MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an42s Structured version   Visualization version   GIF version

Theorem an42s 657
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 656 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 646 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  nnmsucr  8418  ecopoveq  8565  sbthlem9  8831  mulclsr  10771  mulasssr  10777  distrsr  10778  ltsosr  10781  axmulf  10833  axmulass  10844  axdistr  10845  subadd4  11195  mulsub  11348  mgmidmo  18259  tgcl  22027  bwth  22469  pntibndlem2  26644  hosubadd4  30077  pibt2  35515  lindsadd  35697  fdc  35830  isdrngo2  36043  unichnidl  36116  acongtr  40716
  Copyright terms: Public domain W3C validator