Step | Hyp | Ref
| Expression |
1 | | frgr3v.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | frgr3v.e |
. . . . . 6
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | isfrgr 28525 |
. . . . 5
⊢ (𝐺 ∈ FriendGraph ↔
(𝐺 ∈ USGraph ∧
∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
4 | 3 | a1i 11 |
. . . 4
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧
∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))) |
5 | | id 22 |
. . . . . . . 8
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → 𝑉 = {𝐴, 𝐵, 𝐶}) |
6 | | difeq1 4046 |
. . . . . . . . 9
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑉 ∖ {𝑘}) = ({𝐴, 𝐵, 𝐶} ∖ {𝑘})) |
7 | | reueq1 3335 |
. . . . . . . . 9
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
8 | 6, 7 | raleqbidv 3327 |
. . . . . . . 8
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
9 | 5, 8 | raleqbidv 3327 |
. . . . . . 7
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
10 | 9 | anbi2d 628 |
. . . . . 6
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸) ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))) |
11 | 10 | baibd 539 |
. . . . 5
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸) ↔ ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
12 | 11 | adantl 481 |
. . . 4
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸) ↔ ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
13 | 4, 12 | bitrd 278 |
. . 3
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐺 ∈ FriendGraph ↔ ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) |
14 | | sneq 4568 |
. . . . . . . 8
⊢ (𝑘 = 𝐴 → {𝑘} = {𝐴}) |
15 | 14 | difeq2d 4053 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → ({𝐴, 𝐵, 𝐶} ∖ {𝑘}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐴})) |
16 | | preq2 4667 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐴 → {𝑥, 𝑘} = {𝑥, 𝐴}) |
17 | 16 | preq1d 4672 |
. . . . . . . . 9
⊢ (𝑘 = 𝐴 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝑙}}) |
18 | 17 | sseq1d 3948 |
. . . . . . . 8
⊢ (𝑘 = 𝐴 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸)) |
19 | 18 | reubidv 3315 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸)) |
20 | 15, 19 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑘 = 𝐴 → (∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸)) |
21 | | sneq 4568 |
. . . . . . . 8
⊢ (𝑘 = 𝐵 → {𝑘} = {𝐵}) |
22 | 21 | difeq2d 4053 |
. . . . . . 7
⊢ (𝑘 = 𝐵 → ({𝐴, 𝐵, 𝐶} ∖ {𝑘}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐵})) |
23 | | preq2 4667 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐵 → {𝑥, 𝑘} = {𝑥, 𝐵}) |
24 | 23 | preq1d 4672 |
. . . . . . . . 9
⊢ (𝑘 = 𝐵 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝑙}}) |
25 | 24 | sseq1d 3948 |
. . . . . . . 8
⊢ (𝑘 = 𝐵 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸)) |
26 | 25 | reubidv 3315 |
. . . . . . 7
⊢ (𝑘 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸)) |
27 | 22, 26 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑘 = 𝐵 → (∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸)) |
28 | | sneq 4568 |
. . . . . . . 8
⊢ (𝑘 = 𝐶 → {𝑘} = {𝐶}) |
29 | 28 | difeq2d 4053 |
. . . . . . 7
⊢ (𝑘 = 𝐶 → ({𝐴, 𝐵, 𝐶} ∖ {𝑘}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶})) |
30 | | preq2 4667 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐶 → {𝑥, 𝑘} = {𝑥, 𝐶}) |
31 | 30 | preq1d 4672 |
. . . . . . . . 9
⊢ (𝑘 = 𝐶 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐶}, {𝑥, 𝑙}}) |
32 | 31 | sseq1d 3948 |
. . . . . . . 8
⊢ (𝑘 = 𝐶 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸)) |
33 | 32 | reubidv 3315 |
. . . . . . 7
⊢ (𝑘 = 𝐶 → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸)) |
34 | 29, 33 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑘 = 𝐶 → (∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸)) |
35 | 20, 27, 34 | raltpg 4631 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ (∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸))) |
36 | 35 | ad2antrr 722 |
. . . 4
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ (∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸))) |
37 | | tprot 4682 |
. . . . . . . . . 10
⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
38 | 37 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}) |
39 | 38 | difeq1d 4052 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = ({𝐵, 𝐶, 𝐴} ∖ {𝐴})) |
40 | | necom 2996 |
. . . . . . . . . . . 12
⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
41 | 40 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝐴 ≠ 𝐵 → 𝐵 ≠ 𝐴) |
42 | | necom 2996 |
. . . . . . . . . . . 12
⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) |
43 | 42 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝐴 ≠ 𝐶 → 𝐶 ≠ 𝐴) |
44 | 41, 43 | anim12i 612 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → (𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴)) |
45 | 44 | 3adant3 1130 |
. . . . . . . . 9
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴)) |
46 | | diftpsn3 4732 |
. . . . . . . . 9
⊢ ((𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶}) |
