MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an42s Structured version   Visualization version   GIF version

Theorem an42s 661
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 660 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 650 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  nnmsucr  8646  ecopoveq  8841  sbthlem9  9114  mulclsr  11107  mulasssr  11113  distrsr  11114  ltsosr  11117  axmulf  11169  axmulass  11180  axdistr  11181  subadd4  11536  mulsub  11689  mgmidmo  18647  tgcl  22942  bwth  23383  pntibndlem2  27590  hosubadd4  31780  pibt2  37359  lindsadd  37561  fdc  37693  isdrngo2  37906  unichnidl  37979  acongtr  42935
  Copyright terms: Public domain W3C validator