![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > poirr | Structured version Visualization version GIF version |
Description: A partial order is irreflexive. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
poirr | ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1087 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ↔ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵 ∈ 𝐴)) | |
2 | anabs1 661 | . . 3 ⊢ (((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵 ∈ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) | |
3 | anidm 564 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ↔ 𝐵 ∈ 𝐴) | |
4 | 1, 2, 3 | 3bitrri 298 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) |
5 | pocl 5597 | . . . 4 ⊢ (𝑅 Po 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵 ∧ 𝐵𝑅𝐵) → 𝐵𝑅𝐵)))) | |
6 | 5 | imp 406 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵 ∧ 𝐵𝑅𝐵) → 𝐵𝑅𝐵))) |
7 | 6 | simpld 494 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
8 | 4, 7 | sylan2b 593 | 1 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 class class class wbr 5148 Po wpo 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-po 5590 |
This theorem is referenced by: po2nr 5604 po2ne 5606 pofun 5608 sonr 5613 poirr2 6130 predpoirr 6339 soisoi 7336 poxp 8133 poseq 8163 swoer 8754 frfi 9312 wemappo 9572 zorn2lem3 10521 ex-po 30244 pocnv 35357 epirron 42682 ipo0 43886 |
Copyright terms: Public domain | W3C validator |