MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an42s Structured version   Visualization version   GIF version

Theorem an42s 661
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 660 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 650 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  nnmsucr  8589  ecopoveq  8791  sbthlem9  9059  mulclsr  11037  mulasssr  11043  distrsr  11044  ltsosr  11047  axmulf  11099  axmulass  11110  axdistr  11111  subadd4  11466  mulsub  11621  mgmidmo  18587  tgcl  22856  bwth  23297  pntibndlem2  27502  hosubadd4  31743  pibt2  37405  lindsadd  37607  fdc  37739  isdrngo2  37952  unichnidl  38025  acongtr  42967
  Copyright terms: Public domain W3C validator