Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrextdg2lem Structured version   Visualization version   GIF version

Theorem constrextdg2lem 33789
Description: Lemma for constrextdg2 33790 (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
constrextdg2lem.1 (𝜑𝑅 ∈ ( < Chain(SubDRing‘ℂfld)))
constrextdg2lem.2 (𝜑 → (𝑅‘0) = ℚ)
constrextdg2lem.3 (𝜑 → (𝐶𝑁) ⊆ (lastS‘𝑅))
Assertion
Ref Expression
constrextdg2lem (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑁,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥   𝑣,𝑅   𝜑,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑠,𝑡,𝑣,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑣,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrextdg2lem
Dummy variables 𝑔 𝑦 𝑖 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 4162 . . . . . 6 (𝑖 = ∅ → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ ∅))
21sseq1d 4015 . . . . 5 (𝑖 = ∅ → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)))
32anbi2d 630 . . . 4 (𝑖 = ∅ → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣))))
43rexbidv 3179 . . 3 (𝑖 = ∅ → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣))))
5 uneq2 4162 . . . . . 6 (𝑖 = 𝑔 → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ 𝑔))
65sseq1d 4015 . . . . 5 (𝑖 = 𝑔 → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)))
76anbi2d 630 . . . 4 (𝑖 = 𝑔 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))))
87rexbidv 3179 . . 3 (𝑖 = 𝑔 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))))
9 fveq1 6905 . . . . . . 7 (𝑣 = 𝑢 → (𝑣‘0) = (𝑢‘0))
109eqeq1d 2739 . . . . . 6 (𝑣 = 𝑢 → ((𝑣‘0) = ℚ ↔ (𝑢‘0) = ℚ))
11 fveq2 6906 . . . . . . 7 (𝑣 = 𝑢 → (lastS‘𝑣) = (lastS‘𝑢))
1211sseq2d 4016 . . . . . 6 (𝑣 = 𝑢 → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)))
1310, 12anbi12d 632 . . . . 5 (𝑣 = 𝑢 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢))))
1413cbvrexvw 3238 . . . 4 (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)))
15 uneq2 4162 . . . . . . 7 (𝑖 = (𝑔 ∪ {𝑦}) → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})))
1615sseq1d 4015 . . . . . 6 (𝑖 = (𝑔 ∪ {𝑦}) → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
1716anbi2d 630 . . . . 5 (𝑖 = (𝑔 ∪ {𝑦}) → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)) ↔ ((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
1817rexbidv 3179 . . . 4 (𝑖 = (𝑔 ∪ {𝑦}) → (∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑢)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
1914, 18bitrid 283 . . 3 (𝑖 = (𝑔 ∪ {𝑦}) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
20 uneq2 4162 . . . . . 6 (𝑖 = (𝐶‘suc 𝑁) → ((𝐶𝑁) ∪ 𝑖) = ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)))
2120sseq1d 4015 . . . . 5 (𝑖 = (𝐶‘suc 𝑁) → (((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)))
2221anbi2d 630 . . . 4 (𝑖 = (𝐶‘suc 𝑁) → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))))
2322rexbidv 3179 . . 3 (𝑖 = (𝐶‘suc 𝑁) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑖) ⊆ (lastS‘𝑣)) ↔ ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))))
24 fveq1 6905 . . . . . 6 (𝑣 = 𝑅 → (𝑣‘0) = (𝑅‘0))
2524eqeq1d 2739 . . . . 5 (𝑣 = 𝑅 → ((𝑣‘0) = ℚ ↔ (𝑅‘0) = ℚ))
26 fveq2 6906 . . . . . 6 (𝑣 = 𝑅 → (lastS‘𝑣) = (lastS‘𝑅))
2726sseq2d 4016 . . . . 5 (𝑣 = 𝑅 → (((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣) ↔ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅)))
2825, 27anbi12d 632 . . . 4 (𝑣 = 𝑅 → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)) ↔ ((𝑅‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅))))
29 constrextdg2lem.1 . . . 4 (𝜑𝑅 ∈ ( < Chain(SubDRing‘ℂfld)))
30 constrextdg2lem.2 . . . . 5 (𝜑 → (𝑅‘0) = ℚ)
31 un0 4394 . . . . . 6 ((𝐶𝑁) ∪ ∅) = (𝐶𝑁)
32 constrextdg2lem.3 . . . . . 6 (𝜑 → (𝐶𝑁) ⊆ (lastS‘𝑅))
3331, 32eqsstrid 4022 . . . . 5 (𝜑 → ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅))
3430, 33jca 511 . . . 4 (𝜑 → ((𝑅‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑅)))
3528, 29, 34rspcedvdw 3625 . . 3 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ ∅) ⊆ (lastS‘𝑣)))
36 fveq1 6905 . . . . . . . . . 10 (𝑢 = 𝑣 → (𝑢‘0) = (𝑣‘0))
3736eqeq1d 2739 . . . . . . . . 9 (𝑢 = 𝑣 → ((𝑢‘0) = ℚ ↔ (𝑣‘0) = ℚ))
38 fveq2 6906 . . . . . . . . . 10 (𝑢 = 𝑣 → (lastS‘𝑢) = (lastS‘𝑣))
3938sseq2d 4016 . . . . . . . . 9 (𝑢 = 𝑣 → (((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣)))