47 | 45, 46 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶}) |
48 | 39, 47 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = {𝐵, 𝐶}) |
49 | 48 | raleqdv 3339 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∀𝑙 ∈ {𝐵, 𝐶}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸)) |
50 | | tprot 4682 |
. . . . . . . . . . 11
⊢ {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶} |
51 | 50 | eqcomi 2747 |
. . . . . . . . . 10
⊢ {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵} |
52 | 51 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵}) |
53 | 52 | difeq1d 4052 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = ({𝐶, 𝐴, 𝐵} ∖ {𝐵})) |
54 | | id 22 |
. . . . . . . . . . 11
⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) |
55 | | necom 2996 |
. . . . . . . . . . . 12
⊢ (𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵) |
56 | 55 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝐵 ≠ 𝐶 → 𝐶 ≠ 𝐵) |
57 | 54, 56 | anim12ci 613 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
58 | 57 | 3adant2 1129 |
. . . . . . . . 9
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
59 | | diftpsn3 4732 |
. . . . . . . . 9
⊢ ((𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴}) |
60 | 58, 59 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴}) |
61 | 53, 60 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = {𝐶, 𝐴}) |
62 | 61 | raleqdv 3339 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∀𝑙 ∈ {𝐶, 𝐴}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸)) |
63 | | diftpsn3 4732 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
64 | 63 | 3adant1 1128 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵}) |
65 | 64 | raleqdv 3339 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∀𝑙 ∈ {𝐴, 𝐵}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸)) |
66 | 49, 62, 65 | 3anbi123d 1434 |
. . . . 5
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ((∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸) ↔ (∀𝑙 ∈ {𝐵, 𝐶}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ {𝐶, 𝐴}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ {𝐴, 𝐵}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸))) |
67 | 66 | ad2antlr 723 |
. . . 4
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸) ↔ (∀𝑙 ∈ {𝐵, 𝐶}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ {𝐶, 𝐴}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ {𝐴, 𝐵}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸))) |
68 | | preq2 4667 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝐵 → {𝑥, 𝑙} = {𝑥, 𝐵}) |
69 | 68 | preq2d 4673 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝐵}}) |
70 | 69 | sseq1d 3948 |
. . . . . . . . 9
⊢ (𝑙 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸)) |
71 | 70 | reubidv 3315 |
. . . . . . . 8
⊢ (𝑙 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸)) |
72 | | preq2 4667 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝐶 → {𝑥, 𝑙} = {𝑥, 𝐶}) |
73 | 72 | preq2d 4673 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐶 → {{𝑥, 𝐴}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝐶}}) |
74 | 73 | sseq1d 3948 |
. . . . . . . . 9
⊢ (𝑙 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸)) |
75 | 74 | reubidv 3315 |
. . . . . . . 8
⊢ (𝑙 = 𝐶 → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸)) |
76 | 71, 75 | ralprg 4627 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∀𝑙 ∈ {𝐵, 𝐶}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸))) |
77 | 76 | 3adant1 1128 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∀𝑙 ∈ {𝐵, 𝐶}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸))) |
78 | 72 | preq2d 4673 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝐶 → {{𝑥, 𝐵}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝐶}}) |
79 | 78 | sseq1d 3948 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐶 → ({{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸)) |
80 | 79 | reubidv 3315 |
. . . . . . . . 9
⊢ (𝑙 = 𝐶 → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸)) |
81 | | preq2 4667 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝐴 → {𝑥, 𝑙} = {𝑥, 𝐴}) |
82 | 81 | preq2d 4673 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝐴 → {{𝑥, 𝐵}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝐴}}) |
83 | 82 | sseq1d 3948 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐴 → ({{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸)) |
84 | 83 | reubidv 3315 |
. . . . . . . . 9
⊢ (𝑙 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸)) |
85 | 80, 84 | ralprg 4627 |
. . . . . . . 8
⊢ ((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) → (∀𝑙 ∈ {𝐶, 𝐴}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸))) |
86 | 85 | ancoms 458 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍) → (∀𝑙 ∈ {𝐶, 𝐴}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸))) |
87 | 86 | 3adant2 1129 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∀𝑙 ∈ {𝐶, 𝐴}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸))) |
88 | 81 | preq2d 4673 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐴 → {{𝑥, 𝐶}, {𝑥, 𝑙}} = {{𝑥, 𝐶}, {𝑥, 𝐴}}) |
