Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfufd2lem Structured version   Visualization version   GIF version

Theorem dfufd2lem 33577
Description: Lemma for dfufd2 33578. (Contributed by Thierry Arnoux, 6-Jun-2025.)
Hypotheses
Ref Expression
dfufd2.b 𝐵 = (Base‘𝑅)
dfufd2.0 0 = (0g𝑅)
dfufd2.u 𝑈 = (Unit‘𝑅)
dfufd2.p 𝑃 = (RPrime‘𝑅)
dfufd2.m 𝑀 = (mulGrp‘𝑅)
dfufd2lem.1 (𝜑𝑅 ∈ IDomn)
dfufd2lem.2 (𝜑𝐼 ∈ (PrmIdeal‘𝑅))
dfufd2lem.3 (𝜑𝐹 ∈ Word 𝑃)
dfufd2lem.4 (𝜑 → (𝑀 Σg 𝐹) ∈ 𝐼)
dfufd2lem.5 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )
Assertion
Ref Expression
dfufd2lem (𝜑 → (𝐼𝑃) ≠ ∅)

Proof of Theorem dfufd2lem
Dummy variables 𝑓 𝑔 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (𝐹𝑖) ∈ 𝐼)
2 eqidd 2738 . . . . 5 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (♯‘𝐹) = (♯‘𝐹))
3 dfufd2lem.3 . . . . . 6 (𝜑𝐹 ∈ Word 𝑃)
43ad2antrr 726 . . . . 5 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → 𝐹 ∈ Word 𝑃)
52, 4wrdfd 32918 . . . 4 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → 𝐹:(0..^(♯‘𝐹))⟶𝑃)
6 simplr 769 . . . 4 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → 𝑖 ∈ (0..^(♯‘𝐹)))
75, 6ffvelcdmd 7105 . . 3 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (𝐹𝑖) ∈ 𝑃)
8 inelcm 4465 . . 3 (((𝐹𝑖) ∈ 𝐼 ∧ (𝐹𝑖) ∈ 𝑃) → (𝐼𝑃) ≠ ∅)
91, 7, 8syl2anc 584 . 2 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐹𝑖) ∈ 𝐼) → (𝐼𝑃) ≠ ∅)
10 id 22 . . 3 (𝜑𝜑)
11 dfufd2lem.4 . . 3 (𝜑 → (𝑀 Σg 𝐹) ∈ 𝐼)
12 dfufd2lem.5 . . 3 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )
13 oveq2 7439 . . . . . . . 8 (𝑔 = ∅ → (𝑀 Σg 𝑔) = (𝑀 Σg ∅))
1413eleq1d 2826 . . . . . . 7 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg ∅) ∈ 𝐼))
1513neeq1d 3000 . . . . . . 7 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg ∅) ≠ 0 ))
1614, 153anbi23d 1441 . . . . . 6 (𝑔 = ∅ → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼 ∧ (𝑀 Σg ∅) ≠ 0 )))
17 fveq2 6906 . . . . . . . 8 (𝑔 = ∅ → (♯‘𝑔) = (♯‘∅))
1817oveq2d 7447 . . . . . . 7 (𝑔 = ∅ → (0..^(♯‘𝑔)) = (0..^(♯‘∅)))
19 fveq1 6905 . . . . . . . 8 (𝑔 = ∅ → (𝑔𝑖) = (∅‘𝑖))
2019eleq1d 2826 . . . . . . 7 (𝑔 = ∅ → ((𝑔𝑖) ∈ 𝐼 ↔ (∅‘𝑖) ∈ 𝐼))
2118, 20rexeqbidv 3347 . . . . . 6 (𝑔 = ∅ → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼))
2216, 21imbi12d 344 . . . . 5 (𝑔 = ∅ → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼 ∧ (𝑀 Σg ∅) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼)))
23 oveq2 7439 . . . . . . . 8 (𝑔 = 𝑓 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝑓))
2423eleq1d 2826 . . . . . . 7 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg 𝑓) ∈ 𝐼))
2523neeq1d 3000 . . . . . . 7 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝑓) ≠ 0 ))
2624, 253anbi23d 1441 . . . . . 6 (𝑔 = 𝑓 → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 )))
27 fveq2 6906 . . . . . . . 8 (𝑔 = 𝑓 → (♯‘𝑔) = (♯‘𝑓))
2827oveq2d 7447 . . . . . . 7 (𝑔 = 𝑓 → (0..^(♯‘𝑔)) = (0..^(♯‘𝑓)))
29 fveq1 6905 . . . . . . . 8 (𝑔 = 𝑓 → (𝑔𝑖) = (𝑓𝑖))
3029eleq1d 2826 . . . . . . 7 (𝑔 = 𝑓 → ((𝑔𝑖) ∈ 𝐼 ↔ (𝑓𝑖) ∈ 𝐼))
3128, 30rexeqbidv 3347 . . . . . 6 (𝑔 = 𝑓 → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼))
3226, 31imbi12d 344 . . . . 5 (𝑔 = 𝑓 → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)))
33 oveq2 7439 . . . . . . . 8 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (𝑀 Σg 𝑔) = (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)))
3433eleq1d 2826 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼))
3533neeq1d 3000 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ))
3634, 353anbi23d 1441 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 )))
37 fveq2 6906 . . . . . . . 8 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (♯‘𝑔) = (♯‘(𝑓 ++ ⟨“𝑝”⟩)))
3837oveq2d 7447 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (0..^(♯‘𝑔)) = (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))))
