MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poirr Structured version   Visualization version   GIF version

Theorem poirr 5506
Description: A partial order is irreflexive. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poirr ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem poirr
StepHypRef Expression
1 df-3an 1087 . . 3 ((𝐵𝐴𝐵𝐴𝐵𝐴) ↔ ((𝐵𝐴𝐵𝐴) ∧ 𝐵𝐴))
2 anabs1 658 . . 3 (((𝐵𝐴𝐵𝐴) ∧ 𝐵𝐴) ↔ (𝐵𝐴𝐵𝐴))
3 anidm 564 . . 3 ((𝐵𝐴𝐵𝐴) ↔ 𝐵𝐴)
41, 2, 33bitrri 297 . 2 (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴𝐵𝐴))
5 pocl 5501 . . . 4 (𝑅 Po 𝐴 → ((𝐵𝐴𝐵𝐴𝐵𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵))))
65imp 406 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐵𝐴𝐵𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵)))
76simpld 494 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐵𝐴𝐵𝐴)) → ¬ 𝐵𝑅𝐵)
84, 7sylan2b 593 1 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085  wcel 2108   class class class wbr 5070   Po wpo 5492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-po 5494
This theorem is referenced by:  po2nr  5508  po2ne  5510  pofun  5512  sonr  5517  poirr2  6018  predpoirr  6225  soisoi  7179  poxp  7940  swoer  8486  frfi  8989  wemappo  9238  zorn2lem3  10185  ex-po  28700  pocnv  33636  poseq  33729  ipo0  41956
  Copyright terms: Public domain W3C validator