Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfufd2lem Structured version   Visualization version   GIF version

Theorem dfufd2lem 33527
Description: Lemma for dfufd2 33528. (Contributed by Thierry Arnoux, 6-Jun-2025.)
Hypotheses
Ref Expression
dfufd2.b 𝐵 = (Base‘𝑅)
dfufd2.0 0 = (0g𝑅)
dfufd2.u 𝑈 = (Unit‘𝑅)
dfufd2.p 𝑃 = (RPrime‘𝑅)
dfufd2.m 𝑀 = (mulGrp‘𝑅)
dfufd2lem.1 (𝜑𝑅 ∈ IDomn)
dfufd2lem.2 (𝜑𝐼 ∈ (PrmIdeal‘𝑅))
dfufd2lem.3 (𝜑𝐹 ∈ Word 𝑃)
dfufd2lem.4 (𝜑 → (𝑀 Σg 𝐹) ∈ 𝐼)
dfufd2lem.5 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )
Assertion
Ref Expression
dfufd2lem (𝜑 → (𝐼𝑃) ≠ ∅)

Proof of Theorem dfufd2lem
Dummy variables 𝑓 𝑔 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (𝐹𝑖) ∈ 𝐼)
2 eqidd 2731 . . . . 5 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (♯‘𝐹) = (♯‘𝐹))
3 dfufd2lem.3 . . . . . 6 (𝜑𝐹 ∈ Word 𝑃)
43ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → 𝐹 ∈ Word 𝑃)
52, 4wrdfd 14491 . . . 4 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → 𝐹:(0..^(♯‘𝐹))⟶𝑃)
6 simplr 768 . . . 4 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → 𝑖 ∈ (0..^(♯‘𝐹)))
75, 6ffvelcdmd 7060 . . 3 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (𝐹𝑖) ∈ 𝑃)
8 inelcm 4431 . . 3 (((𝐹𝑖) ∈ 𝐼 ∧ (𝐹𝑖) ∈ 𝑃) → (𝐼𝑃) ≠ ∅)
91, 7, 8syl2anc 584 . 2 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (𝐼𝑃) ≠ ∅)
10 id 22 . . 3 (𝜑𝜑)
11 dfufd2lem.4 . . 3 (𝜑 → (𝑀 Σg 𝐹) ∈ 𝐼)
12 dfufd2lem.5 . . 3 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )
13 oveq2 7398 . . . . . . . 8 (𝑔 = ∅ → (𝑀 Σg 𝑔) = (𝑀 Σg ∅))
1413eleq1d 2814 . . . . . . 7 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg ∅) ∈ 𝐼))
1513neeq1d 2985 . . . . . . 7 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg ∅) ≠ 0 ))
1614, 153anbi23d 1441 . . . . . 6 (𝑔 = ∅ → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼 ∧ (𝑀 Σg ∅) ≠ 0 )))
17 fveq2 6861 . . . . . . . 8 (𝑔 = ∅ → (♯‘𝑔) = (♯‘∅))
1817oveq2d 7406 . . . . . . 7 (𝑔 = ∅ → (0..^(♯‘𝑔)) = (0..^(♯‘∅)))
19 fveq1 6860 . . . . . . . 8 (𝑔 = ∅ → (𝑔𝑖) = (∅‘𝑖))
2019eleq1d 2814 . . . . . . 7 (𝑔 = ∅ → ((𝑔𝑖) ∈ 𝐼 ↔ (∅‘𝑖) ∈ 𝐼))
2118, 20rexeqbidv 3322 . . . . . 6 (𝑔 = ∅ → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼))
2216, 21imbi12d 344 . . . . 5 (𝑔 = ∅ → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼 ∧ (𝑀 Σg ∅) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼)))
23 oveq2 7398 . . . . . . . 8 (𝑔 = 𝑓 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝑓))
2423eleq1d 2814 . . . . . . 7 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg 𝑓) ∈ 𝐼))
2523neeq1d 2985 . . . . . . 7 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝑓) ≠ 0 ))
2624, 253anbi23d 1441 . . . . . 6 (𝑔 = 𝑓 → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 )))
27 fveq2 6861 . . . . . . . 8 (𝑔 = 𝑓 → (♯‘𝑔) = (♯‘𝑓))
2827oveq2d 7406 . . . . . . 7 (𝑔 = 𝑓 → (0..^(♯‘𝑔)) = (0..^(♯‘𝑓)))
29 fveq1 6860 . . . . . . . 8 (𝑔 = 𝑓 → (𝑔𝑖) = (𝑓𝑖))
3029eleq1d 2814 . . . . . . 7 (𝑔 = 𝑓 → ((𝑔𝑖) ∈ 𝐼 ↔ (𝑓𝑖) ∈ 𝐼))
3128, 30rexeqbidv 3322 . . . . . 6 (𝑔 = 𝑓 → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼))
3226, 31imbi12d 344 . . . . 5 (𝑔 = 𝑓 → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)))
33 oveq2 7398 . . . . . . . 8 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (𝑀 Σg 𝑔) = (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)))
3433eleq1d 2814 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼))
3533neeq1d 2985 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ))
3634, 353anbi23d 1441 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 )))
37 fveq2 6861 . . . . . . . 8 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (♯‘𝑔) = (♯‘(𝑓 ++ ⟨“𝑝”⟩)))
3837oveq2d 7406 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (0..^(♯‘𝑔)) = (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))))
39 fveq1 6860 . . . . . . . 8 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (𝑔𝑖) = ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖))
4039eleq1d 2814 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝑔𝑖) ∈ 𝐼 ↔ ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
4138, 40rexeqbidv 3322 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
4236, 41imbi12d 344 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)))
43 oveq2 7398 . . . . . . . 8 (𝑔 = 𝐹 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝐹))
4443eleq1d 2814 . . . . . . 7 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg 𝐹) ∈ 𝐼))
4543neeq1d 2985 . . . . . . 7 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝐹) ≠ 0 ))
