Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfufd2lem Structured version   Visualization version   GIF version

Theorem dfufd2lem 33523
Description: Lemma for dfufd2 33524. (Contributed by Thierry Arnoux, 6-Jun-2025.)
Hypotheses
Ref Expression
dfufd2.b 𝐵 = (Base‘𝑅)
dfufd2.0 0 = (0g𝑅)
dfufd2.u 𝑈 = (Unit‘𝑅)
dfufd2.p 𝑃 = (RPrime‘𝑅)
dfufd2.m 𝑀 = (mulGrp‘𝑅)
dfufd2lem.1 (𝜑𝑅 ∈ IDomn)
dfufd2lem.2 (𝜑𝐼 ∈ (PrmIdeal‘𝑅))
dfufd2lem.3 (𝜑𝐹 ∈ Word 𝑃)
dfufd2lem.4 (𝜑 → (𝑀 Σg 𝐹) ∈ 𝐼)
dfufd2lem.5 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )
Assertion
Ref Expression
dfufd2lem (𝜑 → (𝐼𝑃) ≠ ∅)

Proof of Theorem dfufd2lem
Dummy variables 𝑓 𝑔 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (𝐹𝑖) ∈ 𝐼)
2 eqidd 2734 . . . . 5 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (♯‘𝐹) = (♯‘𝐹))
3 dfufd2lem.3 . . . . . 6 (𝜑𝐹 ∈ Word 𝑃)
43ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → 𝐹 ∈ Word 𝑃)
52, 4wrdfd 14430 . . . 4 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → 𝐹:(0..^(♯‘𝐹))⟶𝑃)
6 simplr 768 . . . 4 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → 𝑖 ∈ (0..^(♯‘𝐹)))
75, 6ffvelcdmd 7026 . . 3 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (𝐹𝑖) ∈ 𝑃)
8 inelcm 4414 . . 3 (((𝐹𝑖) ∈ 𝐼 ∧ (𝐹𝑖) ∈ 𝑃) → (𝐼𝑃) ≠ ∅)
91, 7, 8syl2anc 584 . 2 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (𝐼𝑃) ≠ ∅)
10 id 22 . . 3 (𝜑𝜑)
11 dfufd2lem.4 . . 3 (𝜑 → (𝑀 Σg 𝐹) ∈ 𝐼)
12 dfufd2lem.5 . . 3 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )
13 oveq2 7362 . . . . . . . 8 (𝑔 = ∅ → (𝑀 Σg 𝑔) = (𝑀 Σg ∅))
1413eleq1d 2818 . . . . . . 7 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg ∅) ∈ 𝐼))
1513neeq1d 2988 . . . . . . 7 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg ∅) ≠ 0 ))
1614, 153anbi23d 1441 . . . . . 6 (𝑔 = ∅ → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼 ∧ (𝑀 Σg ∅) ≠ 0 )))
17 fveq2 6830 . . . . . . . 8 (𝑔 = ∅ → (♯‘𝑔) = (♯‘∅))
1817oveq2d 7370 . . . . . . 7 (𝑔 = ∅ → (0..^(♯‘𝑔)) = (0..^(♯‘∅)))
19 fveq1 6829 . . . . . . . 8 (𝑔 = ∅ → (𝑔𝑖) = (∅‘𝑖))
2019eleq1d 2818 . . . . . . 7 (𝑔 = ∅ → ((𝑔𝑖) ∈ 𝐼 ↔ (∅‘𝑖) ∈ 𝐼))
2118, 20rexeqbidv 3314 . . . . . 6 (𝑔 = ∅ → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼))
2216, 21imbi12d 344 . . . . 5 (𝑔 = ∅ → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼 ∧ (𝑀 Σg ∅) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼)))
23 oveq2 7362 . . . . . . . 8 (𝑔 = 𝑓 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝑓))
2423eleq1d 2818 . . . . . . 7 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg 𝑓) ∈ 𝐼))
2523neeq1d 2988 . . . . . . 7 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝑓) ≠ 0 ))
2624, 253anbi23d 1441 . . . . . 6 (𝑔 = 𝑓 → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 )))
27 fveq2 6830 . . . . . . . 8 (𝑔 = 𝑓 → (♯‘𝑔) = (♯‘𝑓))
2827oveq2d 7370 . . . . . . 7 (𝑔 = 𝑓 → (0..^(♯‘𝑔)) = (0..^(♯‘𝑓)))
29 fveq1 6829 . . . . . . . 8 (𝑔 = 𝑓 → (𝑔𝑖) = (𝑓𝑖))
3029eleq1d 2818 . . . . . . 7 (𝑔 = 𝑓 → ((𝑔𝑖) ∈ 𝐼 ↔ (𝑓𝑖) ∈ 𝐼))
3128, 30rexeqbidv 3314 . . . . . 6 (𝑔 = 𝑓 → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼))
3226, 31imbi12d 344 . . . . 5 (𝑔 = 𝑓 → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)))
33 oveq2 7362 . . . . . . . 8 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (𝑀 Σg 𝑔) = (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)))
3433eleq1d 2818 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼))
3533neeq1d 2988 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ))
3634, 353anbi23d 1441 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 )))
37 fveq2 6830 . . . . . . . 8 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (♯‘𝑔) = (♯‘(𝑓 ++ ⟨“𝑝”⟩)))
