MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an42s Structured version   Visualization version   GIF version

Theorem an42s 660
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 659 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 649 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  nnmsucr  8681  ecopoveq  8876  sbthlem9  9157  mulclsr  11153  mulasssr  11159  distrsr  11160  ltsosr  11163  axmulf  11215  axmulass  11226  axdistr  11227  subadd4  11580  mulsub  11733  mgmidmo  18698  tgcl  22997  bwth  23439  pntibndlem2  27653  hosubadd4  31846  pibt2  37383  lindsadd  37573  fdc  37705  isdrngo2  37918  unichnidl  37991  acongtr  42935
  Copyright terms: Public domain W3C validator