MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an42s Structured version   Visualization version   GIF version

Theorem an42s 661
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 660 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 650 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  nnmsucr  8535  ecopoveq  8737  sbthlem9  9003  mulclsr  10970  mulasssr  10976  distrsr  10977  ltsosr  10980  axmulf  11032  axmulass  11043  axdistr  11044  subadd4  11400  mulsub  11555  mgmidmo  18563  tgcl  22879  bwth  23320  pntibndlem2  27524  hosubadd4  31786  pibt2  37451  lindsadd  37653  fdc  37785  isdrngo2  37998  unichnidl  38071  acongtr  43011
  Copyright terms: Public domain W3C validator