3837oveq2d 7370 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (0..^(♯‘𝑔)) = (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))))
39 fveq1 6829 . . . . . . . 8 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (𝑔𝑖) = ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖))
4039eleq1d 2818 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝑔𝑖) ∈ 𝐼 ↔ ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
4138, 40rexeqbidv 3314 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
4236, 41imbi12d 344 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)))
43 oveq2 7362 . . . . . . . 8 (𝑔 = 𝐹 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝐹))
4443eleq1d 2818 . . . . . . 7 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg 𝐹) ∈ 𝐼))
4543neeq1d 2988 . . . . . . 7 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝐹) ≠ 0 ))
4644, 453anbi23d 1441 . . . . . 6 (𝑔 = 𝐹 → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 )))
47 fveq2 6830 . . . . . . . 8 (𝑔 = 𝐹 → (♯‘𝑔) = (♯‘𝐹))
4847oveq2d 7370 . . . . . . 7 (𝑔 = 𝐹 → (0..^(♯‘𝑔)) = (0..^(♯‘𝐹)))
49 fveq1 6829 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔𝑖) = (𝐹𝑖))
5049eleq1d 2818 . . . . . . 7 (𝑔 = 𝐹 → ((𝑔𝑖) ∈ 𝐼 ↔ (𝐹𝑖) ∈ 𝐼))
5148, 50rexeqbidv 3314 . . . . . 6 (𝑔 = 𝐹 → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼))
5246, 51imbi12d 344 . . . . 5 (𝑔 = 𝐹 → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼)))
53 dfufd2.b . . . . . . . 8 𝐵 = (Base‘𝑅)
54 dfufd2.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
55 dfufd2lem.1 . . . . . . . . . . 11 (𝜑𝑅 ∈ IDomn)
5655idomringd 20647 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
57 eqid 2733 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
5854, 571unit 20296 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
5956, 58syl 17 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ 𝑈)
6059ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → (1r𝑅) ∈ 𝑈)
61 dfufd2.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
6261, 57ringidval 20105 . . . . . . . . . 10 (1r𝑅) = (0g𝑀)
6362gsum0 18596 . . . . . . . . 9 (𝑀 Σg ∅) = (1r𝑅)
64 simplr 768 . . . . . . . . 9 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → (𝑀 Σg ∅) ∈ 𝐼)
6563, 64eqeltrrid 2838 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → (1r𝑅) ∈ 𝐼)
6656ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝑅 ∈ Ring)
67 dfufd2lem.2 . . . . . . . . . 10 (𝜑𝐼 ∈ (PrmIdeal‘𝑅))
6867ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼 ∈ (PrmIdeal‘𝑅))
69 prmidlidl 33418 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
7066, 68, 69syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼 ∈ (LIdeal‘𝑅))
7153, 54, 60, 65, 66, 70lidlunitel 33397 . . . . . . 7 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼 = 𝐵)
72 eqid 2733 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
7353, 72prmidlnr 33413 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼𝐵)
7466, 68, 73syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼𝐵)
7571, 74pm2.21ddne 3013 . . . . . 6 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼)
76753impa 1109 . . . . 5 ((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼 ∧ (𝑀 Σg ∅) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼)
77 simpllr 775 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝜑)
78 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg 𝑓) ∈ 𝐼)
79 dfufd2.0 . . . . . . . . . . . . . 14 0 = (0g𝑅)
8055idomdomd 20645 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Domn)
8180ad3antlr 731 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑅 ∈ Domn)
82 dfufd2.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (RPrime‘𝑅)
8355adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝𝑃) → 𝑅 ∈ IDomn)
