| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an42s | Structured version Visualization version GIF version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an41r3s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| an42s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an41r3s.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
| 3 | 2 | ancom2s 650 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: nnmsucr 8642 ecopoveq 8837 sbthlem9 9110 mulclsr 11103 mulasssr 11109 distrsr 11110 ltsosr 11113 axmulf 11165 axmulass 11176 axdistr 11177 subadd4 11532 mulsub 11685 mgmidmo 18643 tgcl 22912 bwth 23353 pntibndlem2 27559 hosubadd4 31800 pibt2 37440 lindsadd 37642 fdc 37774 isdrngo2 37987 unichnidl 38060 acongtr 42977 |
| Copyright terms: Public domain | W3C validator |