89 | 88 | sseq1d 3948 |
. . . . . . . . 9
⊢ (𝑙 = 𝐴 → ({{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸)) |
90 | 89 | reubidv 3315 |
. . . . . . . 8
⊢ (𝑙 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸)) |
91 | 68 | preq2d 4673 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐵 → {{𝑥, 𝐶}, {𝑥, 𝑙}} = {{𝑥, 𝐶}, {𝑥, 𝐵}}) |
92 | 91 | sseq1d 3948 |
. . . . . . . . 9
⊢ (𝑙 = 𝐵 → ({{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸)) |
93 | 92 | reubidv 3315 |
. . . . . . . 8
⊢ (𝑙 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸)) |
94 | 90, 93 | ralprg 4627 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∀𝑙 ∈ {𝐴, 𝐵}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸))) |
95 | 94 | 3adant3 1130 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∀𝑙 ∈ {𝐴, 𝐵}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸))) |
96 | 77, 87, 95 | 3anbi123d 1434 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((∀𝑙 ∈ {𝐵, 𝐶}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ {𝐶, 𝐴}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ {𝐴, 𝐵}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸) ↔ ((∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸) ∧ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸) ∧ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸)))) |
97 | 96 | ad2antrr 722 |
. . . 4
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((∀𝑙 ∈ {𝐵, 𝐶}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ {𝐶, 𝐴}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ 𝐸 ∧ ∀𝑙 ∈ {𝐴, 𝐵}∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝑙}} ⊆ 𝐸) ↔ ((∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸) ∧ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸) ∧ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸)))) |
98 | 36, 67, 97 | 3bitrd 304 |
. . 3
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}∀𝑙 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸 ↔ ((∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸) ∧ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸) ∧ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸)))) |
99 | 1, 2 | frgr3vlem2 28539 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
100 | 99 | imp 406 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
101 | | simpll1 1210 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 ∈ 𝑋) |
102 | | simpll3 1212 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 ∈ 𝑍) |
103 | | simpll2 1211 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 ∈ 𝑌) |
104 | 101, 102,
103 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌)) |
105 | | simplr2 1214 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 ≠ 𝐶) |
106 | | simplr1 1213 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐴 ≠ 𝐵) |
107 | 58 | simpld 494 |
. . . . . . . . 9
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → 𝐶 ≠ 𝐵) |
108 | 107 | ad2antlr 723 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 ≠ 𝐵) |
109 | 105, 106,
108 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵)) |
110 | | tpcomb 4684 |
. . . . . . . . . 10
⊢ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵} |
111 | 5, 110 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → 𝑉 = {𝐴, 𝐶, 𝐵}) |
112 | 111 | anim1i 614 |
. . . . . . . 8
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝑉 = {𝐴, 𝐶, 𝐵} ∧ 𝐺 ∈ USGraph)) |
113 | 112 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝑉 = {𝐴, 𝐶, 𝐵} ∧ 𝐺 ∈ USGraph)) |
114 | | reueq1 3335 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵} → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐶, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸)) |
115 | 110, 114 | mp1i 13 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌) ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵)) ∧ (𝑉 = {𝐴, 𝐶, 𝐵} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐴, 𝐶, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸)) |
116 | 1, 2 | frgr3vlem2 28539 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌) ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵)) → ((𝑉 = {𝐴, 𝐶, 𝐵} ∧ 𝐺 ∈ USGraph) → (∃!𝑥 ∈ {𝐴, 𝐶, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))) |
117 | 116 | imp 406 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌) ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵)) ∧ (𝑉 = {𝐴, 𝐶, 𝐵} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐶, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
118 | 115, 117 | bitrd 278 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌) ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵)) ∧ (𝑉 = {𝐴, 𝐶, 𝐵} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
119 | 104, 109,
113, 118 | syl21anc 834 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
120 | 100, 119 | anbi12d 630 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸) ↔ (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))) |
121 | 103, 102,
101 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋)) |
122 | | simplr3 1215 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 ≠ 𝐶) |