84 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝𝑃) → 𝑝𝑃)
8553, 82, 83, 84rprmcl 33492 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝𝑃) → 𝑝𝐵)
8682, 79, 83, 84rprmnz 33494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝𝑃) → 𝑝0 )
8785, 86eldifsnd 4740 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝𝑃) → 𝑝 ∈ (𝐵 ∖ { 0 }))
8887ex 412 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑝𝑃𝑝 ∈ (𝐵 ∖ { 0 })))
8988ssrdv 3936 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ⊆ (𝐵 ∖ { 0 }))
90 sswrd 14433 . . . . . . . . . . . . . . . . 17 (𝑃 ⊆ (𝐵 ∖ { 0 }) → Word 𝑃 ⊆ Word (𝐵 ∖ { 0 }))
9189, 90syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → Word 𝑃 ⊆ Word (𝐵 ∖ { 0 }))
9291ad3antlr 731 . . . . . . . . . . . . . . 15 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → Word 𝑃 ⊆ Word (𝐵 ∖ { 0 }))
93 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑓 ∈ Word 𝑃)
9493ad5ant13 756 . . . . . . . . . . . . . . 15 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑓 ∈ Word 𝑃)
9592, 94sseldd 3931 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑓 ∈ Word (𝐵 ∖ { 0 }))
9653, 61, 79, 81, 95domnprodn0 33251 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg 𝑓) ≠ 0 )
9777, 78, 963jca 1128 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ))
98 lencl 14444 . . . . . . . . . . . . . . 15 (𝑓 ∈ Word 𝑃 → (♯‘𝑓) ∈ ℕ0)
99 fzossfzop1 13647 . . . . . . . . . . . . . . 15 ((♯‘𝑓) ∈ ℕ0 → (0..^(♯‘𝑓)) ⊆ (0..^((♯‘𝑓) + 1)))
10094, 98, 993syl 18 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘𝑓)) ⊆ (0..^((♯‘𝑓) + 1)))
101 ccatws1len 14532 . . . . . . . . . . . . . . . 16 (𝑓 ∈ Word 𝑃 → (♯‘(𝑓 ++ ⟨“𝑝”⟩)) = ((♯‘𝑓) + 1))
10294, 101syl 17 . . . . . . . . . . . . . . 15 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘(𝑓 ++ ⟨“𝑝”⟩)) = ((♯‘𝑓) + 1))
103102oveq2d 7370 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))) = (0..^((♯‘𝑓) + 1)))
104100, 103sseqtrrd 3968 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘𝑓)) ⊆ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))))
10594ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → 𝑓 ∈ Word 𝑃)
106 simplr 768 . . . . . . . . . . . . . . . . 17 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → 𝑖 ∈ (0..^(♯‘𝑓)))
107 ccats1val1 14538 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ Word 𝑃𝑖 ∈ (0..^(♯‘𝑓))) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) = (𝑓𝑖))
108105, 106, 107syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) = (𝑓𝑖))
109 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → (𝑓𝑖) ∈ 𝐼)
110108, 109eqeltrd 2833 . . . . . . . . . . . . . . 15 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
111110ex 412 . . . . . . . . . . . . . 14 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) → ((𝑓𝑖) ∈ 𝐼 → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
112111reximdva 3146 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼 → ∃𝑖 ∈ (0..^(♯‘𝑓))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
113 ssrexv 4000 . . . . . . . . . . . . 13 ((0..^(♯‘𝑓)) ⊆ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))) → (∃𝑖 ∈ (0..^(♯‘𝑓))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼 → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
114104, 112, 113sylsyld 61 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼 → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
11597, 114embantd 59 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
116115imp 406 . . . . . . . . . 10 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
117116an62ds 32435 . . . . . . . . 9 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
