Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrextdg2lem Structured version   Visualization version   GIF version

Theorem constrextdg2lem 33728
Description: Lemma for constrextdg2 33729 (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
constrextdg2lem.1 (𝜑𝑅 ∈ ( < Chain(SubDRing‘ℂfld)))
constrextdg2lem.2 (𝜑 → (𝑅‘0) = ℚ)
constrextdg2lem.3 (𝜑 → (𝐶𝑁) ⊆ (lastS‘𝑅))
Assertion
Ref Expression
constrextdg2lem (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑁,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑣,𝑅   𝜑,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrextdg2lem
Dummy variables 𝑔 𝑦 𝑖 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 4137 . . . . . 6 (𝑖 = ∅ → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ ∅))
21sseq1d 3990 . . . . 5 (𝑖 = ∅ → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)))
32anbi2d 630 . . . 4 (𝑖 = ∅ → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣))))
43rexbidv 3164 . . 3 (𝑖 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣))))
5 uneq2 4137 . . . . . 6 (𝑖 = 𝑔 → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ 𝑔))
65sseq1d 3990 . . . . 5 (𝑖 = 𝑔 → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)))
76anbi2d 630 . . . 4 (𝑖 = 𝑔 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))))
87rexbidv 3164 . . 3 (𝑖 = 𝑔 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))))
9 fveq1 6874 . . . . . . 7 (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0))
109eqeq1d 2737 . . . . . 6 (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ))
11 fveq2 6875 . . . . . . 7 (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢))
1211sseq2d 3991 . . . . . 6 (𝑣 = 𝑢 → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)))
1310, 12anbi12d 632 . . . . 5 (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢))))
1413cbvrexvw 3221 . . . 4 (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)))
15 uneq2 4137 . . . . . . 7 (𝑖 = (𝑔 ∪ {𝑦}) → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})))
1615sseq1d 3990 . . . . . 6 (𝑖 = (𝑔 ∪ {𝑦}) → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
1716anbi2d 630 . . . . 5 (𝑖 = (𝑔 ∪ {𝑦}) → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)) ↔ ((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
1817rexbidv 3164 . . . 4 (𝑖 = (𝑔 ∪ {𝑦}) → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
1914, 18bitrid 283 . . 3 (𝑖 = (𝑔 ∪ {𝑦}) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
20 uneq2 4137 . . . . . 6 (𝑖 = (𝐶‘suc 𝑁) → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)))
2120sseq1d 3990 . . . . 5 (𝑖 = (𝐶‘suc 𝑁) → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)))
2221anbi2d 630 . . . 4 (𝑖 = (𝐶‘suc 𝑁) → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))))
2322rexbidv 3164 . . 3 (𝑖 = (𝐶‘suc 𝑁) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))))
24 fveq1 6874 . . . . . 6 (𝑣 = 𝑅 → (𝑣‘0) = (𝑅‘0))
2524eqeq1d 2737 . . . . 5 (𝑣 = 𝑅 → ((𝑣‘0) = ℚ ↔ (𝑅‘0) = ℚ))
26 fveq2 6875 . . . . . 6 (𝑣 = 𝑅 → (lastS‘𝑣) = (lastS‘𝑅))
2726sseq2d 3991 . . . . 5 (𝑣 = 𝑅 → (((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅)))
2825, 27anbi12d 632 . . . 4 (𝑣 = 𝑅 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)) ↔ ((𝑅‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅))))
29 constrextdg2lem.1 . . . 4 (𝜑𝑅 ∈ ( < Chain(SubDRing‘ℂfld)))
30 constrextdg2lem.2 . . . . 5 (𝜑 → (𝑅‘0) = ℚ)
31 un0 4369 . . . . . 6 ((𝐶𝑁) ∪ ∅) = (𝐶𝑁)
32 constrextdg2lem.3 . . . . . 6 (𝜑 → (𝐶𝑁) ⊆ (lastS‘𝑅))
3331, 32eqsstrid 3997 . . . . 5 (𝜑 → ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅))
3430, 33jca 511 . . . 4 (𝜑 → ((𝑅‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅)))
3528, 29, 34rspcedvdw 3604 . . 3 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)))
36 fveq1 6874 . . . . . . . . . 10 (𝑢 = 𝑣 → (𝑢‘0) = (𝑣‘0))
3736eqeq1d 2737 . . . . . . . . 9 (𝑢 = 𝑣 → ((𝑢‘0) = ℚ ↔ (𝑣‘0) = ℚ))
38 fveq2 6875 . . . . . . . . . 10 (𝑢 = 𝑣 → (lastS‘𝑢) = (lastS‘𝑣))
3938sseq2d 3991 . . . . . . . . 9 (𝑢 = 𝑣 → (((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣)))
4037, 39anbi12d 632 . . . . . . . 8 (𝑢 = 𝑣 → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣))))
41 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
4241adantr 480 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
43 simpllr 775 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝑣‘0) = ℚ)
44 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
4544unssad 4168 . . . . . . . . . . 11 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (𝐶𝑁) ⊆ (lastS‘𝑣))
4645adantr 480 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝐶𝑁) ⊆ (lastS‘𝑣))
47 simplr 768 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
4847unssbd 4169 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑔 ⊆ (lastS‘𝑣))
49 simpr 484 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑦 ∈ (lastS‘𝑣))
5049snssd 4785 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → {𝑦} ⊆ (lastS‘𝑣))
5148, 50unssd 4167 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝑔 ∪ {𝑦}) ⊆ (lastS‘𝑣))