4644, 453anbi23d 1441 . . . . . 6 (𝑔 = 𝐹 → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 )))
47 fveq2 6861 . . . . . . . 8 (𝑔 = 𝐹 → (♯‘𝑔) = (♯‘𝐹))
4847oveq2d 7406 . . . . . . 7 (𝑔 = 𝐹 → (0..^(♯‘𝑔)) = (0..^(♯‘𝐹)))
49 fveq1 6860 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔𝑖) = (𝐹𝑖))
5049eleq1d 2814 . . . . . . 7 (𝑔 = 𝐹 → ((𝑔𝑖) ∈ 𝐼 ↔ (𝐹𝑖) ∈ 𝐼))
5148, 50rexeqbidv 3322 . . . . . 6 (𝑔 = 𝐹 → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼))
5246, 51imbi12d 344 . . . . 5 (𝑔 = 𝐹 → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼)))
53 dfufd2.b . . . . . . . 8 𝐵 = (Base‘𝑅)
54 dfufd2.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
55 dfufd2lem.1 . . . . . . . . . . 11 (𝜑𝑅 ∈ IDomn)
5655idomringd 20644 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
57 eqid 2730 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
5854, 571unit 20290 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
5956, 58syl 17 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ 𝑈)
6059ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → (1r𝑅) ∈ 𝑈)
61 dfufd2.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
6261, 57ringidval 20099 . . . . . . . . . 10 (1r𝑅) = (0g𝑀)
6362gsum0 18618 . . . . . . . . 9 (𝑀 Σg ∅) = (1r𝑅)
64 simplr 768 . . . . . . . . 9 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → (𝑀 Σg ∅) ∈ 𝐼)
6563, 64eqeltrrid 2834 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → (1r𝑅) ∈ 𝐼)
6656ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝑅 ∈ Ring)
67 dfufd2lem.2 . . . . . . . . . 10 (𝜑𝐼 ∈ (PrmIdeal‘𝑅))
6867ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼 ∈ (PrmIdeal‘𝑅))
69 prmidlidl 33422 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
7066, 68, 69syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼 ∈ (LIdeal‘𝑅))
7153, 54, 60, 65, 66, 70lidlunitel 33401 . . . . . . 7 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼 = 𝐵)
72 eqid 2730 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
7353, 72prmidlnr 33417 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼𝐵)
7466, 68, 73syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼𝐵)
7571, 74pm2.21ddne 3010 . . . . . 6 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼)
76753impa 1109 . . . . 5 ((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼 ∧ (𝑀 Σg ∅) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼)
77 simpllr 775 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝜑)
78 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg 𝑓) ∈ 𝐼)
79 dfufd2.0 . . . . . . . . . . . . . 14 0 = (0g𝑅)
8055idomdomd 20642 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Domn)
8180ad3antlr 731 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑅 ∈ Domn)
82 dfufd2.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (RPrime‘𝑅)
8355adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝𝑃) → 𝑅 ∈ IDomn)
84 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝𝑃) → 𝑝𝑃)
8553, 82, 83, 84rprmcl 33496 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝𝑃) → 𝑝𝐵)
8682, 79, 83, 84rprmnz 33498 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝𝑃) → 𝑝0 )
8785, 86eldifsnd 4754 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝𝑃) → 𝑝 ∈ (𝐵 ∖ { 0 }))
8887ex 412 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑝𝑃𝑝 ∈ (𝐵 ∖ { 0 })))
8988ssrdv 3955 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ⊆ (𝐵 ∖ { 0 }))
90 sswrd 14494 . . . . . . . . . . . . . . . . 17 (𝑃 ⊆ (𝐵 ∖ { 0 }) → Word 𝑃 ⊆ Word (𝐵 ∖ { 0 }))
9189, 90syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → Word 𝑃 ⊆ Word (𝐵 ∖ { 0 }))
9291ad3antlr 731 . . . . . . . . . . . . . . 15 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → Word 𝑃 ⊆ Word (𝐵 ∖ { 0 }))
93 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑓 ∈ Word 𝑃)
9493ad5ant13 756 . . . . . . . . . . . . . . 15 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑓 ∈ Word 𝑃)
9592, 94sseldd 3950 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑓 ∈ Word (𝐵 ∖ { 0 }))
9653, 61, 79, 81, 95domnprodn0 33233 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg 𝑓) ≠ 0 )
9777, 78, 963jca 1128 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ))
98 lencl 14505 . . . . . . . . . . . . . . 15 (𝑓 ∈ Word 𝑃 → (♯‘𝑓) ∈ ℕ0)
99 fzossfzop1 13711 . . . . . . . . . . . . . . 15 ((♯‘𝑓) ∈ ℕ0 → (0..^(♯‘𝑓)) ⊆ (0..^((♯‘𝑓) + 1)))
10094, 98, 993syl 18 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘𝑓)) ⊆ (0..^((♯‘𝑓) + 1)))
