MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an42s Structured version   Visualization version   GIF version

Theorem an42s 657
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 656 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 646 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-an 397
This theorem is referenced by:  nnmsucr  8108  ecopoveq  8255  sbthlem9  8489  mulclsr  10359  mulasssr  10365  distrsr  10366  ltsosr  10369  axmulf  10421  axmulass  10432  axdistr  10433  subadd4  10784  mulsub  10937  mgmidmo  17702  tgcl  21265  bwth  21706  pntibndlem2  25853  hosubadd4  29278  pibt2  34250  lindsadd  34437  fdc  34573  isdrngo2  34789  unichnidl  34862  acongtr  39081
  Copyright terms: Public domain W3C validator