123 | 106 | necomd 2998 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐵 ≠ 𝐴) |
124 | 105 | necomd 2998 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐶 ≠ 𝐴) |
125 | 122, 123,
124 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴)) |
126 | 37 | eqeq2i 2751 |
. . . . . . . . . 10
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐵, 𝐶, 𝐴}) |
127 | 126 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → 𝑉 = {𝐵, 𝐶, 𝐴}) |
128 | 127 | anim1i 614 |
. . . . . . . 8
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝑉 = {𝐵, 𝐶, 𝐴} ∧ 𝐺 ∈ USGraph)) |
129 | 128 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝑉 = {𝐵, 𝐶, 𝐴} ∧ 𝐺 ∈ USGraph)) |
130 | | reueq1 3335 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐵, 𝐶, 𝐴} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸)) |
131 | 37, 130 | mp1i 13 |
. . . . . . . 8
⊢ ((((𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴)) ∧ (𝑉 = {𝐵, 𝐶, 𝐴} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐵, 𝐶, 𝐴} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸)) |
132 | 1, 2 | frgr3vlem2 28539 |
. . . . . . . . 9
⊢ (((𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴)) → ((𝑉 = {𝐵, 𝐶, 𝐴} ∧ 𝐺 ∈ USGraph) → (∃!𝑥 ∈ {𝐵, 𝐶, 𝐴} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))) |
133 | 132 | imp 406 |
. . . . . . . 8
⊢ ((((𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴)) ∧ (𝑉 = {𝐵, 𝐶, 𝐴} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐵, 𝐶, 𝐴} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) |
134 | 131, 133 | bitrd 278 |
. . . . . . 7
⊢ ((((𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴)) ∧ (𝑉 = {𝐵, 𝐶, 𝐴} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) |
135 | 121, 125,
129, 134 | syl21anc 834 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) |
136 | 103, 101,
102 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍)) |
137 | 123, 122,
105 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶)) |
138 | | tpcoma 4683 |
. . . . . . . . . . 11
⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} |
139 | 138 | eqeq2i 2751 |
. . . . . . . . . 10
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐵, 𝐴, 𝐶}) |
140 | 139 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → 𝑉 = {𝐵, 𝐴, 𝐶}) |
141 | 140 | anim1i 614 |
. . . . . . . 8
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) |
142 | 141 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) |
143 | | reueq1 3335 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐵, 𝐴, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸)) |
144 | 138, 143 | mp1i 13 |
. . . . . . . 8
⊢ ((((𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍) ∧ (𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶)) ∧ (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐵, 𝐴, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸)) |
145 | 1, 2 | frgr3vlem2 28539 |
. . . . . . . . 9
⊢ (((𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍) ∧ (𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶)) → ((𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph) → (∃!𝑥 ∈ {𝐵, 𝐴, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))) |
146 | 145 | imp 406 |
. . . . . . . 8
⊢ ((((𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍) ∧ (𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶)) ∧ (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐵, 𝐴, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))) |
147 | 144, 146 | bitrd 278 |
. . . . . . 7
⊢ ((((𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍) ∧ (𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶)) ∧ (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))) |
148 | 136, 137,
142, 147 | syl21anc 834 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))) |
149 | 135, 148 | anbi12d 630 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))) |
150 | 102, 101,
103 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) |
151 | 124, 108,
106 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
152 | 51 | eqeq2i 2751 |
. . . . . . . . . 10
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐶, 𝐴, 𝐵}) |
153 | 152 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → 𝑉 = {𝐶, 𝐴, 𝐵}) |
154 | 153 | anim1i 614 |
. . . . . . . 8
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝑉 = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) |
155 | 154 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝑉 = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) |
156 | | reueq1 3335 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵} → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐶, 𝐴, 𝐵} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸)) |
157 | 51, 156 | mp1i 13 |
. . . . . . . 8
⊢ ((((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ∧ (𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑉 = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐶, 𝐴, 𝐵} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸)) |
158 | 1, 2 | frgr3vlem2 28539 |
. . . . . . . . 9
