Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrextdg2lem Structured version   Visualization version   GIF version

Theorem constrextdg2lem 33731
Description: Lemma for constrextdg2 33732 (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
constrextdg2lem.1 (𝜑𝑅 ∈ ( < Chain(SubDRing‘ℂfld)))
constrextdg2lem.2 (𝜑 → (𝑅‘0) = ℚ)
constrextdg2lem.3 (𝜑 → (𝐶𝑁) ⊆ (lastS‘𝑅))
Assertion
Ref Expression
constrextdg2lem (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑁,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑣,𝑅   𝜑,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrextdg2lem
Dummy variables 𝑔 𝑦 𝑖 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 4121 . . . . . 6 (𝑖 = ∅ → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ ∅))
21sseq1d 3975 . . . . 5 (𝑖 = ∅ → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)))
32anbi2d 630 . . . 4 (𝑖 = ∅ → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣))))
43rexbidv 3157 . . 3 (𝑖 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣))))
5 uneq2 4121 . . . . . 6 (𝑖 = 𝑔 → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ 𝑔))
65sseq1d 3975 . . . . 5 (𝑖 = 𝑔 → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)))
76anbi2d 630 . . . 4 (𝑖 = 𝑔 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))))
87rexbidv 3157 . . 3 (𝑖 = 𝑔 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))))
9 fveq1 6839 . . . . . . 7 (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0))
109eqeq1d 2731 . . . . . 6 (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ))
11 fveq2 6840 . . . . . . 7 (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢))
1211sseq2d 3976 . . . . . 6 (𝑣 = 𝑢 → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)))
1310, 12anbi12d 632 . . . . 5 (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢))))
1413cbvrexvw 3214 . . . 4 (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)))
15 uneq2 4121 . . . . . . 7 (𝑖 = (𝑔 ∪ {𝑦}) → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})))
1615sseq1d 3975 . . . . . 6 (𝑖 = (𝑔 ∪ {𝑦}) → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
1716anbi2d 630 . . . . 5 (𝑖 = (𝑔 ∪ {𝑦}) → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)) ↔ ((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
1817rexbidv 3157 . . . 4 (𝑖 = (𝑔 ∪ {𝑦}) → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
1914, 18bitrid 283 . . 3 (𝑖 = (𝑔 ∪ {𝑦}) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
20 uneq2 4121 . . . . . 6 (𝑖 = (𝐶‘suc 𝑁) → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)))
2120sseq1d 3975 . . . . 5 (𝑖 = (𝐶‘suc 𝑁) → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)))
2221anbi2d 630 . . . 4 (𝑖 = (𝐶‘suc 𝑁) → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))))
2322rexbidv 3157 . . 3 (𝑖 = (𝐶‘suc 𝑁) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))))
24 fveq1 6839 . . . . . 6 (𝑣 = 𝑅 → (𝑣‘0) = (𝑅‘0))
2524eqeq1d 2731 . . . . 5 (𝑣 = 𝑅 → ((𝑣‘0) = ℚ ↔ (𝑅‘0) = ℚ))
26 fveq2 6840 . . . . . 6 (𝑣 = 𝑅 → (lastS‘𝑣) = (lastS‘𝑅))
2726sseq2d 3976 . . . . 5 (𝑣 = 𝑅 → (((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅)))
2825, 27anbi12d 632 . . . 4 (𝑣 = 𝑅 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)) ↔ ((𝑅‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅))))
29 constrextdg2lem.1 . . . 4 (𝜑𝑅 ∈ ( < Chain(SubDRing‘ℂfld)))
30 constrextdg2lem.2 . . . . 5 (𝜑 → (𝑅‘0) = ℚ)
31 un0 4353 . . . . . 6 ((𝐶𝑁) ∪ ∅) = (𝐶𝑁)
32 constrextdg2lem.3 . . . . . 6 (𝜑 → (𝐶𝑁) ⊆ (lastS‘𝑅))
3331, 32eqsstrid 3982 . . . . 5 (𝜑 → ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅))
3430, 33jca 511 . . . 4 (𝜑 → ((𝑅‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅)))
3528, 29, 34rspcedvdw 3588 . . 3 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)))
36 fveq1 6839 . . . . . . . . . 10 (𝑢 = 𝑣 → (𝑢‘0) = (𝑣‘0))
3736eqeq1d 2731 . . . . . . . . 9 (𝑢 = 𝑣 → ((𝑢‘0) = ℚ ↔ (𝑣‘0) = ℚ))
38 fveq2 6840 . . . . . . . . . 10 (𝑢 = 𝑣 → (lastS‘𝑢) = (lastS‘𝑣))
3938sseq2d 3976 . . . . . . . . 9 (𝑢 = 𝑣 → (((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣)))
4037, 39anbi12d 632 . . . . . . . 8 (𝑢 = 𝑣 → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣))))
41 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
4241adantr 480 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
43 simpllr 775 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝑣‘0) = ℚ)
44 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
4544unssad 4152 . . . . . . . . . . 11 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (𝐶𝑁) ⊆ (lastS‘𝑣))
4645adantr 480 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝐶𝑁) ⊆ (lastS‘𝑣))
47 simplr 768 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
4847unssbd 4153 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑔 ⊆ (lastS‘𝑣))
49 simpr 484 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑦 ∈ (lastS‘𝑣))