4037, 39anbi12d 632 . . . . . . . 8 (𝑢 = 𝑣 → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)) ↔ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣))))
41 simpllr 776 . . . . . . . . 9 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
4241adantr 480 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
43 simpllr 776 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝑣‘0) = ℚ)
44 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
4544unssad 4193 . . . . . . . . . . 11 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (𝐶𝑁) ⊆ (lastS‘𝑣))
4645adantr 480 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝐶𝑁) ⊆ (lastS‘𝑣))
47 simplr 769 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
4847unssbd 4194 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑔 ⊆ (lastS‘𝑣))
49 simpr 484 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → 𝑦 ∈ (lastS‘𝑣))
5049snssd 4809 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → {𝑦} ⊆ (lastS‘𝑣))
5148, 50unssd 4192 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → (𝑔 ∪ {𝑦}) ⊆ (lastS‘𝑣))
5246, 51unssd 4192 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣))
5343, 52jca 511 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑣)))
5440, 42, 53rspcedvdw 3625 . . . . . . 7 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
55 fveq1 6905 . . . . . . . . . 10 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (𝑢‘0) = ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0))
5655eqeq1d 2739 . . . . . . . . 9 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → ((𝑢‘0) = ℚ ↔ ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ))
57 fveq2 6906 . . . . . . . . . 10 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (lastS‘𝑢) = (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))
5857sseq2d 4016 . . . . . . . . 9 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢) ↔ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩))))
5956, 58anbi12d 632 . . . . . . . 8 (𝑢 = (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) → (((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)) ↔ (((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))))
60 cnfldbas 21368 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
61 cndrng 21411 . . . . . . . . . . 11 fld ∈ DivRing
6261a1i 11 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ℂfld ∈ DivRing)
6341chnwrd 32997 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ∈ Word (SubDRing‘ℂfld))
64 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → 𝑣 = ∅)
6564fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) = (lastS‘∅))
66 lsw0g 14604 . . . . . . . . . . . . . . . . . . 19 (lastS‘∅) = ∅
6765, 66eqtrdi 2793 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) = ∅)
68 simplr 769 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
69 ssun1 4178 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶𝑁) ⊆ ((𝐶𝑁) ∪ 𝑔)
70 constr0.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
71 constrextdg2.n . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ω)
72 nnon 7893 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ω → 𝑁 ∈ On)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑁 ∈ On)
7470, 73constr01 33783 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {0, 1} ⊆ (𝐶𝑁))
75 c0ex 11255 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ V
7675prnz 4777 . . . . . . . . . . . . . . . . . . . . . . 23 {0, 1} ≠ ∅
77 ssn0 4404 . . . . . . . . . . . . . . . . . . . . . . 23 (({0, 1} ⊆ (𝐶𝑁) ∧ {0, 1} ≠ ∅) → (𝐶𝑁) ≠ ∅)
7874, 76, 77sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐶𝑁) ≠ ∅)
79 ssn0 4404 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶𝑁) ⊆ ((𝐶𝑁) ∪ 𝑔) ∧ (𝐶𝑁) ≠ ∅) → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
8069, 78, 79sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
8180ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ((𝐶𝑁) ∪ 𝑔) ≠ ∅)
82 ssn0 4404 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣) ∧ ((𝐶𝑁) ∪ 𝑔) ≠ ∅) → (lastS‘𝑣) ≠ ∅)
8368, 81, 82syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → (lastS‘𝑣) ≠ ∅)
8483neneqd 2945 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑣 = ∅) → ¬ (lastS‘𝑣) = ∅)
8567, 84pm2.65da 817 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ¬ 𝑣 = ∅)