101 ccatws1len 14592 . . . . . . . . . . . . . . . 16 (𝑓 ∈ Word 𝑃 → (♯‘(𝑓 ++ ⟨“𝑝”⟩)) = ((♯‘𝑓) + 1))
10294, 101syl 17 . . . . . . . . . . . . . . 15 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘(𝑓 ++ ⟨“𝑝”⟩)) = ((♯‘𝑓) + 1))
103102oveq2d 7406 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))) = (0..^((♯‘𝑓) + 1)))
104100, 103sseqtrrd 3987 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘𝑓)) ⊆ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))))
10594ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → 𝑓 ∈ Word 𝑃)
106 simplr 768 . . . . . . . . . . . . . . . . 17 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → 𝑖 ∈ (0..^(♯‘𝑓)))
107 ccats1val1 14598 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ Word 𝑃𝑖 ∈ (0..^(♯‘𝑓))) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) = (𝑓𝑖))
108105, 106, 107syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) = (𝑓𝑖))
109 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → (𝑓𝑖) ∈ 𝐼)
110108, 109eqeltrd 2829 . . . . . . . . . . . . . . 15 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
111110ex 412 . . . . . . . . . . . . . 14 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) → ((𝑓𝑖) ∈ 𝐼 → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
112111reximdva 3147 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼 → ∃𝑖 ∈ (0..^(♯‘𝑓))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
113 ssrexv 4019 . . . . . . . . . . . . 13 ((0..^(♯‘𝑓)) ⊆ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))) → (∃𝑖 ∈ (0..^(♯‘𝑓))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼 → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
114104, 112, 113sylsyld 61 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼 → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
11597, 114embantd 59 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
116115imp 406 . . . . . . . . . 10 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
117116an62ds 32388 . . . . . . . . 9 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
118 fveq2 6861 . . . . . . . . . . . . 13 (𝑖 = (♯‘𝑓) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) = ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)))
119118eleq1d 2814 . . . . . . . . . . . 12 (𝑖 = (♯‘𝑓) → (((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼 ↔ ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) ∈ 𝐼))
12098ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘𝑓) ∈ ℕ0)
121 fzonn0p1 13710 . . . . . . . . . . . . . 14 ((♯‘𝑓) ∈ ℕ0 → (♯‘𝑓) ∈ (0..^((♯‘𝑓) + 1)))
122120, 121syl 17 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘𝑓) ∈ (0..^((♯‘𝑓) + 1)))
123101ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘(𝑓 ++ ⟨“𝑝”⟩)) = ((♯‘𝑓) + 1))
124123oveq2d 7406 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))) = (0..^((♯‘𝑓) + 1)))
125122, 124eleqtrrd 2832 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘𝑓) ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))))
126 ccatws1ls 14605 . . . . . . . . . . . . . 14 ((𝑓 ∈ Word 𝑃𝑝𝑃) → ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) = 𝑝)
127126ad4antr 732 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) = 𝑝)
128 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑝𝐼)
129127, 128eqeltrd 2829 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) ∈ 𝐼)
130119, 125, 129rspcedvdw 3594 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
131130adantr 480 . . . . . . . . . 10 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
132131an62ds 32388 . . . . . . . . 9 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑝𝐼) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
13355idomcringd 20643 . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
134133ad3antlr 731 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑅 ∈ CRing)
13567ad3antlr 731 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝐼 ∈ (PrmIdeal‘𝑅))
13661, 53mgpbas 20061 . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
13761crngmgp 20157 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
138133, 137syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ CMnd)
139138adantl 481 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑀 ∈ CMnd)
140 ovexd 7425 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (0..^(♯‘𝑓)) ∈ V)
141 eqidd 2731 . . . . . . . . . . . . . 14 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (♯‘𝑓) = (♯‘𝑓))
142 simplll 774 . . . . . . . . . . . . . 14 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓 ∈ Word 𝑃)