5246, 51unssd 4167 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣))
5343, 52jca 511 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣)))
5440, 42, 53rspcedvdw 3604 . . . . . . 7 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
55 fveq1 6874 . . . . . . . . . 10 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (𝑢‘0) = ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0))
5655eqeq1d 2737 . . . . . . . . 9 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → ((𝑢‘0) = ℚ ↔ ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ))
57 fveq2 6875 . . . . . . . . . 10 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (lastS‘𝑢) = (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))
5857sseq2d 3991 . . . . . . . . 9 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩))))
5956, 58anbi12d 632 . . . . . . . 8 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)) ↔ (((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))))
60 cnfldbas 21317 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
61 cndrng 21359 . . . . . . . . . . 11 fld ∈ DivRing
6261a1i 11 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ℂfld ∈ DivRing)
6341chnwrd 32933 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ∈ Word (SubDRing‘ℂfld))
64 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → 𝑣 = ∅)
6564fveq2d 6879 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) = (lastS‘∅))
66 lsw0g 14582 . . . . . . . . . . . . . . . . . . 19 (lastS‘∅) = ∅
6765, 66eqtrdi 2786 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) = ∅)
68 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
69 ssun1 4153 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶𝑁) ⊆ ((𝐶𝑁) ∪ 𝑔)
70 constr0.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
71 constrextdg2.n . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ω)
72 nnon 7865 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ω → 𝑁 ∈ On)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑁 ∈ On)
7470, 73constr01 33722 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {0, 1} ⊆ (𝐶𝑁))
75 c0ex 11227 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ V
7675prnz 4753 . . . . . . . . . . . . . . . . . . . . . . 23 {0, 1} ≠ ∅
77 ssn0 4379 . . . . . . . . . . . . . . . . . . . . . . 23 (({0, 1} ⊆ (𝐶𝑁) ∧ {0, 1} ≠ ∅) → (𝐶𝑁) ≠ ∅)
7874, 76, 77sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐶𝑁) ≠ ∅)
79 ssn0 4379 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶𝑁) ⊆ ((𝐶𝑁) ∪ 𝑔) ∧ (𝐶𝑁) ≠ ∅) → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
8069, 78, 79sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
8180ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
82 ssn0 4379 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣) ∧ ((𝐶𝑁) ∪ 𝑔) ≠ ∅) → (lastS‘𝑣) ≠ ∅)
8368, 81, 82syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) ≠ ∅)
8483neneqd 2937 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ¬ (lastS‘𝑣) = ∅)
8567, 84pm2.65da 816 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ¬ 𝑣 = ∅)
8685neqned 2939 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ≠ ∅)
8786ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) → 𝑣 ≠ ∅)
8887an62ds 32379 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ≠ ∅)
89 lswcl 14584 . . . . . . . . . . . . . 14 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ 𝑣 ≠ ∅) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9063, 88, 89syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9190adantr 480 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9260sdrgss 20751 . . . . . . . . . . . 12 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ⊆ ℂ)
9391, 92syl 17 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ⊆ ℂ)
94 onsuc 7803 . . . . . . . . . . . . . . . 16 (𝑁 ∈ On → suc 𝑁 ∈ On)
9573, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑 → suc 𝑁 ∈ On)
9670, 95constrsscn 33720 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘suc 𝑁) ⊆ ℂ)
9796ad6antr 736 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶‘suc 𝑁) ⊆ ℂ)
98 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔))
9998eldifad 3938 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑦 ∈ (𝐶‘suc 𝑁))
10099adantr 480 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑦 ∈ (𝐶‘suc 𝑁))
10197, 100sseldd 3959 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑦 ∈ ℂ)
102101snssd 4785 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → {𝑦} ⊆ ℂ)
10393, 102unssd 4167 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((lastS‘𝑣) ∪ {𝑦}) ⊆ ℂ)
10460, 62, 103fldgensdrg 33254 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ (SubDRing‘ℂfld))
10541adantr 480 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
10691elexd 3483 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ∈ V)
107104elexd 3483 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V)
108 eqid 2735 . . . . . . . . . . . 12 (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣))
