MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poirr Structured version   Visualization version   GIF version

Theorem poirr 5558
Description: A partial order is irreflexive. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poirr ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem poirr
StepHypRef Expression
1 df-3an 1088 . . 3 ((𝐵𝐴𝐵𝐴𝐵𝐴) ↔ ((𝐵𝐴𝐵𝐴) ∧ 𝐵𝐴))
2 anabs1 662 . . 3 (((𝐵𝐴𝐵𝐴) ∧ 𝐵𝐴) ↔ (𝐵𝐴𝐵𝐴))
3 anidm 564 . . 3 ((𝐵𝐴𝐵𝐴) ↔ 𝐵𝐴)
41, 2, 33bitrri 298 . 2 (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴𝐵𝐴))
5 pocl 5554 . . . 4 (𝑅 Po 𝐴 → ((𝐵𝐴𝐵𝐴𝐵𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵))))
65imp 406 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐵𝐴𝐵𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵)))
76simpld 494 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐵𝐴𝐵𝐴)) → ¬ 𝐵𝑅𝐵)
84, 7sylan2b 594 1 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5107   Po wpo 5544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-po 5546
This theorem is referenced by:  po2nr  5560  po2ne  5562  pofun  5564  sonr  5570  poirr2  6097  predpoirr  6306  soisoi  7303  poxp  8107  poseq  8137  swoer  8702  frfi  9232  wemappo  9502  zorn2lem3  10451  ex-po  30364  pocnv  35750  weiunpo  36453  epirron  43243  ipo0  44438
  Copyright terms: Public domain W3C validator