118 fveq2 6830 . . . . . . . . . . . . 13 (𝑖 = (♯‘𝑓) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) = ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)))
119118eleq1d 2818 . . . . . . . . . . . 12 (𝑖 = (♯‘𝑓) → (((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼 ↔ ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) ∈ 𝐼))
12098ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘𝑓) ∈ ℕ0)
121 fzonn0p1 13646 . . . . . . . . . . . . . 14 ((♯‘𝑓) ∈ ℕ0 → (♯‘𝑓) ∈ (0..^((♯‘𝑓) + 1)))
122120, 121syl 17 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘𝑓) ∈ (0..^((♯‘𝑓) + 1)))
123101ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘(𝑓 ++ ⟨“𝑝”⟩)) = ((♯‘𝑓) + 1))
124123oveq2d 7370 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))) = (0..^((♯‘𝑓) + 1)))
125122, 124eleqtrrd 2836 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘𝑓) ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))))
126 ccatws1ls 14545 . . . . . . . . . . . . . 14 ((𝑓 ∈ Word 𝑃𝑝𝑃) → ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) = 𝑝)
127126ad4antr 732 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) = 𝑝)
128 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑝𝐼)
129127, 128eqeltrd 2833 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) ∈ 𝐼)
130119, 125, 129rspcedvdw 3576 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
131130adantr 480 . . . . . . . . . 10 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
132131an62ds 32435 . . . . . . . . 9 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑝𝐼) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
13355idomcringd 20646 . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
134133ad3antlr 731 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑅 ∈ CRing)
13567ad3antlr 731 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝐼 ∈ (PrmIdeal‘𝑅))
13661, 53mgpbas 20067 . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
13761crngmgp 20163 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
138133, 137syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ CMnd)
139138adantl 481 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑀 ∈ CMnd)
140 ovexd 7389 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (0..^(♯‘𝑓)) ∈ V)
141 eqidd 2734 . . . . . . . . . . . . . 14 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (♯‘𝑓) = (♯‘𝑓))
142 simplll 774 . . . . . . . . . . . . . 14 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓 ∈ Word 𝑃)
143141, 142wrdfd 14430 . . . . . . . . . . . . 13 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓:(0..^(♯‘𝑓))⟶𝑃)
14485ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑝𝑃𝑝𝐵))
145144ssrdv 3936 . . . . . . . . . . . . . 14 (𝜑𝑃𝐵)
146145adantl 481 . . . . . . . . . . . . 13 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑃𝐵)
147143, 146fssd 6675 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓:(0..^(♯‘𝑓))⟶𝐵)
148 fvexd 6845 . . . . . . . . . . . . 13 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (1r𝑅) ∈ V)
149148, 142wrdfsupp 32927 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓 finSupp (1r𝑅))
150136, 62, 139, 140, 147, 149gsumcl 19831 . . . . . . . . . . 11 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (𝑀 Σg 𝑓) ∈ 𝐵)
151150ad2antrr 726 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg 𝑓) ∈ 𝐵)
152145adantl 481 . . . . . . . . . . . 12 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑃𝐵)
153 simplr 768 . . . . . . . . . . . 12 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑝𝑃)
154152, 153sseldd 3931 . . . . . . . . . . 11 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑝𝐵)
155154ad5ant13 756 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑝𝐵)
156138cmnmndd 19720 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Mnd)