39 fveq1 6905 . . . . . . . 8 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (𝑔𝑖) = ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖))
4039eleq1d 2826 . . . . . . 7 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → ((𝑔𝑖) ∈ 𝐼 ↔ ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
4138, 40rexeqbidv 3347 . . . . . 6 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
4236, 41imbi12d 344 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑝”⟩) → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)))
43 oveq2 7439 . . . . . . . 8 (𝑔 = 𝐹 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝐹))
4443eleq1d 2826 . . . . . . 7 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ∈ 𝐼 ↔ (𝑀 Σg 𝐹) ∈ 𝐼))
4543neeq1d 3000 . . . . . . 7 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝐹) ≠ 0 ))
4644, 453anbi23d 1441 . . . . . 6 (𝑔 = 𝐹 → ((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 )))
47 fveq2 6906 . . . . . . . 8 (𝑔 = 𝐹 → (♯‘𝑔) = (♯‘𝐹))
4847oveq2d 7447 . . . . . . 7 (𝑔 = 𝐹 → (0..^(♯‘𝑔)) = (0..^(♯‘𝐹)))
49 fveq1 6905 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔𝑖) = (𝐹𝑖))
5049eleq1d 2826 . . . . . . 7 (𝑔 = 𝐹 → ((𝑔𝑖) ∈ 𝐼 ↔ (𝐹𝑖) ∈ 𝐼))
5148, 50rexeqbidv 3347 . . . . . 6 (𝑔 = 𝐹 → (∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼 ↔ ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼))
5246, 51imbi12d 344 . . . . 5 (𝑔 = 𝐹 → (((𝜑 ∧ (𝑀 Σg 𝑔) ∈ 𝐼 ∧ (𝑀 Σg 𝑔) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑔))(𝑔𝑖) ∈ 𝐼) ↔ ((𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼)))
53 dfufd2.b . . . . . . . 8 𝐵 = (Base‘𝑅)
54 dfufd2.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
55 dfufd2lem.1 . . . . . . . . . . 11 (𝜑𝑅 ∈ IDomn)
5655idomringd 20728 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
57 eqid 2737 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
5854, 571unit 20374 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
5956, 58syl 17 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ 𝑈)
6059ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → (1r𝑅) ∈ 𝑈)
61 dfufd2.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
6261, 57ringidval 20180 . . . . . . . . . 10 (1r𝑅) = (0g𝑀)
6362gsum0 18697 . . . . . . . . 9 (𝑀 Σg ∅) = (1r𝑅)
64 simplr 769 . . . . . . . . 9 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → (𝑀 Σg ∅) ∈ 𝐼)
6563, 64eqeltrrid 2846 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → (1r𝑅) ∈ 𝐼)
6656ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝑅 ∈ Ring)
67 dfufd2lem.2 . . . . . . . . . 10 (𝜑𝐼 ∈ (PrmIdeal‘𝑅))
6867ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼 ∈ (PrmIdeal‘𝑅))
69 prmidlidl 33472 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼 ∈ (LIdeal‘𝑅))
7066, 68, 69syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼 ∈ (LIdeal‘𝑅))
7153, 54, 60, 65, 66, 70lidlunitel 33451 . . . . . . 7 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼 = 𝐵)
72 eqid 2737 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
7353, 72prmidlnr 33467 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) → 𝐼𝐵)
7466, 68, 73syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → 𝐼𝐵)
7571, 74pm2.21ddne 3026 . . . . . 6 (((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼) ∧ (𝑀 Σg ∅) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼)
76753impa 1110 . . . . 5 ((𝜑 ∧ (𝑀 Σg ∅) ∈ 𝐼 ∧ (𝑀 Σg ∅) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘∅))(∅‘𝑖) ∈ 𝐼)
77 simpllr 776 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝜑)
78 simp-4r 784 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg 𝑓) ∈ 𝐼)
79 dfufd2.0 . . . . . . . . . . . . . 14 0 = (0g𝑅)
8055idomdomd 20726 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Domn)
8180ad3antlr 731 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑅 ∈ Domn)
82 dfufd2.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (RPrime‘𝑅)