⊢ (((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ∧ (𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) → ((𝑉 = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph) → (∃!𝑥 ∈ {𝐶, 𝐴, 𝐵} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸)))) |
159 | 158 | imp 406 |
. . . . . . . 8
⊢ ((((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ∧ (𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑉 = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐶, 𝐴, 𝐵} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸))) |
160 | 157, 159 | bitrd 278 |
. . . . . . 7
⊢ ((((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ∧ (𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) ∧ (𝑉 = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸))) |
161 | 150, 151,
155, 160 | syl21anc 834 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸))) |
162 | | 3anrev 1099 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ↔ (𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋)) |
163 | 162 | biimpi 215 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋)) |
164 | 55, 42, 40 | 3anbi123i 1153 |
. . . . . . . . . 10
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ↔ (𝐶 ≠ 𝐵 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
165 | 164 | biimpi 215 |
. . . . . . . . 9
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) → (𝐶 ≠ 𝐵 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
166 | 165 | 3com13 1122 |
. . . . . . . 8
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (𝐶 ≠ 𝐵 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
167 | 163, 166 | anim12i 612 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ((𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋) ∧ (𝐶 ≠ 𝐵 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐴))) |
168 | | tpcoma 4683 |
. . . . . . . . . . 11
⊢ {𝐵, 𝐶, 𝐴} = {𝐶, 𝐵, 𝐴} |
169 | 37, 168 | eqtri 2766 |
. . . . . . . . . 10
⊢ {𝐴, 𝐵, 𝐶} = {𝐶, 𝐵, 𝐴} |
170 | 169 | eqeq2i 2751 |
. . . . . . . . 9
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} ↔ 𝑉 = {𝐶, 𝐵, 𝐴}) |
171 | 170 | biimpi 215 |
. . . . . . . 8
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → 𝑉 = {𝐶, 𝐵, 𝐴}) |
172 | 171 | anim1i 614 |
. . . . . . 7
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝑉 = {𝐶, 𝐵, 𝐴} ∧ 𝐺 ∈ USGraph)) |
173 | | reueq1 3335 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵, 𝐶} = {𝐶, 𝐵, 𝐴} → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐶, 𝐵, 𝐴} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸)) |
174 | 169, 173 | mp1i 13 |
. . . . . . . 8
⊢ ((((𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋) ∧ (𝐶 ≠ 𝐵 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐴)) ∧ (𝑉 = {𝐶, 𝐵, 𝐴} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ∃!𝑥 ∈ {𝐶, 𝐵, 𝐴} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸)) |
175 | 1, 2 | frgr3vlem2 28539 |
. . . . . . . . 9
⊢ (((𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋) ∧ (𝐶 ≠ 𝐵 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐴)) → ((𝑉 = {𝐶, 𝐵, 𝐴} ∧ 𝐺 ∈ USGraph) → (∃!𝑥 ∈ {𝐶, 𝐵, 𝐴} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸)))) |
176 | 175 | imp 406 |
. . . . . . . 8
⊢ ((((𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋) ∧ (𝐶 ≠ 𝐵 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐴)) ∧ (𝑉 = {𝐶, 𝐵, 𝐴} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐶, 𝐵, 𝐴} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸))) |
177 | 174, 176 | bitrd 278 |
. . . . . . 7
⊢ ((((𝐶 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋) ∧ (𝐶 ≠ 𝐵 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐴)) ∧ (𝑉 = {𝐶, 𝐵, 𝐴} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸))) |
178 | 167, 172,
177 | syl2an 595 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸))) |
179 | 161, 178 | anbi12d 630 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸) ↔ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸)))) |
180 | 120, 149,
179 | 3anbi123d 1434 |
. . . 4
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸) ∧ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸) ∧ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸)) ↔ ((({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) ∧ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸))))) |
181 | | prcom 4665 |
. . . . . . . . . 10
⊢ {𝐵, 𝐶} = {𝐶, 𝐵} |
182 | 181 | eleq1i 2829 |
. . . . . . . . 9
⊢ ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐶, 𝐵} ∈ 𝐸) |
183 | 182 | anbi2i 622 |
. . . . . . . 8
⊢ (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) |
184 | 183 | anbi2i 622 |
. . . . . . 7
⊢ ((({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ↔ (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
185 | | anandir 673 |
. . . . . . 7
⊢ ((({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
186 | 184, 185 | bitr4i 277 |
. . . . . 6
⊢ ((({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ↔ (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐵} ∈ 𝐸)) |
187 | | prcom 4665 |
. . . . . . . . . 10
⊢ {𝐶, 𝐴} = {𝐴, 𝐶} |
188 | 187 | eleq1i 2829 |
. . . . . . . . 9
⊢ ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸) |
189 | 188 | anbi2i 622 |
. . . . . . . 8