8685neqned 2947 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ≠ ∅)
8786ad4antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ 𝑔 ⊆ (𝐶‘suc 𝑁)) → 𝑣 ≠ ∅)
8887an62ds 32471 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑣 ≠ ∅)
89 lswcl 14606 . . . . . . . . . . . . . 14 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ 𝑣 ≠ ∅) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9063, 88, 89syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9190adantr 480 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9260sdrgss 20794 . . . . . . . . . . . 12 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ⊆ ℂ)
9391, 92syl 17 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ⊆ ℂ)
94 onsuc 7831 . . . . . . . . . . . . . . . 16 (𝑁 ∈ On → suc 𝑁 ∈ On)
9573, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑 → suc 𝑁 ∈ On)
9670, 95constrsscn 33781 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘suc 𝑁) ⊆ ℂ)
9796ad6antr 736 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶‘suc 𝑁) ⊆ ℂ)
98 simp-4r 784 . . . . . . . . . . . . . . 15 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔))
9998eldifad 3963 . . . . . . . . . . . . . 14 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑦 ∈ (𝐶‘suc 𝑁))
10099adantr 480 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑦 ∈ (𝐶‘suc 𝑁))
10197, 100sseldd 3984 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑦 ∈ ℂ)
102101snssd 4809 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → {𝑦} ⊆ ℂ)
10393, 102unssd 4192 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((lastS‘𝑣) ∪ {𝑦}) ⊆ ℂ)
10460, 62, 103fldgensdrg 33316 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ (SubDRing‘ℂfld))
10541adantr 480 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
10691elexd 3504 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) ∈ V)
107104elexd 3504 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V)
108 eqid 2737 . . . . . . . . . . . 12 (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣))
109 eqid 2737 . . . . . . . . . . . 12 (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
110 cnfldfld 33371 . . . . . . . . . . . . 13 fld ∈ Field
111110a1i 11 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ℂfld ∈ Field)
11260, 108, 109, 111, 91, 102fldgenfldext 33718 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)))
113 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)
114 constrextdg2.1 . . . . . . . . . . . . . . . 16 𝐸 = (ℂflds 𝑒)
115 constrextdg2.2 . . . . . . . . . . . . . . . 16 𝐹 = (ℂflds 𝑓)
116114, 115breq12i 5152 . . . . . . . . . . . . . . 15 (𝐸/FldExt𝐹 ↔ (ℂflds 𝑒)/FldExt(ℂflds 𝑓))
117 oveq2 7439 . . . . . . . . . . . . . . . . 17 (𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) → (ℂflds 𝑒) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
118117adantl 481 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (ℂflds 𝑒) = (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
119 oveq2 7439 . . . . . . . . . . . . . . . . 17 (𝑓 = (lastS‘𝑣) → (ℂflds 𝑓) = (ℂflds (lastS‘𝑣)))
120119adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (ℂflds 𝑓) = (ℂflds (lastS‘𝑣)))
121118, 120breq12d 5156 . . . . . . . . . . . . . . 15 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((ℂflds 𝑒)/FldExt(ℂflds 𝑓) ↔ (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣))))
122116, 121bitrid 283 . . . . . . . . . . . . . 14 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (𝐸/FldExt𝐹 ↔ (ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣))))
123114, 115oveq12i 7443 . . . . . . . . . . . . . . . 16 (𝐸[:]𝐹) = ((ℂflds 𝑒)[:](ℂflds 𝑓))
124118, 120oveq12d 7449 . . . . . . . . . . . . . . . 16 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((ℂflds 𝑒)[:](ℂflds 𝑓)) = ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))))
125123, 124eqtrid 2789 . . . . . . . . . . . . . . 15 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → (𝐸[:]𝐹) = ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))))
126125eqeq1d 2739 . . . . . . . . . . . . . 14 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((𝐸[:]𝐹) = 2 ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2))
