| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsan | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent with conjunction. (Contributed by NM, 24-Mar-1996.) |
| Ref | Expression |
|---|---|
| anabsan.1 | ⊢ (((𝜑 ∧ 𝜑) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| anabsan | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 563 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | anabsan.1 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ 𝜓) → 𝜒) | |
| 3 | 1, 2 | sylanb 581 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabss1 666 anabss5 668 anandis 678 iddvds 16289 1dvds 16290 |
| Copyright terms: Public domain | W3C validator |