MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an42s Structured version   Visualization version   GIF version

Theorem an42s 658
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
an42s (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
21an4s 657 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
32ancom2s 647 1 (((𝜑𝜒) ∧ (𝜃𝜓)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  nnmsucr  8456  ecopoveq  8607  sbthlem9  8878  mulclsr  10840  mulasssr  10846  distrsr  10847  ltsosr  10850  axmulf  10902  axmulass  10913  axdistr  10914  subadd4  11265  mulsub  11418  mgmidmo  18344  tgcl  22119  bwth  22561  pntibndlem2  26739  hosubadd4  30176  pibt2  35588  lindsadd  35770  fdc  35903  isdrngo2  36116  unichnidl  36189  acongtr  40800
  Copyright terms: Public domain W3C validator