5049snssd 4769 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → {𝑦} ⊆ (lastS‘𝑣))
5148, 50unssd 4151 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝑔 ∪ {𝑦}) ⊆ (lastS‘𝑣))
5246, 51unssd 4151 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣))
5343, 52jca 511 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣)))
5440, 42, 53rspcedvdw 3588 . . . . . . 7 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
55 fveq1 6839 . . . . . . . . . 10 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (𝑢‘0) = ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0))
5655eqeq1d 2731 . . . . . . . . 9 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → ((𝑢‘0) = ℚ ↔ ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ))
57 fveq2 6840 . . . . . . . . . 10 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (lastS‘𝑢) = (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))
5857sseq2d 3976 . . . . . . . . 9 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩))))
5956, 58anbi12d 632 . . . . . . . 8 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)) ↔ (((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))))
60 cnfldbas 21300 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
61 cndrng 21340 . . . . . . . . . . 11 fld ∈ DivRing
6261a1i 11 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ℂfld ∈ DivRing)
6341chnwrd 32979 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ∈ Word (SubDRing‘ℂfld))
64 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → 𝑣 = ∅)
6564fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) = (lastS‘∅))
66 lsw0g 14507 . . . . . . . . . . . . . . . . . . 19 (lastS‘∅) = ∅
6765, 66eqtrdi 2780 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) = ∅)
68 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
69 ssun1 4137 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶𝑁) ⊆ ((𝐶𝑁) ∪ 𝑔)
70 constr0.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
71 constrextdg2.n . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ω)
72 nnon 7828 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ω → 𝑁 ∈ On)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑁 ∈ On)
7470, 73constr01 33725 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {0, 1} ⊆ (𝐶𝑁))
75 c0ex 11144 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ V
7675prnz 4737 . . . . . . . . . . . . . . . . . . . . . . 23 {0, 1} ≠ ∅
77 ssn0 4363 . . . . . . . . . . . . . . . . . . . . . . 23 (({0, 1} ⊆ (𝐶𝑁) ∧ {0, 1} ≠ ∅) → (𝐶𝑁) ≠ ∅)
7874, 76, 77sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐶𝑁) ≠ ∅)
79 ssn0 4363 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶𝑁) ⊆ ((𝐶𝑁) ∪ 𝑔) ∧ (𝐶𝑁) ≠ ∅) → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
8069, 78, 79sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
8180ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
82 ssn0 4363 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣) ∧ ((𝐶𝑁) ∪ 𝑔) ≠ ∅) → (lastS‘𝑣) ≠ ∅)
8368, 81, 82syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) ≠ ∅)
8483neneqd 2930 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ¬ (lastS‘𝑣) = ∅)
8567, 84pm2.65da 816 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ¬ 𝑣 = ∅)
8685neqned 2932 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ≠ ∅)
8786ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) → 𝑣 ≠ ∅)
8887an62ds 32431 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ≠ ∅)
89 lswcl 14509 . . . . . . . . . . . . . 14 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ 𝑣 ≠ ∅) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9063, 88, 89syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9190adantr 480 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9260sdrgss 20713 . . . . . . . . . . . 12 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ⊆ ℂ)
9391, 92syl 17 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ⊆ ℂ)
94 onsuc 7767 . . . . . . . . . . . . . . . 16 (𝑁 ∈ On → suc 𝑁 ∈ On)
9573, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑 → suc 𝑁 ∈ On)
9670, 95constrsscn 33723 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘suc 𝑁) ⊆ ℂ)
9796ad6antr 736 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶‘suc 𝑁) ⊆ ℂ)
98 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔))
9998eldifad 3923 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑦 ∈ (𝐶‘suc 𝑁))
10099adantr 480 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑦 ∈ (𝐶‘suc 𝑁))
10197, 100sseldd 3944 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑦 ∈ ℂ)
102101snssd 4769 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → {𝑦} ⊆ ℂ)
10393, 102unssd 4151 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((lastS‘𝑣) ∪ {𝑦}) ⊆ ℂ)
10460, 62, 103fldgensdrg 33280 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ (SubDRing‘ℂfld))
10541adantr 480 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