8355adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝𝑃) → 𝑅 ∈ IDomn)
84 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝𝑃) → 𝑝𝑃)
8553, 82, 83, 84rprmcl 33546 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝𝑃) → 𝑝𝐵)
8682, 79, 83, 84rprmnz 33548 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝𝑃) → 𝑝0 )
8785, 86eldifsnd 4787 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝𝑃) → 𝑝 ∈ (𝐵 ∖ { 0 }))
8887ex 412 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑝𝑃𝑝 ∈ (𝐵 ∖ { 0 })))
8988ssrdv 3989 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ⊆ (𝐵 ∖ { 0 }))
90 sswrd 14560 . . . . . . . . . . . . . . . . 17 (𝑃 ⊆ (𝐵 ∖ { 0 }) → Word 𝑃 ⊆ Word (𝐵 ∖ { 0 }))
9189, 90syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → Word 𝑃 ⊆ Word (𝐵 ∖ { 0 }))
9291ad3antlr 731 . . . . . . . . . . . . . . 15 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → Word 𝑃 ⊆ Word (𝐵 ∖ { 0 }))
93 simpll 767 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑓 ∈ Word 𝑃)
9493ad5ant13 757 . . . . . . . . . . . . . . 15 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑓 ∈ Word 𝑃)
9592, 94sseldd 3984 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑓 ∈ Word (𝐵 ∖ { 0 }))
9653, 61, 79, 81, 95domnprodn0 33279 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg 𝑓) ≠ 0 )
9777, 78, 963jca 1129 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ))
98 lencl 14571 . . . . . . . . . . . . . . 15 (𝑓 ∈ Word 𝑃 → (♯‘𝑓) ∈ ℕ0)
99 fzossfzop1 13782 . . . . . . . . . . . . . . 15 ((♯‘𝑓) ∈ ℕ0 → (0..^(♯‘𝑓)) ⊆ (0..^((♯‘𝑓) + 1)))
10094, 98, 993syl 18 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘𝑓)) ⊆ (0..^((♯‘𝑓) + 1)))
101 ccatws1len 14658 . . . . . . . . . . . . . . . 16 (𝑓 ∈ Word 𝑃 → (♯‘(𝑓 ++ ⟨“𝑝”⟩)) = ((♯‘𝑓) + 1))
10294, 101syl 17 . . . . . . . . . . . . . . 15 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘(𝑓 ++ ⟨“𝑝”⟩)) = ((♯‘𝑓) + 1))
103102oveq2d 7447 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))) = (0..^((♯‘𝑓) + 1)))
104100, 103sseqtrrd 4021 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘𝑓)) ⊆ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))))
10594ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → 𝑓 ∈ Word 𝑃)
106 simplr 769 . . . . . . . . . . . . . . . . 17 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → 𝑖 ∈ (0..^(♯‘𝑓)))
107 ccats1val1 14664 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ Word 𝑃𝑖 ∈ (0..^(♯‘𝑓))) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) = (𝑓𝑖))
108105, 106, 107syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) = (𝑓𝑖))
109 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → (𝑓𝑖) ∈ 𝐼)
110108, 109eqeltrd 2841 . . . . . . . . . . . . . . 15 ((((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) ∧ (𝑓𝑖) ∈ 𝐼) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
111110ex 412 . . . . . . . . . . . . . 14 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑖 ∈ (0..^(♯‘𝑓))) → ((𝑓𝑖) ∈ 𝐼 → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
112111reximdva 3168 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼 → ∃𝑖 ∈ (0..^(♯‘𝑓))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
113 ssrexv 4053 . . . . . . . . . . . . 13 ((0..^(♯‘𝑓)) ⊆ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))) → (∃𝑖 ∈ (0..^(♯‘𝑓))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼 → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
114104, 112, 113sylsyld 61 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼 → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
11597, 114embantd 59 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
116115imp 406 . . . . . . . . . 10 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
117116an62ds 32471 . . . . . . . . 9 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ (𝑀 Σg 𝑓) ∈ 𝐼) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
