![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | pm4.71i 559 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
3 | 2 | biancomi 462 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anabs7 661 biadaniALT 818 orabs 996 prlem2 1053 dfeumo 2530 dfeu 2588 2moswapv 2624 2moswap 2639 exsnrex 4685 eliunxp 5838 asymref 6118 imaindm 6299 dffun9 6578 funcnv 6618 funcnv3 6619 f1ompt 7113 eufnfv 7234 dff1o6 7276 dfom2 7860 elxp4 7916 elxp5 7917 abexex 7961 dfoprab4 8044 tpostpos 8234 brwitnlem 8510 erovlem 8810 elixp2 8898 xpsnen 9058 elom3 9646 ttrclse 9725 cardval2 9989 isinfcard 10090 infmap2 10216 elznn0nn 12577 zrevaddcl 12612 qrevaddcl 12960 hash2prb 14438 cotr2g 14928 climreu 15505 isprm3 16625 hashbc0 16943 imasleval 17492 xpscf 17516 isssc 17772 issubmndb 18723 isgim 19177 eldprd 19916 brric2 20398 islmim 20818 tgval2 22680 eltg2b 22683 snfil 23589 isms2 24177 setsms 24209 elii1 24679 phtpcer 24742 elovolm 25225 ellimc2 25627 limcun 25645 1cubr 26580 fsumvma2 26950 dchrelbas3 26974 2lgslem1b 27128 dmscut 27546 madeval2 27582 made0 27602 nbgrel 28861 rusgrnumwwlks 29492 isgrpo 30014 mdsl2i 31839 cvmdi 31841 rabfmpunirn 32142 zarcls 33149 eulerpartlemn 33675 bnj580 34219 bnj1049 34280 snmlval 34617 satf0suclem 34661 fmlasuc0 34670 elmthm 34862 brtxp2 35154 brpprod3a 35159 bj-elid6 36355 ismgmOLD 37022 brres2 37440 brxrn2 37549 redundpim3 37804 prtlem100 38033 islln2 38686 islpln2 38711 islvol2 38755 prjspeclsp 41657 onsucrn 42324 dflim5 42382 en2pr 42601 pren2 42607 elmapintrab 42630 clcnvlem 42677 sprvalpw 46448 sprvalpwn0 46451 prprvalpw 46483 eliunxp2 47099 elbigo 47326 |
Copyright terms: Public domain | W3C validator |