MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsan Structured version   Visualization version   GIF version

Theorem anabsan 665
Description: Absorption of antecedent with conjunction. (Contributed by NM, 24-Mar-1996.)
Hypothesis
Ref Expression
anabsan.1 (((𝜑𝜑) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
anabsan ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsan
StepHypRef Expression
1 pm4.24 567 . 2 (𝜑 ↔ (𝜑𝜑))
2 anabsan.1 . 2 (((𝜑𝜑) ∧ 𝜓) → 𝜒)
31, 2sylanb 584 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  anabss1  666  anabss5  668  anandis  678  iddvds  15715  1dvds  15716
  Copyright terms: Public domain W3C validator