157156adantl 481 . . . . . . . . . . . . 13 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑀 ∈ Mnd)
158 sswrd 14433 . . . . . . . . . . . . . . . 16 (𝑃𝐵 → Word 𝑃 ⊆ Word 𝐵)
159145, 158syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Word 𝑃 ⊆ Word 𝐵)
160159adantl 481 . . . . . . . . . . . . . 14 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → Word 𝑃 ⊆ Word 𝐵)
161160, 93sseldd 3931 . . . . . . . . . . . . 13 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑓 ∈ Word 𝐵)
16261, 72mgpplusg 20066 . . . . . . . . . . . . . 14 (.r𝑅) = (+g𝑀)
163136, 162gsumccatsn 18755 . . . . . . . . . . . . 13 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵𝑝𝐵) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑝))
164157, 161, 154, 163syl3anc 1373 . . . . . . . . . . . 12 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑝))
165164ad5ant13 756 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑝))
166 simplr 768 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼)
167165, 166eqeltrrd 2834 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑀 Σg 𝑓)(.r𝑅)𝑝) ∈ 𝐼)
16853, 72prmidlc 33422 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ ((𝑀 Σg 𝑓) ∈ 𝐵𝑝𝐵 ∧ ((𝑀 Σg 𝑓)(.r𝑅)𝑝) ∈ 𝐼)) → ((𝑀 Σg 𝑓) ∈ 𝐼𝑝𝐼))
169134, 135, 151, 155, 167, 168syl23anc 1379 . . . . . . . . 9 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑀 Σg 𝑓) ∈ 𝐼𝑝𝐼))
170117, 132, 169mpjaodan 960 . . . . . . . 8 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
171170exp41 434 . . . . . . 7 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → (𝜑 → ((𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 → ((𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))))
1721713impd 1349 . . . . . 6 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → ((𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
173172ex 412 . . . . 5 ((𝑓 ∈ Word 𝑃𝑝𝑃) → (((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼) → ((𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)))
17422, 32, 42, 52, 76, 173wrdind 14633 . . . 4 (𝐹 ∈ Word 𝑃 → ((𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼))
175174imp 406 . . 3 ((𝐹 ∈ Word 𝑃 ∧ (𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 )) → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼)
1763, 10, 11, 12, 175syl13anc 1374 . 2 (𝜑 → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼)
1779, 176r19.29a 3141 1 (𝜑 → (𝐼𝑃) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  Vcvv 3437  cdif 3895  cin 3897  wss 3898  c0 4282  {csn 4577  cfv 6488  (class class class)co 7354  0cc0 11015  1c1 11016   + caddc 11018  0cn0 12390  ..^cfzo 13558  chash 14241  Word cword 14424   ++ cconcat 14481  ⟨“cs1 14507  Basecbs 17124  .rcmulr 17166  0gc0g 17347   Σg cgsu 17348  Mndcmnd 18646  CMndccmn 19696  mulGrpcmgp 20062  1rcur 20103  Ringcrg 20155  CRingccrg 20156  Unitcui 20277  RPrimecrpm 20354  Domncdomn 20611  IDomncidom 20612  LIdealclidl 21147  PrmIdealcprmidl 33409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-n0 12391  df-xnn0 12464  df-z 12478  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-word 14425  df-lsw 14474  df-concat 14482  df-s1 14508  df-substr 14553  df-pfx 14583  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-0g 17349  df-gsum 17350  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-subg 19040  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-rprm 20355  df-nzr 20432  df-subrg 20489  df-domn 20614  df-idom 20615  df-lmod 20799  df-lss 20869  df-lsp 20909  df-sra 21111  df-rgmod 21112  df-lidl 21149  df-rsp 21150  df-prmidl 33410
This theorem is referenced by:  dfufd2  33524
  Copyright terms: Public domain W3C validator