝑓) =
(ℂfld ↾s (lastS‘𝑣))) |
| 120 | 119 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) →
(ℂfld ↾s 𝑓) = (ℂfld
↾s (lastS‘𝑣))) |
| 121 | 118, 120 | breq12d 5156 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) →
((ℂfld ↾s 𝑒)/FldExt(ℂfld
↾s 𝑓)
↔ (ℂfld ↾s (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦})))/FldExt(ℂfld
↾s (lastS‘𝑣)))) |
| 122 | 116, 121 | bitrid 283 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) → (𝐸/FldExt𝐹 ↔ (ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂfld
↾s (lastS‘𝑣)))) |
| 123 | 114, 115 | oveq12i 7443 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸[:]𝐹) = ((ℂfld
↾s 𝑒)[:](ℂfld
↾s 𝑓)) |
| 124 | 118, 120 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) →
((ℂfld ↾s 𝑒)[:](ℂfld
↾s 𝑓)) =
((ℂfld ↾s (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦})))[:](ℂfld
↾s (lastS‘𝑣)))) |
| 125 | 123, 124 | eqtrid 2789 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) → (𝐸[:]𝐹) = ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣)))) |
| 126 | 125 | eqeq1d 2739 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) → ((𝐸[:]𝐹) = 2 ↔ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2)) |
| 127 | 122, 126 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) → ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2) ↔ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂfld
↾s (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2))) |
| 128 | | constrextdg2.l |
. . . . . . . . . . . . 13
⊢ < =
{〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} |
| 129 | 127, 128 | brabga 5539 |
. . . . . . . . . . . 12
⊢
(((lastS‘𝑣)
∈ V ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V) → ((lastS‘𝑣) < (ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦})) ↔
((ℂfld ↾s (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦})))/FldExt(ℂfld
↾s (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2))) |
| 130 | 129 | biimpar 477 |
. . . . . . . . . . 11
⊢
((((lastS‘𝑣)
∈ V ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂfld
↾s (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2)) → (lastS‘𝑣) < (ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))) |
| 131 | 106, 107,
112, 113, 130 | syl22anc 839 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (lastS‘𝑣) < (ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))) |
| 132 | 131 | olcd 875 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (𝑣 = ∅ ∨ (lastS‘𝑣) < (ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦})))) |
| 133 | 104, 105,
132 | chnccats1 33005 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)
∈ ( <
Chain(SubDRing‘ℂfld))) |
| 134 | 63 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → 𝑣 ∈ Word
(SubDRing‘ℂfld)) |
| 135 | 104 | s1cld 14641 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) →
〈“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”〉 ∈ Word
(SubDRing‘ℂfld)) |
| 136 | | hashgt0 14427 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ ( <
Chain(SubDRing‘ℂfld)) ∧ 𝑣 ≠ ∅) → 0 <
(♯‘𝑣)) |
| 137 | 41, 88, 136 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 0 < (♯‘𝑣)) |
| 138 | 137 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → 0 < (♯‘𝑣)) |
| 139 | | ccatfv0 14621 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ Word
(SubDRing‘ℂfld) ∧
〈“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”〉 ∈ Word
(SubDRing‘ℂfld) ∧ 0 < (♯‘𝑣)) → ((𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)‘0) = (𝑣‘0)) |
| 140 | 134, 135,
138, 139 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ((𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)‘0) = (𝑣‘0)) |
| 141 | | simpllr 776 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (𝑣‘0) = ℚ) |
| 142 | 140, 141 | eqtrd 2777 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ((𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)‘0) =
ℚ) |
| 143 | 45 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (𝐶‘𝑁) ⊆ (lastS‘𝑣)) |
| 144 | | ssun3 4180 |
. . . . . . . . . . . . 13
⊢ ((𝐶‘𝑁) ⊆ (lastS‘𝑣) → (𝐶‘𝑁) ⊆ ((lastS‘𝑣) ∪ {𝑦})) |
| 145 | 143, 144 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (𝐶‘𝑁) ⊆ ((lastS‘𝑣) ∪ {𝑦})) |