118 fveq2 6906 . . . . . . . . . . . . 13 (𝑖 = (♯‘𝑓) → ((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) = ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)))
119118eleq1d 2826 . . . . . . . . . . . 12 (𝑖 = (♯‘𝑓) → (((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼 ↔ ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) ∈ 𝐼))
12098ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘𝑓) ∈ ℕ0)
121 fzonn0p1 13781 . . . . . . . . . . . . . 14 ((♯‘𝑓) ∈ ℕ0 → (♯‘𝑓) ∈ (0..^((♯‘𝑓) + 1)))
122120, 121syl 17 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘𝑓) ∈ (0..^((♯‘𝑓) + 1)))
123101ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘(𝑓 ++ ⟨“𝑝”⟩)) = ((♯‘𝑓) + 1))
124123oveq2d 7447 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))) = (0..^((♯‘𝑓) + 1)))
125122, 124eleqtrrd 2844 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (♯‘𝑓) ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩))))
126 ccatws1ls 14671 . . . . . . . . . . . . . 14 ((𝑓 ∈ Word 𝑃𝑝𝑃) → ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) = 𝑝)
127126ad4antr 732 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) = 𝑝)
128 simp-4r 784 . . . . . . . . . . . . 13 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑝𝐼)
129127, 128eqeltrd 2841 . . . . . . . . . . . 12 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑓 ++ ⟨“𝑝”⟩)‘(♯‘𝑓)) ∈ 𝐼)
130119, 125, 129rspcedvdw 3625 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
131130adantr 480 . . . . . . . . . 10 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝑝𝐼) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
132131an62ds 32471 . . . . . . . . 9 (((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) ∧ 𝑝𝐼) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
13355idomcringd 20727 . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
134133ad3antlr 731 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑅 ∈ CRing)
13567ad3antlr 731 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝐼 ∈ (PrmIdeal‘𝑅))
13661, 53mgpbas 20142 . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
13761crngmgp 20238 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
138133, 137syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ CMnd)
139138adantl 481 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑀 ∈ CMnd)
140 ovexd 7466 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (0..^(♯‘𝑓)) ∈ V)
141 eqidd 2738 . . . . . . . . . . . . . 14 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (♯‘𝑓) = (♯‘𝑓))
142 simplll 775 . . . . . . . . . . . . . 14 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓 ∈ Word 𝑃)
143141, 142wrdfd 32918 . . . . . . . . . . . . 13 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓:(0..^(♯‘𝑓))⟶𝑃)
14485ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑝𝑃𝑝𝐵))
145144ssrdv 3989 . . . . . . . . . . . . . 14 (𝜑𝑃𝐵)
146145adantl 481 . . . . . . . . . . . . 13 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑃𝐵)
147143, 146fssd 6753 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓:(0..^(♯‘𝑓))⟶𝐵)
148 fvexd 6921 . . . . . . . . . . . . 13 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (1r𝑅) ∈ V)
149148, 142wrdfsupp 32921 . . . . . . . . . . . 12 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → 𝑓 finSupp (1r𝑅))
150136, 62, 139, 140, 147, 149gsumcl 19933 . . . . . . . . . . 11 ((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) → (𝑀 Σg 𝑓) ∈ 𝐵)
151150ad2antrr 726 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg 𝑓) ∈ 𝐵)
152145adantl 481 . . . . . . . . . . . 12 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑃𝐵)
153 simplr 769 . . . . . . . . . . . 12 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑝𝑃)
154152, 153sseldd 3984 . . . . . . . . . . 11 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑝𝐵)
