| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | pm4.71i 559 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabs7 664 biadaniALT 820 orabs 1000 prlem2 1055 dfeumo 2530 dfeu 2588 2moswapv 2622 2moswap 2637 exsnrex 4640 eliunxp 5791 asymref 6077 imaindm 6260 dffun9 6529 funcnv 6569 funcnv3 6570 f1ompt 7065 eufnfv 7185 dff1o6 7232 dfom2 7824 elxp4 7878 elxp5 7879 abexex 7929 dfoprab4 8013 tpostpos 8202 brwitnlem 8448 erovlem 8763 elixp2 8851 xpsnen 9002 elom3 9577 ttrclse 9656 cardval2 9920 isinfcard 10021 infmap2 10146 elznn0nn 12519 zrevaddcl 12554 qrevaddcl 12906 hash2prb 14413 hash3tpb 14436 cotr2g 14918 climreu 15498 isprm3 16629 hashbc0 16952 imasleval 17480 xpscf 17504 isssc 17758 issubmndb 18708 isgim 19170 eldprd 19912 brric2 20391 islmim 20945 tgval2 22819 eltg2b 22822 snfil 23727 isms2 24314 setsms 24344 elii1 24807 phtpcer 24870 elovolm 25352 ellimc2 25754 limcun 25772 1cubr 26728 fsumvma2 27101 dchrelbas3 27125 2lgslem1b 27279 dmscut 27699 madeval2 27737 made0 27761 nbgrel 29243 rusgrnumwwlks 29877 isgrpo 30399 mdsl2i 32224 cvmdi 32226 rabfmpunirn 32550 zarcls 33837 eulerpartlemn 34345 bnj580 34876 bnj1049 34937 snmlval 35291 satf0suclem 35335 fmlasuc0 35344 elmthm 35536 brtxp2 35842 brpprod3a 35847 bj-elid6 37131 ismgmOLD 37817 brres2 38230 brxrn2 38330 redundpim3 38594 prtlem100 38825 islln2 39478 islpln2 39503 islvol2 39547 prjspeclsp 42573 onsucrn 43233 dflim5 43291 en2pr 43509 pren2 43515 elmapintrab 43538 clcnvlem 43585 sprvalpw 47454 sprvalpwn0 47457 prprvalpw 47489 clnbgrel 47802 eliunxp2 48295 elbigo 48513 |
| Copyright terms: Public domain | W3C validator |