![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an42s | Structured version Visualization version GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an41r3s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an42s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an41r3s.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | an4s 660 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
3 | 2 | ancom2s 650 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: nnmsucr 8662 ecopoveq 8857 sbthlem9 9130 mulclsr 11122 mulasssr 11128 distrsr 11129 ltsosr 11132 axmulf 11184 axmulass 11195 axdistr 11196 subadd4 11551 mulsub 11704 mgmidmo 18686 tgcl 22992 bwth 23434 pntibndlem2 27650 hosubadd4 31843 pibt2 37400 lindsadd 37600 fdc 37732 isdrngo2 37945 unichnidl 38018 acongtr 42967 |
Copyright terms: Public domain | W3C validator |