| 146 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) |
| 147 | 146 | unssbd 4194 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → 𝑔 ⊆ (lastS‘𝑣)) |
| 148 | | ssun3 4180 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ⊆ (lastS‘𝑣) → 𝑔 ⊆ ((lastS‘𝑣) ∪ {𝑦})) |
| 149 | 147, 148 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → 𝑔 ⊆ ((lastS‘𝑣) ∪ {𝑦})) |
| 150 | | ssun2 4179 |
. . . . . . . . . . . . . 14
⊢ {𝑦} ⊆ ((lastS‘𝑣) ∪ {𝑦}) |
| 151 | 150 | a1i 11 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → {𝑦} ⊆ ((lastS‘𝑣) ∪ {𝑦})) |
| 152 | 149, 151 | unssd 4192 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (𝑔 ∪ {𝑦}) ⊆ ((lastS‘𝑣) ∪ {𝑦})) |
| 153 | 145, 152 | unssd 4192 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ ((lastS‘𝑣) ∪ {𝑦})) |
| 154 | 60, 62, 103 | fldgenssid 33315 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ((lastS‘𝑣) ∪ {𝑦}) ⊆ (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) |
| 155 | 153, 154 | sstrd 3994 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦}))) |
| 156 | | lswccats1 14672 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ Word
(SubDRing‘ℂfld) ∧ (ℂfld fldGen
((lastS‘𝑣) ∪
{𝑦})) ∈
(SubDRing‘ℂfld)) → (lastS‘(𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉))
= (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) |
| 157 | 134, 104,
156 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (lastS‘(𝑣 ++
〈“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”〉)) = (ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))) |
| 158 | 155, 157 | sseqtrrd 4021 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉))) |
| 159 | 142, 158 | jca 511 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → (((𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)‘0) = ℚ ∧
((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ 〈“(ℂfld
fldGen ((lastS‘𝑣)
∪ {𝑦}))”〉)))) |
| 160 | 59, 133, 159 | rspcedvdw 3625 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2) → ∃𝑢 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))) |
| 161 | 73 | ad5antr 734 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑁 ∈ On) |
| 162 | 70, 108, 109, 90, 161, 45, 99 | constrelextdg2 33788 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (𝑦 ∈ (lastS‘𝑣) ∨ ((ℂfld
↾s (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂfld
↾s (lastS‘𝑣))) = 2)) |
| 163 | 54, 160, 162 | mpjaodan 961 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))) |
| 164 | 163 | anasss 466 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))) → ∃𝑢 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))) |
| 165 | 164 | rexlimdva2 3157 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) → (∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))) |
| 166 | 165 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑔 ⊆ (𝐶‘suc 𝑁) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔))) → (∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))) |
| 167 | | peano2 7912 |
. . . . 5
⊢ (𝑁 ∈ ω → suc 𝑁 ∈
ω) |
| 168 | 71, 167 | syl 17 |
. . . 4
⊢ (𝜑 → suc 𝑁 ∈ ω) |
| 169 | 70, 168 | constrfin 33787 |
. . 3
⊢ (𝜑 → (𝐶‘suc 𝑁) ∈ Fin) |
| 170 | 4, 8, 19, 23, 35, 166, 169 | findcard2d 9206 |
. 2
⊢ (𝜑 → ∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))) |
| 171 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝐶‘𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ((𝐶‘𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) |
| 172 | 171 | unssbd 4194 |
. . . . 5
⊢ (((𝜑 ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝐶‘𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)) |
| 173 | 172 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) → (((𝐶‘𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣) → (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))) |
| 174 | 173 | anim2d 612 |
. . 3
⊢ ((𝜑 ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) → (((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))) |
| 175 | 174 | reximdva 3168 |
. 2
⊢ (𝜑 → (∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶‘𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))) |
| 176 | 170, 175 | mpd 15 |
1
⊢ (𝜑 → ∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))) |