Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | pm4.71i 563 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
3 | 2 | biancomi 466 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: anabs7 663 biadaniALT 820 orabs 996 prlem2 1051 dfeumo 2554 dfeu 2615 2moswapv 2650 2moswap 2665 exsnrex 4578 eliunxp 5683 asymref 5953 dffun9 6369 funcnv 6409 funcnv3 6410 f1ompt 6872 eufnfv 6989 dff1o6 7030 dfom2 7587 elxp4 7638 elxp5 7639 abexex 7682 dfoprab4 7763 tpostpos 7928 brwitnlem 8148 erovlem 8409 elixp2 8496 xpsnen 8635 elom3 9157 cardval2 9466 isinfcard 9565 infmap2 9691 elznn0nn 12047 zrevaddcl 12079 qrevaddcl 12424 hash2prb 13895 cotr2g 14396 climreu 14974 isprm3 16092 hashbc0 16409 imasleval 16885 xpscf 16909 isssc 17162 issubmndb 18049 isgim 18482 eldprd 19207 brric2 19581 islmim 19915 tgval2 21669 eltg2b 21672 snfil 22577 isms2 23165 setsms 23195 elii1 23649 phtpcer 23709 elovolm 24188 ellimc2 24589 limcun 24607 1cubr 25540 fsumvma2 25910 dchrelbas3 25934 2lgslem1b 26088 nbgrel 27242 rusgrnumwwlks 27872 isgrpo 28392 mdsl2i 30217 cvmdi 30219 rabfmpunirn 30526 zarcls 31357 eulerpartlemn 31879 bnj580 32425 bnj1049 32486 snmlval 32821 satf0suclem 32865 fmlasuc0 32874 elmthm 33066 imaindm 33281 dmscut 33600 madeval2 33631 made0 33648 brtxp2 33766 brpprod3a 33771 bj-elid6 34899 ismgmOLD 35602 brres2 36003 brxrn2 36101 redundpim3 36339 prtlem100 36469 islln2 37121 islpln2 37146 islvol2 37190 prjspeclsp 39983 en2pr 40654 pren2 40660 elmapintrab 40684 clcnvlem 40731 sprvalpw 44414 sprvalpwn0 44417 prprvalpw 44449 eliunxp2 45151 elbigo 45379 |
Copyright terms: Public domain | W3C validator |