109 eqid 2735 . . . . . . . . . . . 12 (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
110 cnfldfld 33304 . . . . . . . . . . . . 13 fld ∈ Field
111110a1i 11 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ℂfld ∈ Field)
11260, 108, 109, 111, 91, 102fldgenfldext 33655 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)))
113 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)
114 constrextdg2.1 . . . . . . . . . . . . . . . 16 𝐸 = (ℂflds 𝑒)
115 constrextdg2.2 . . . . . . . . . . . . . . . 16 𝐹 = (ℂflds 𝑓)
116114, 115breq12i 5128 . . . . . . . . . . . . . . 15 (𝐸/FldExt𝐹 ↔ (ℂflds 𝑒)/FldExt(ℂflds 𝑓))
117 oveq2 7411 . . . . . . . . . . . . . . . . 17 (𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) → (ℂflds 𝑒) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
118117adantl 481 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (ℂflds 𝑒) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
119 oveq2 7411 . . . . . . . . . . . . . . . . 17 (𝑓 = (lastS‘𝑣) → (ℂflds 𝑓) = (ℂflds (lastS‘𝑣)))
120119adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (ℂflds 𝑓) = (ℂflds (lastS‘𝑣)))
121118, 120breq12d 5132 . . . . . . . . . . . . . . 15 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((ℂflds 𝑒)/FldExt(ℂflds 𝑓) ↔ (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣))))
122116, 121bitrid 283 . . . . . . . . . . . . . 14 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (𝐸/FldExt𝐹 ↔ (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣))))
123114, 115oveq12i 7415 . . . . . . . . . . . . . . . 16 (𝐸[:]𝐹) = ((ℂflds 𝑒)[:](ℂflds 𝑓))
124118, 120oveq12d 7421 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((ℂflds 𝑒)[:](ℂflds 𝑓)) = ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))))
125123, 124eqtrid 2782 . . . . . . . . . . . . . . 15 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (𝐸[:]𝐹) = ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))))
126125eqeq1d 2737 . . . . . . . . . . . . . 14 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((𝐸[:]𝐹) = 2 ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2))
127122, 126anbi12d 632 . . . . . . . . . . . . 13 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2) ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)))
128 constrextdg2.l . . . . . . . . . . . . 13 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
129127, 128brabga 5509 . . . . . . . . . . . 12 (((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V) → ((lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)))
130129biimpar 477 . . . . . . . . . . 11 ((((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)) → (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
131106, 107, 112, 113, 130syl22anc 838 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
132131olcd 874 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣 = ∅ ∨ (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
133104, 105, 132chnccats1 32941 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) ∈ ( < Chain(SubDRing‘ℂfld)))
13463adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑣 ∈ Word (SubDRing‘ℂfld))
135104s1cld 14619 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩ ∈ Word (SubDRing‘ℂfld))
136 hashgt0 14404 . . . . . . . . . . . . 13 ((𝑣 ∈ ( < Chain(SubDRing‘ℂfld)) ∧ 𝑣 ≠ ∅) → 0 < (♯‘𝑣))
13741, 88, 136syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 0 < (♯‘𝑣))
138137adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 0 < (♯‘𝑣))
139 ccatfv0 14599 . . . . . . . . . . 11 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩ ∈ Word (SubDRing‘ℂfld) ∧ 0 < (♯‘𝑣)) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = (𝑣‘0))
140134, 135, 138, 139syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = (𝑣‘0))
141 simpllr 775 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣‘0) = ℚ)
142140, 141eqtrd 2770 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ)
14345adantr 480 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶𝑁) ⊆ (lastS‘𝑣))
144 ssun3 4155 . . . . . . . . . . . . 13 ((𝐶𝑁) ⊆ (lastS‘𝑣) → (𝐶𝑁) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
145143, 144syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶𝑁) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
146 simplr 768 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
147146unssbd 4169 . . . . . . . . . . . . . 14 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑔 ⊆ (lastS‘𝑣))
148 ssun3 4155 . . . . . . . . . . . . . 14 (𝑔 ⊆ (lastS‘𝑣) → 𝑔 ⊆ ((lastS‘𝑣) ∪ {𝑦}))
149147, 148syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑔 ⊆ ((lastS‘𝑣) ∪ {𝑦}))
150 ssun2 4154 . . . . . . . . . . . . . 14 {𝑦} ⊆ ((lastS‘𝑣) ∪ {𝑦})
151150a1i 11 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → {𝑦} ⊆ ((lastS‘𝑣) ∪ {𝑦}))
152149, 151unssd 4167 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑔 ∪ {𝑦}) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
153145, 152unssd 4167 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
