| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | pm4.71i 559 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabs7 664 biadaniALT 820 orabs 1000 prlem2 1055 dfeumo 2531 dfeu 2589 2moswapv 2623 2moswap 2638 exsnrex 4647 eliunxp 5804 asymref 6092 imaindm 6275 dffun9 6548 funcnv 6588 funcnv3 6589 f1ompt 7086 eufnfv 7206 dff1o6 7253 dfom2 7847 elxp4 7901 elxp5 7902 abexex 7953 dfoprab4 8037 tpostpos 8228 brwitnlem 8474 erovlem 8789 elixp2 8877 xpsnen 9029 elom3 9608 ttrclse 9687 cardval2 9951 isinfcard 10052 infmap2 10177 elznn0nn 12550 zrevaddcl 12585 qrevaddcl 12937 hash2prb 14444 hash3tpb 14467 cotr2g 14949 climreu 15529 isprm3 16660 hashbc0 16983 imasleval 17511 xpscf 17535 isssc 17789 issubmndb 18739 isgim 19201 eldprd 19943 brric2 20422 islmim 20976 tgval2 22850 eltg2b 22853 snfil 23758 isms2 24345 setsms 24375 elii1 24838 phtpcer 24901 elovolm 25383 ellimc2 25785 limcun 25803 1cubr 26759 fsumvma2 27132 dchrelbas3 27156 2lgslem1b 27310 dmscut 27730 madeval2 27768 made0 27792 nbgrel 29274 rusgrnumwwlks 29911 isgrpo 30433 mdsl2i 32258 cvmdi 32260 rabfmpunirn 32584 zarcls 33871 eulerpartlemn 34379 bnj580 34910 bnj1049 34971 snmlval 35325 satf0suclem 35369 fmlasuc0 35378 elmthm 35570 brtxp2 35876 brpprod3a 35881 bj-elid6 37165 ismgmOLD 37851 brres2 38264 brxrn2 38364 redundpim3 38628 prtlem100 38859 islln2 39512 islpln2 39537 islvol2 39581 prjspeclsp 42607 onsucrn 43267 dflim5 43325 en2pr 43543 pren2 43549 elmapintrab 43572 clcnvlem 43619 sprvalpw 47485 sprvalpwn0 47488 prprvalpw 47520 clnbgrel 47833 eliunxp2 48326 elbigo 48544 |
| Copyright terms: Public domain | W3C validator |