⊢ (({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) |
190 | 189 | anbi2i 622 |
. . . . . . 7
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) |
191 | | anandir 673 |
. . . . . . 7
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) |
192 | 190, 191 | bitr4i 277 |
. . . . . 6
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸)) |
193 | | prcom 4665 |
. . . . . . . . . 10
⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
194 | 193 | eleq1i 2829 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸) |
195 | 194 | anbi2i 622 |
. . . . . . . 8
⊢ (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸)) |
196 | 195 | anbi2i 622 |
. . . . . . 7
⊢ ((({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸)) ↔ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸))) |
197 | | anandir 673 |
. . . . . . 7
⊢ ((({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐴} ∈ 𝐸) ↔ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸))) |
198 | 196, 197 | bitr4i 277 |
. . . . . 6
⊢ ((({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸)) ↔ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐴} ∈ 𝐸)) |
199 | 186, 192,
198 | 3anbi123i 1153 |
. . . . 5
⊢
(((({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) ∧ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸))) ↔ ((({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐴} ∈ 𝐸))) |
200 | | 3anrot 1098 |
. . . . . . 7
⊢ (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
201 | | df-3an 1087 |
. . . . . . 7
⊢ (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ (({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐵} ∈ 𝐸)) |
202 | | prcom 4665 |
. . . . . . . . 9
⊢ {𝐵, 𝐴} = {𝐴, 𝐵} |
203 | 202 | eleq1i 2829 |
. . . . . . . 8
⊢ ({𝐵, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸) |
204 | | prcom 4665 |
. . . . . . . . 9
⊢ {𝐶, 𝐵} = {𝐵, 𝐶} |
205 | 204 | eleq1i 2829 |
. . . . . . . 8
⊢ ({𝐶, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ 𝐸) |
206 | | biid 260 |
. . . . . . . 8
⊢ ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐶, 𝐴} ∈ 𝐸) |
207 | 203, 205,
206 | 3anbi123i 1153 |
. . . . . . 7
⊢ (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
208 | 200, 201,
207 | 3bitr3i 300 |
. . . . . 6
⊢ ((({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
209 | | df-3an 1087 |
. . . . . . 7
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸)) |
210 | | biid 260 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸) |
211 | | prcom 4665 |
. . . . . . . . 9
⊢ {𝐴, 𝐶} = {𝐶, 𝐴} |
212 | 211 | eleq1i 2829 |
. . . . . . . 8
⊢ ({𝐴, 𝐶} ∈ 𝐸 ↔ {𝐶, 𝐴} ∈ 𝐸) |
213 | 210, 205,
212 | 3anbi123i 1153 |
. . . . . . 7
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
214 | 209, 213 | bitr3i 276 |
. . . . . 6
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
215 | | df-3an 1087 |
. . . . . . 7
⊢ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ↔ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐴} ∈ 𝐸)) |
216 | | 3anrot 1098 |
. . . . . . . 8
⊢ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
217 | | 3anrot 1098 |
. . . . . . . 8
⊢ (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) |
218 | | biid 260 |
. . . . . . . . 9
⊢ ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ 𝐸) |
219 | 203, 218,
212 | 3anbi123i 1153 |
. . . . . . . 8
⊢ (({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
220 | 216, 217,
219 | 3bitri 296 |
. . . . . . 7
⊢ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
221 | 215, 220 | bitr3i 276 |
. . . . . 6
⊢ ((({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
222 | 208, 214,
221 | 3anbi123i 1153 |
. . . . 5
⊢
(((({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐴} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))) |
223 | | df-3an 1087 |
. . . . . 6
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) ↔ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))) |
224 | | anabs1 658 |
. . . . . 6
⊢
(((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))) |
225 | | anidm 564 |
. . . . . 6
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
226 | 223, 224,
225 | 3bitri 296 |
. . . . 5
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
227 | 199, 222,
226 | 3bitri 296 |
. . . 4
⊢
(((({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) ∧ (({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐴, 𝐵} ∈ 𝐸))) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
228 | 180, 227 | bitrdi 286 |
. . 3
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐶}} ⊆ 𝐸) ∧ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐶}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ 𝐸) ∧ (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐴}} ⊆ 𝐸 ∧ ∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐶}, {𝑥, 𝐵}} ⊆ 𝐸)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))) |
229 | 13, 98, 228 | 3bitrd 304 |
. 2
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐺 ∈ FriendGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))) |
230 | 229 | ex 412 |
1
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ FriendGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))) |