15460, 62, 103fldgenssid 33253 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((lastS‘𝑣) ∪ {𝑦}) ⊆ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
155153, 154sstrd 3969 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
156 lswccats1 14650 . . . . . . . . . . 11 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ (SubDRing‘ℂfld)) → (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)) = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
157134, 104, 156syl2anc 584 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)) = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
158155, 157sseqtrrd 3996 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))
159142, 158jca 511 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩))))
16059, 133, 159rspcedvdw 3604 . . . . . . 7 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
16173ad5antr 734 . . . . . . . 8 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑁 ∈ On)
16270, 108, 109, 90, 161, 45, 99constrelextdg2 33727 . . . . . . 7 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (𝑦 ∈ (lastS‘𝑣) ∨ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2))
16354, 160, 162mpjaodan 960 . . . . . 6 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
164163anasss 466 . . . . 5 (((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
165164rexlimdva2 3143 . . . 4 (((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
166165anasss 466 . . 3 ((𝜑 ∧ (𝑔 ⊆ (𝐶‘suc 𝑁) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔))) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
167 peano2 7884 . . . . 5 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
16871, 167syl 17 . . . 4 (𝜑 → suc 𝑁 ∈ ω)
16970, 168constrfin 33726 . . 3 (𝜑 → (𝐶‘suc 𝑁) ∈ Fin)
1704, 8, 19, 23, 35, 166, 169findcard2d 9178 . 2 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)))
171 simpr 484 . . . . . 6 (((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))
172171unssbd 4169 . . . . 5 (((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))
173172ex 412 . . . 4 ((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) → (((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣) → (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
174173anim2d 612 . . 3 ((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))))
175174reximdva 3153 . 2 (𝜑 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))))
176170, 175mpd 15 1 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  {crab 3415  Vcvv 3459  cdif 3923  cun 3924  wss 3926  c0 4308  {csn 4601  {cpr 4603   class class class wbr 5119  {copab 5181  cmpt 5201  Oncon0 6352  suc csuc 6354  cfv 6530  (class class class)co 7403  ωcom 7859  reccrdg 8421  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cmin 11464  2c2 12293  cq 12962  chash 14346  Word cword 14529  lastSclsw 14578   ++ cconcat 14586  ⟨“cs1 14611  ccj 15113  cim 15115  abscabs 15251  s cress 17249  DivRingcdr 20687  Fieldcfield 20688  SubDRingcsdrg 20744  fldccnfld 21313  Chaincchn 32930   fldGen cfldgen 33250  /FldExtcfldext 33624  [:]cextdg 33627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-reg 9604  ax-inf2 9653  ax-ac2 10475  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-rpss 7715  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-inf 9453  df-oi 9522  df-r1 9776  df-rank 9777  df-dju 9913  df-card 9951  df-acn 9954  df-ac 10128  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-rp 13007  df-ico 13366  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-word 14530  df-lsw 14579  df-concat 14587  df-s1 14612  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ocomp 17290  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-imas 17520  df-qus 17521  df-mre 17596  df-mrc 17597  df-mri 17598  df-acs 17599  df-proset 18304  df-drs 18305  df-poset 18323  df-ipo 18536  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-nsg 19105  df-eqg 19106  df-ghm 19194  df-gim 19240  df-cntz 19298  df-oppg 19327  df-lsm 19615  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-irred 20317  df-invr 20346  df-dvr 20359  df-rhm 20430  df-nzr 20471  df-subrng 20504  df-subrg 20528  df-rlreg 20652  df-domn 20653  df-idom 20654  df-drng 20689  df-field 20690  df-sdrg 20745  df-lmod 20817  df-lss 20887  df-lsp 20927  df-lmhm 20978  df-lmim 20979  df-lmic 20980  df-lbs 21031  df-lvec 21059  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-rsp 21168  df-2idl 21209  df-lpidl 21281  df-lpir 21282  df-pid 21296  df-cnfld 21314  df-dsmm 21690  df-frlm 21705  df-uvc 21741  df-lindf 21764  df-linds 21765  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-evls1 22251  df-evl1 22252  df-mdeg 26010  df-deg1 26011  df-mon1 26086  df-uc1p 26087  df-q1p 26088  df-r1p 26089  df-ig1p 26090  df-chn 32931  df-fldgen 33251  df-mxidl 33421  df-dim 33585  df-fldext 33628  df-extdg 33629  df-irng 33671  df-minply 33680
This theorem is referenced by:  constrextdg2  33729
  Copyright terms: Public domain W3C validator