143141, 142wrdfd 14491 . . . . . . . . . . . . 13 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓:(0..^(♯‘𝑓))⟶𝑃)
14485ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑝𝑃𝑝𝐵))
145144ssrdv 3955 . . . . . . . . . . . . . 14 (𝜑𝑃𝐵)
146145adantl 481 . . . . . . . . . . . . 13 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑃𝐵)
147143, 146fssd 6708 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓:(0..^(♯‘𝑓))⟶𝐵)
148 fvexd 6876 . . . . . . . . . . . . 13 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (1r𝑅) ∈ V)
149148, 142wrdfsupp 32865 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓 finSupp (1r𝑅))
150136, 62, 139, 140, 147, 149gsumcl 19852 . . . . . . . . . . 11 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (𝑀 Σg 𝑓) ∈ 𝐵)
151150ad2antrr 726 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg 𝑓) ∈ 𝐵)
152145adantl 481 . . . . . . . . . . . 12 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑃𝐵)
153 simplr 768 . . . . . . . . . . . 12 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑝𝑃)
154152, 153sseldd 3950 . . . . . . . . . . 11 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑝𝐵)
155154ad5ant13 756 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑝𝐵)
156138cmnmndd 19741 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Mnd)
157156adantl 481 . . . . . . . . . . . . 13 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑀 ∈ Mnd)
158 sswrd 14494 . . . . . . . . . . . . . . . 16 (𝑃𝐵 → Word 𝑃 ⊆ Word 𝐵)
159145, 158syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Word 𝑃 ⊆ Word 𝐵)
160159adantl 481 . . . . . . . . . . . . . 14 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → Word 𝑃 ⊆ Word 𝐵)
161160, 93sseldd 3950 . . . . . . . . . . . . 13 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑓 ∈ Word 𝐵)
16261, 72mgpplusg 20060 . . . . . . . . . . . . . 14 (.r𝑅) = (+g𝑀)
163136, 162gsumccatsn 18777 . . . . . . . . . . . . 13 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵𝑝𝐵) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑝))
164157, 161, 154, 163syl3anc 1373 . . . . . . . . . . . 12 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑝))
165164ad5ant13 756 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑝))
166 simplr 768 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼)
167165, 166eqeltrrd 2830 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑀 Σg 𝑓)(.r𝑅)𝑝) ∈ 𝐼)
16853, 72prmidlc 33426 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ ((𝑀 Σg 𝑓) ∈ 𝐵𝑝𝐵 ∧ ((𝑀 Σg 𝑓)(.r𝑅)𝑝) ∈ 𝐼)) → ((𝑀 Σg 𝑓) ∈ 𝐼𝑝𝐼))
169134, 135, 151, 155, 167, 168syl23anc 1379 . . . . . . . . 9 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑀 Σg 𝑓) ∈ 𝐼𝑝𝐼))
170117, 132, 169mpjaodan 960 . . . . . . . 8 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
171170exp41 434 . . . . . . 7 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → (𝜑 → ((𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 → ((𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))))
1721713impd 1349 . . . . . 6 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → ((𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
173172ex 412 . . . . 5 ((𝑓 ∈ Word 𝑃𝑝𝑃) → (((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼) → ((𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)))
17422, 32, 42, 52, 76, 173wrdind 14694 . . . 4 (𝐹 ∈ Word 𝑃 → ((𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼))
175174imp 406 . . 3 ((𝐹 ∈ Word 𝑃 ∧ (𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 )) → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼)
1763, 10, 11, 12, 175syl13anc 1374 . 2 (𝜑 → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼)
1779, 176r19.29a 3142 1 (𝜑 → (𝐼𝑃) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  cdif 3914  cin 3916  wss 3917  c0 4299  {csn 4592  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  0cn0 12449  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542  ⟨“cs1 14567  Basecbs 17186  .rcmulr 17228  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  CMndccmn 19717  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150  Unitcui 20271  RPrimecrpm 20348  Domncdomn 20608  IDomncidom 20609  LIdealclidl 21123  PrmIdealcprmidl 33413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rprm 20349  df-nzr 20429  df-subrg 20486  df-domn 20611  df-idom 20612  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-prmidl 33414
This theorem is referenced by:  dfufd2  33528
  Copyright terms: Public domain W3C validator