Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an42s | Structured version Visualization version GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an41r3s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an42s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an41r3s.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | an4s 656 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
3 | 2 | ancom2s 646 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: nnmsucr 8418 ecopoveq 8565 sbthlem9 8831 mulclsr 10771 mulasssr 10777 distrsr 10778 ltsosr 10781 axmulf 10833 axmulass 10844 axdistr 10845 subadd4 11195 mulsub 11348 mgmidmo 18259 tgcl 22027 bwth 22469 pntibndlem2 26644 hosubadd4 30077 pibt2 35515 lindsadd 35697 fdc 35830 isdrngo2 36043 unichnidl 36116 acongtr 40716 |
Copyright terms: Public domain | W3C validator |