155154ad5ant13 757 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → 𝑝𝐵)
156138cmnmndd 19822 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Mnd)
157156adantl 481 . . . . . . . . . . . . 13 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑀 ∈ Mnd)
158 sswrd 14560 . . . . . . . . . . . . . . . 16 (𝑃𝐵 → Word 𝑃 ⊆ Word 𝐵)
159145, 158syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Word 𝑃 ⊆ Word 𝐵)
160159adantl 481 . . . . . . . . . . . . . 14 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → Word 𝑃 ⊆ Word 𝐵)
161160, 93sseldd 3984 . . . . . . . . . . . . 13 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → 𝑓 ∈ Word 𝐵)
16261, 72mgpplusg 20141 . . . . . . . . . . . . . 14 (.r𝑅) = (+g𝑀)
163136, 162gsumccatsn 18856 . . . . . . . . . . . . 13 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵𝑝𝐵) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑝))
164157, 161, 154, 163syl3anc 1373 . . . . . . . . . . . 12 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ 𝜑) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑝))
165164ad5ant13 757 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑝))
166 simplr 769 . . . . . . . . . . 11 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼)
167165, 166eqeltrrd 2842 . . . . . . . . . 10 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑀 Σg 𝑓)(.r𝑅)𝑝) ∈ 𝐼)
16853, 72prmidlc 33476 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (PrmIdeal‘𝑅)) ∧ ((𝑀 Σg 𝑓) ∈ 𝐵𝑝𝐵 ∧ ((𝑀 Σg 𝑓)(.r𝑅)𝑝) ∈ 𝐼)) → ((𝑀 Σg 𝑓) ∈ 𝐼𝑝𝐼))
169134, 135, 151, 155, 167, 168syl23anc 1379 . . . . . . . . 9 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ((𝑀 Σg 𝑓) ∈ 𝐼𝑝𝐼))
170117, 132, 169mpjaodan 961 . . . . . . . 8 ((((((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) ∧ 𝜑) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼) ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)
171170exp41 434 . . . . . . 7 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → (𝜑 → ((𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 → ((𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))))
1721713impd 1349 . . . . . 6 (((𝑓 ∈ Word 𝑃𝑝𝑃) ∧ ((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼)) → ((𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼))
173172ex 412 . . . . 5 ((𝑓 ∈ Word 𝑃𝑝𝑃) → (((𝜑 ∧ (𝑀 Σg 𝑓) ∈ 𝐼 ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝑓))(𝑓𝑖) ∈ 𝐼) → ((𝜑 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ∈ 𝐼 ∧ (𝑀 Σg (𝑓 ++ ⟨“𝑝”⟩)) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘(𝑓 ++ ⟨“𝑝”⟩)))((𝑓 ++ ⟨“𝑝”⟩)‘𝑖) ∈ 𝐼)))
17422, 32, 42, 52, 76, 173wrdind 14760 . . . 4 (𝐹 ∈ Word 𝑃 → ((𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 ) → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼))
175174imp 406 . . 3 ((𝐹 ∈ Word 𝑃 ∧ (𝜑 ∧ (𝑀 Σg 𝐹) ∈ 𝐼 ∧ (𝑀 Σg 𝐹) ≠ 0 )) → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼)
1763, 10, 11, 12, 175syl13anc 1374 . 2 (𝜑 → ∃𝑖 ∈ (0..^(♯‘𝐹))(𝐹𝑖) ∈ 𝐼)
1779, 176r19.29a 3162 1 (𝜑 → (𝐼𝑃) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  cdif 3948  cin 3950  wss 3951  c0 4333  {csn 4626  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  0cn0 12526  ..^cfzo 13694  chash 14369  Word cword 14552   ++ cconcat 14608  ⟨“cs1 14633  Basecbs 17247  .rcmulr 17298  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  CMndccmn 19798  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231  Unitcui 20355  RPrimecrpm 20432  Domncdomn 20692  IDomncidom 20693  LIdealclidl 21216  PrmIdealcprmidl 33463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-rprm 20433  df-nzr 20513  df-subrg 20570  df-domn 20695  df-idom 20696  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-prmidl 33464
This theorem is referenced by:  dfufd2  33578
  Copyright terms: Public domain W3C validator