127122, 126anbi12d 632 . . . . . . . . . . . . 13 ((𝑓 = (lastS‘𝑣) ∧ 𝑒 = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))) → ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2) ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)))
128 constrextdg2.l . . . . . . . . . . . . 13 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
129127, 128brabga 5539 . . . . . . . . . . . 12 (((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V) → ((lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ↔ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)))
130129biimpar 477 . . . . . . . . . . 11 ((((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ V) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))/FldExt(ℂflds (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2)) → (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
131106, 107, 112, 113, 130syl22anc 839 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
132131olcd 875 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣 = ∅ ∨ (lastS‘𝑣) < (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))))
133104, 105, 132chnccats1 33005 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩) ∈ ( < Chain(SubDRing‘ℂfld)))
13463adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑣 ∈ Word (SubDRing‘ℂfld))
135104s1cld 14641 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩ ∈ Word (SubDRing‘ℂfld))
136 hashgt0 14427 . . . . . . . . . . . . 13 ((𝑣 ∈ ( < Chain(SubDRing‘ℂfld)) ∧ 𝑣 ≠ ∅) → 0 < (♯‘𝑣))
13741, 88, 136syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 0 < (♯‘𝑣))
138137adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 0 < (♯‘𝑣))
139 ccatfv0 14621 . . . . . . . . . . 11 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩ ∈ Word (SubDRing‘ℂfld) ∧ 0 < (♯‘𝑣)) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = (𝑣‘0))
140134, 135, 138, 139syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = (𝑣‘0))
141 simpllr 776 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑣‘0) = ℚ)
142140, 141eqtrd 2777 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ)
14345adantr 480 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶𝑁) ⊆ (lastS‘𝑣))
144 ssun3 4180 . . . . . . . . . . . . 13 ((𝐶𝑁) ⊆ (lastS‘𝑣) → (𝐶𝑁) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
145143, 144syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝐶𝑁) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
146 simplr 769 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))
147146unssbd 4194 . . . . . . . . . . . . . 14 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑔 ⊆ (lastS‘𝑣))
148 ssun3 4180 . . . . . . . . . . . . . 14 (𝑔 ⊆ (lastS‘𝑣) → 𝑔 ⊆ ((lastS‘𝑣) ∪ {𝑦}))
149147, 148syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → 𝑔 ⊆ ((lastS‘𝑣) ∪ {𝑦}))
150 ssun2 4179 . . . . . . . . . . . . . 14 {𝑦} ⊆ ((lastS‘𝑣) ∪ {𝑦})
151150a1i 11 . . . . . . . . . . . . 13 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → {𝑦} ⊆ ((lastS‘𝑣) ∪ {𝑦}))
152149, 151unssd 4192 . . . . . . . . . . . 12 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (𝑔 ∪ {𝑦}) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
153145, 152unssd 4192 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ ((lastS‘𝑣) ∪ {𝑦}))
15460, 62, 103fldgenssid 33315 . . . . . . . . . . 11 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((lastS‘𝑣) ∪ {𝑦}) ⊆ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
155153, 154sstrd 3994 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
156 lswccats1 14672 . . . . . . . . . . 11 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})) ∈ (SubDRing‘ℂfld)) → (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)) = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
157134, 104, 156syl2anc 584 . . . . . . . . . 10 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)) = (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))
158155, 157sseqtrrd 4021 . . . . . . . . 9 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)))
159142, 158jca 511 . . . . . . . 8 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → (((𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩)‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘(𝑣 ++ ⟨“(ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦}))”⟩))))
16059, 133, 159rspcedvdw 3625 . . . . . . 7 (((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) ∧ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