10691elexd 3468 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ∈ V)
107104elexd 3468 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V)
108 eqid 2729 . . . . . . . . . . . 12 (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣))
109 eqid 2729 . . . . . . . . . . . 12 (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
110 cnfldfld 33307 . . . . . . . . . . . . 13 fld ∈ Field
111110a1i 11 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ℂfld ∈ Field)
11260, 108, 109, 111, 91, 102fldgenfldext 33656 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)))
113 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)
114 constrextdg2.1 . . . . . . . . . . . . . . . 16 𝐸 = (ℂflds 𝑒)
115 constrextdg2.2 . . . . . . . . . . . . . . . 16 𝐹 = (ℂflds 𝑓)
116114, 115breq12i 5111 . . . . . . . . . . . . . . 15 (𝐸/FldExt𝐹 ↔ (ℂflds 𝑒)/FldExt(ℂflds 𝑓))
117 oveq2 7377 . . . . . . . . . . . . . . . . 17 (𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) → (ℂflds 𝑒) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
118117adantl 481 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (ℂflds 𝑒) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
119 oveq2 7377 . . . . . . . . . . . . . . . . 17 (𝑓 = (lastS‘𝑣) → (ℂflds 𝑓) = (ℂflds (lastS‘𝑣)))
120119adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (ℂflds 𝑓) = (ℂflds (lastS‘𝑣)))
121118, 120breq12d 5115 . . . . . . . . . . . . . . 15 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((ℂflds 𝑒)/FldExt(ℂflds 𝑓) ↔ (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣))))
122116, 121bitrid 283 . . . . . . . . . . . . . 14 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (𝐸/FldExt𝐹 ↔ (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣))))
123114, 115oveq12i 7381 . . . . . . . . . . . . . . . 16 (𝐸[:]𝐹) = ((ℂflds 𝑒)[:](ℂflds 𝑓))
124118, 120oveq12d 7387 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((ℂflds 𝑒)[:](ℂflds 𝑓)) = ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))))
125123, 124eqtrid 2776 . . . . . . . . . . . . . . 15 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (𝐸[:]𝐹) = ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))))
126125eqeq1d 2731 . . . . . . . . . . . . . 14 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((𝐸[:]𝐹) = 2 ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2))
127122, 126anbi12d 632 . . . . . . . . . . . . 13 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2) ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)))
128 constrextdg2.l . . . . . . . . . . . . 13 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
129127, 128brabga 5489 . . . . . . . . . . . 12 (((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V) → ((lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)))
130129biimpar 477 . . . . . . . . . . 11 ((((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)) → (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
131106, 107, 112, 113, 130syl22anc 838 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
132131olcd 874 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣 = ∅ ∨ (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
133104, 105, 132chnccats1 32987 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) ∈ ( < Chain(SubDRing‘ℂfld)))
13463adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑣 ∈ Word (SubDRing‘ℂfld))
135104s1cld 14544 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩ ∈ Word (SubDRing‘ℂfld))
136 hashgt0 14329 . . . . . . . . . . . . 13 ((𝑣 ∈ ( < Chain(SubDRing‘ℂfld)) ∧ 𝑣 ≠ ∅) → 0 < (♯‘𝑣))
13741, 88, 136syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 0 < (♯‘𝑣))
138137adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 0 < (♯‘𝑣))
139 ccatfv0 14524 . . . . . . . . . . 11 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩ ∈ Word (SubDRing‘ℂfld) ∧ 0 < (♯‘𝑣)) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = (𝑣‘0))
140134, 135, 138, 139syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = (𝑣‘0))
141 simpllr 775 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣‘0) = ℚ)
142140, 141eqtrd 2764 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ)
14345adantr 480 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶𝑁) ⊆ (lastS‘𝑣))
144 ssun3 4139 . . . . . . . . . . . . 13 ((𝐶𝑁) ⊆ (lastS‘𝑣) → (𝐶𝑁) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
145143, 144syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶𝑁) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
146 simplr 768 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
147146unssbd 4153 . . . . . . . . . . . . . 14 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑔 ⊆ (lastS‘𝑣))
148 ssun3 4139 . . . . . . . . . . . . . 14 (𝑔 ⊆ (lastS‘𝑣) → 𝑔 ⊆ ((lastS‘𝑣) ∪ {𝑦}))
149147, 148syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑔 ⊆ ((lastS‘𝑣) ∪ {𝑦}))
150 ssun2 4138 . . . . . . . . . . . . . 14 {𝑦} ⊆ ((lastS‘𝑣) ∪ {𝑦})
