![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > poirr | Structured version Visualization version GIF version |
Description: A partial order is irreflexive. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
poirr | ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1086 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ↔ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵 ∈ 𝐴)) | |
2 | anabs1 659 | . . 3 ⊢ (((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵 ∈ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) | |
3 | anidm 564 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ↔ 𝐵 ∈ 𝐴) | |
4 | 1, 2, 3 | 3bitrri 298 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) |
5 | pocl 5586 | . . . 4 ⊢ (𝑅 Po 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵 ∧ 𝐵𝑅𝐵) → 𝐵𝑅𝐵)))) | |
6 | 5 | imp 406 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵 ∧ 𝐵𝑅𝐵) → 𝐵𝑅𝐵))) |
7 | 6 | simpld 494 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
8 | 4, 7 | sylan2b 593 | 1 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5139 Po wpo 5577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-po 5579 |
This theorem is referenced by: po2nr 5593 po2ne 5595 pofun 5597 sonr 5602 poirr2 6116 predpoirr 6325 soisoi 7318 poxp 8109 poseq 8139 swoer 8730 frfi 9285 wemappo 9541 zorn2lem3 10490 ex-po 30182 pocnv 35255 epirron 42552 ipo0 43757 |
Copyright terms: Public domain | W3C validator |