MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poirr Structured version   Visualization version   GIF version

Theorem poirr 5620
Description: A partial order is irreflexive. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poirr ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem poirr
StepHypRef Expression
1 df-3an 1089 . . 3 ((𝐵𝐴𝐵𝐴𝐵𝐴) ↔ ((𝐵𝐴𝐵𝐴) ∧ 𝐵𝐴))
2 anabs1 661 . . 3 (((𝐵𝐴𝐵𝐴) ∧ 𝐵𝐴) ↔ (𝐵𝐴𝐵𝐴))
3 anidm 564 . . 3 ((𝐵𝐴𝐵𝐴) ↔ 𝐵𝐴)
41, 2, 33bitrri 298 . 2 (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴𝐵𝐴))
5 pocl 5615 . . . 4 (𝑅 Po 𝐴 → ((𝐵𝐴𝐵𝐴𝐵𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵))))
65imp 406 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐵𝐴𝐵𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵)))
76simpld 494 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐵𝐴𝐵𝐴)) → ¬ 𝐵𝑅𝐵)
84, 7sylan2b 593 1 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wcel 2108   class class class wbr 5166   Po wpo 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-po 5607
This theorem is referenced by:  po2nr  5622  po2ne  5624  pofun  5626  sonr  5632  poirr2  6156  predpoirr  6365  soisoi  7364  poxp  8169  poseq  8199  swoer  8794  frfi  9349  wemappo  9618  zorn2lem3  10567  ex-po  30467  pocnv  35725  weiunpo  36431  epirron  43215  ipo0  44418
  Copyright terms: Public domain W3C validator