151150a1i 11 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → {𝑦} ⊆ ((lastS‘𝑣) ∪ {𝑦}))
152149, 151unssd 4151 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑔 ∪ {𝑦}) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
153145, 152unssd 4151 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
15460, 62, 103fldgenssid 33279 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((lastS‘𝑣) ∪ {𝑦}) ⊆ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
155153, 154sstrd 3954 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
156 lswccats1 14575 . . . . . . . . . . 11 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ (SubDRing‘ℂfld)) → (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)) = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
157134, 104, 156syl2anc 584 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)) = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
158155, 157sseqtrrd 3981 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))
159142, 158jca 511 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩))))
16059, 133, 159rspcedvdw 3588 . . . . . . 7 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
16173ad5antr 734 . . . . . . . 8 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑁 ∈ On)
16270, 108, 109, 90, 161, 45, 99constrelextdg2 33730 . . . . . . 7 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (𝑦 ∈ (lastS‘𝑣) ∨ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2))
16354, 160, 162mpjaodan 960 . . . . . 6 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
164163anasss 466 . . . . 5 (((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
165164rexlimdva2 3136 . . . 4 (((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
166165anasss 466 . . 3 ((𝜑 ∧ (𝑔 ⊆ (𝐶‘suc 𝑁) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔))) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
167 peano2 7846 . . . . 5 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
16871, 167syl 17 . . . 4 (𝜑 → suc 𝑁 ∈ ω)
16970, 168constrfin 33729 . . 3 (𝜑 → (𝐶‘suc 𝑁) ∈ Fin)
1704, 8, 19, 23, 35, 166, 169findcard2d 9107 . 2 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)))
171 simpr 484 . . . . . 6 (((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))
172171unssbd 4153 . . . . 5 (((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))
173172ex 412 . . . 4 ((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) → (((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣) → (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
174173anim2d 612 . . 3 ((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))))
175174reximdva 3146 . 2 (𝜑 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))))
176170, 175mpd 15 1 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  cun 3909  wss 3911  c0 4292  {csn 4585  {cpr 4587   class class class wbr 5102  {copab 5164  cmpt 5183  Oncon0 6320  suc csuc 6322  cfv 6499  (class class class)co 7369  ωcom 7822  reccrdg 8354  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381  2c2 12217  cq 12883  chash 14271  Word cword 14454  lastSclsw 14503   ++ cconcat 14511  ⟨“cs1 14536  ccj 15038  cim 15040  abscabs 15176  s cress 17176  DivRingcdr 20649  Fieldcfield 20650  SubDRingcsdrg 20706  fldccnfld 21296  Chaincchn 32976   fldGen cfldgen 33276  /FldExtcfldext 33627  [:]cextdg 33629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-r1 9693  df-rank 9694  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ocomp 17217  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-imas 17447  df-qus 17448  df-mre 17523  df-mrc 17524  df-mri 17525  df-acs 17526  df-proset 18235  df-drs 18236  df-poset 18254  df-ipo 18469  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-nsg 19038  df-eqg 19039  df-ghm 19127  df-gim 19173  df-cntz 19231  df-oppg 19260  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-irred 20279  df-invr 20308  df-dvr 20321  df-rhm 20392  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-idom 20616  df-drng 20651  df-field 20652  df-sdrg 20707  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lmhm 20961  df-lmim 20962  df-lmic 20963  df-lbs 21014  df-lvec 21042  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-2idl 21192  df-lpidl 21264  df-lpir 21265  df-pid 21279  df-cnfld 21297  df-dsmm 21674  df-frlm 21689  df-uvc 21725  df-lindf 21748  df-linds 21749  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-evl 22015  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-evls1 22235  df-evl1 22236  df-mdeg 25993  df-deg1 25994  df-mon1 26069  df-uc1p 26070  df-q1p 26071  df-r1p 26072  df-ig1p 26073  df-chn 32977  df-fldgen 33277  df-mxidl 33424  df-dim 33588  df-fldext 33630  df-extdg 33631  df-irng 33672  df-minply 33683
This theorem is referenced by:  constrextdg2  33732
  Copyright terms: Public domain W3C validator