16173ad5antr 734 . . . . . . . 8 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → 𝑁 ∈ On)
16270, 108, 109, 90, 161, 45, 99constrelextdg2 33788 . . . . . . 7 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → (𝑦 ∈ (lastS‘𝑣) ∨ ((ℂflds (ℂfld fldGen ((lastS‘𝑣) ∪ {𝑦})))[:](ℂflds (lastS‘𝑣))) = 2))
16354, 160, 162mpjaodan 961 . . . . . 6 ((((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ (𝑣‘0) = ℚ) ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
164163anasss 466 . . . . 5 (((((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣))) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢)))
165164rexlimdva2 3157 . . . 4 (((𝜑𝑔 ⊆ (𝐶‘suc 𝑁)) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔)) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
166165anasss 466 . . 3 ((𝜑 ∧ (𝑔 ⊆ (𝐶‘suc 𝑁) ∧ 𝑦 ∈ ((𝐶‘suc 𝑁) ∖ 𝑔))) → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ 𝑔) ⊆ (lastS‘𝑣)) → ∃𝑢 ∈ ( < Chain(SubDRing‘ℂfld))((𝑢‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝑔 ∪ {𝑦})) ⊆ (lastS‘𝑢))))
167 peano2 7912 . . . . 5 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
16871, 167syl 17 . . . 4 (𝜑 → suc 𝑁 ∈ ω)
16970, 168constrfin 33787 . . 3 (𝜑 → (𝐶‘suc 𝑁) ∈ Fin)
1704, 8, 19, 23, 35, 166, 169findcard2d 9206 . 2 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)))
171 simpr 484 . . . . . 6 (((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣))
172171unssbd 4194 . . . . 5 (((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))
173172ex 412 . . . 4 ((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) → (((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣) → (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
174173anim2d 612 . . 3 ((𝜑𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) → (((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))))
175174reximdva 3168 . 2 (𝜑 → (∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ ((𝐶𝑁) ∪ (𝐶‘suc 𝑁)) ⊆ (lastS‘𝑣)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣))))
176170, 175mpd 15 1 (𝜑 → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘suc 𝑁) ⊆ (lastS‘𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  Vcvv 3480  cdif 3948  cun 3949  wss 3951  c0 4333  {csn 4626  {cpr 4628   class class class wbr 5143  {copab 5205  cmpt 5225  Oncon0 6384  suc csuc 6386  cfv 6561  (class class class)co 7431  ωcom 7887  reccrdg 8449  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cmin 11492  2c2 12321  cq 12990  chash 14369  Word cword 14552  lastSclsw 14600   ++ cconcat 14608  ⟨“cs1 14633  ccj 15135  cim 15137  abscabs 15273  s cress 17274  DivRingcdr 20729  Fieldcfield 20730  SubDRingcsdrg 20787  fldccnfld 21364  Chaincchn 32994   fldGen cfldgen 33312  /FldExtcfldext 33689  [:]cextdg 33692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-rpss 7743  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-r1 9804  df-rank 9805  df-dju 9941  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ocomp 17318  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-imas 17553  df-qus 17554  df-mre 17629  df-mrc 17630  df-mri 17631  df-acs 17632  df-proset 18340  df-drs 18341  df-poset 18359  df-ipo 18573  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231  df-gim 19277  df-cntz 19335  df-oppg 19364  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-irred 20359  df-invr 20388  df-dvr 20401  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-idom 20696  df-drng 20731  df-field 20732  df-sdrg 20788  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lmhm 21021  df-lmim 21022  df-lmic 21023  df-lbs 21074  df-lvec 21102  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-lpidl 21332  df-lpir 21333  df-pid 21347  df-cnfld 21365  df-dsmm 21752  df-frlm 21767  df-uvc 21803  df-lindf 21826  df-linds 21827  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evls1 22319  df-evl1 22320  df-mdeg 26094  df-deg1 26095  df-mon1 26170  df-uc1p 26171  df-q1p 26172  df-r1p 26173  df-ig1p 26174  df-chn 32995  df-fldgen 33313  df-mxidl 33488  df-dim 33650  df-fldext 33693  df-extdg 33694  df-irng 33734  df-minply 33743
This theorem is referenced by:  constrextdg2  33790
  Copyright terms: Public domain W3C validator