![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > poirr | Structured version Visualization version GIF version |
Description: A partial order is irreflexive. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
poirr | ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1089 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ↔ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵 ∈ 𝐴)) | |
2 | anabs1 660 | . . 3 ⊢ (((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵 ∈ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) | |
3 | anidm 565 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ↔ 𝐵 ∈ 𝐴) | |
4 | 1, 2, 3 | 3bitrri 297 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) |
5 | pocl 5588 | . . . 4 ⊢ (𝑅 Po 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵 ∧ 𝐵𝑅𝐵) → 𝐵𝑅𝐵)))) | |
6 | 5 | imp 407 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵 ∧ 𝐵𝑅𝐵) → 𝐵𝑅𝐵))) |
7 | 6 | simpld 495 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
8 | 4, 7 | sylan2b 594 | 1 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5141 Po wpo 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-br 5142 df-po 5581 |
This theorem is referenced by: po2nr 5595 po2ne 5597 pofun 5599 sonr 5604 poirr2 6114 predpoirr 6323 soisoi 7309 poxp 8096 poseq 8126 swoer 8716 frfi 9271 wemappo 9526 zorn2lem3 10475 ex-po 29553 pocnv 34563 epirron 41774 ipo0 42979 |
Copyright terms: Public domain | W3C validator |