![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > poirr | Structured version Visualization version GIF version |
Description: A partial order is irreflexive. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
poirr | ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1089 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ↔ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵 ∈ 𝐴)) | |
2 | anabs1 661 | . . 3 ⊢ (((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵 ∈ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) | |
3 | anidm 564 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ↔ 𝐵 ∈ 𝐴) | |
4 | 1, 2, 3 | 3bitrri 298 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) |
5 | pocl 5615 | . . . 4 ⊢ (𝑅 Po 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵 ∧ 𝐵𝑅𝐵) → 𝐵𝑅𝐵)))) | |
6 | 5 | imp 406 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵 ∧ 𝐵𝑅𝐵) → 𝐵𝑅𝐵))) |
7 | 6 | simpld 494 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
8 | 4, 7 | sylan2b 593 | 1 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 Po wpo 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-po 5607 |
This theorem is referenced by: po2nr 5622 po2ne 5624 pofun 5626 sonr 5632 poirr2 6156 predpoirr 6365 soisoi 7364 poxp 8169 poseq 8199 swoer 8794 frfi 9349 wemappo 9618 zorn2lem3 10567 ex-po 30467 pocnv 35725 weiunpo 36431 epirron 43215 ipo0 44418 |
Copyright terms: Public domain | W3C validator |