Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | pm4.71i 559 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
3 | 2 | biancomi 462 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anabs7 660 biadaniALT 817 orabs 995 prlem2 1052 dfeumo 2537 dfeu 2595 2moswapv 2631 2moswap 2646 exsnrex 4613 eliunxp 5735 asymref 6010 dffun9 6447 funcnv 6487 funcnv3 6488 f1ompt 6967 eufnfv 7087 dff1o6 7128 dfom2 7689 elxp4 7743 elxp5 7744 abexex 7787 dfoprab4 7868 tpostpos 8033 brwitnlem 8299 erovlem 8560 elixp2 8647 xpsnen 8796 elom3 9336 cardval2 9680 isinfcard 9779 infmap2 9905 elznn0nn 12263 zrevaddcl 12295 qrevaddcl 12640 hash2prb 14114 cotr2g 14615 climreu 15193 isprm3 16316 hashbc0 16634 imasleval 17169 xpscf 17193 isssc 17449 issubmndb 18359 isgim 18793 eldprd 19522 brric2 19904 islmim 20239 tgval2 22014 eltg2b 22017 snfil 22923 isms2 23511 setsms 23541 elii1 24004 phtpcer 24064 elovolm 24544 ellimc2 24946 limcun 24964 1cubr 25897 fsumvma2 26267 dchrelbas3 26291 2lgslem1b 26445 nbgrel 27610 rusgrnumwwlks 28240 isgrpo 28760 mdsl2i 30585 cvmdi 30587 rabfmpunirn 30892 zarcls 31726 eulerpartlemn 32248 bnj580 32793 bnj1049 32854 snmlval 33193 satf0suclem 33237 fmlasuc0 33246 elmthm 33438 imaindm 33659 ttrclse 33713 dmscut 33932 madeval2 33964 made0 33984 brtxp2 34110 brpprod3a 34115 bj-elid6 35268 ismgmOLD 35935 brres2 36334 brxrn2 36432 redundpim3 36670 prtlem100 36800 islln2 37452 islpln2 37477 islvol2 37521 prjspeclsp 40372 en2pr 41043 pren2 41049 elmapintrab 41073 clcnvlem 41120 sprvalpw 44820 sprvalpwn0 44823 prprvalpw 44855 eliunxp2 45557 elbigo 45785 |
Copyright terms: Public domain | W3C validator |