MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an42s Structured version   Visualization version   GIF version

Theorem an42s 661
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 660 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 650 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  nnmsucr  8566  ecopoveq  8768  sbthlem9  9036  mulclsr  11013  mulasssr  11019  distrsr  11020  ltsosr  11023  axmulf  11075  axmulass  11086  axdistr  11087  subadd4  11442  mulsub  11597  mgmidmo  18563  tgcl  22832  bwth  23273  pntibndlem2  27478  hosubadd4  31716  pibt2  37378  lindsadd  37580  fdc  37712  isdrngo2  37925  unichnidl  37998  acongtr  42940
  Copyright terms: Public domain W3C validator