![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | pm4.71i 559 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
3 | 2 | biancomi 462 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anabs7 663 biadaniALT 820 orabs 999 prlem2 1056 dfeumo 2540 dfeu 2598 2moswapv 2632 2moswap 2647 exsnrex 4704 eliunxp 5862 asymref 6148 imaindm 6330 dffun9 6607 funcnv 6647 funcnv3 6648 f1ompt 7145 eufnfv 7266 dff1o6 7311 dfom2 7905 elxp4 7962 elxp5 7963 abexex 8012 dfoprab4 8096 tpostpos 8287 brwitnlem 8563 erovlem 8871 elixp2 8959 xpsnen 9121 elom3 9717 ttrclse 9796 cardval2 10060 isinfcard 10161 infmap2 10286 elznn0nn 12653 zrevaddcl 12688 qrevaddcl 13036 hash2prb 14521 hash3tpb 14544 cotr2g 15025 climreu 15602 isprm3 16730 hashbc0 17052 imasleval 17601 xpscf 17625 isssc 17881 issubmndb 18840 isgim 19302 eldprd 20048 brric2 20532 islmim 21084 tgval2 22984 eltg2b 22987 snfil 23893 isms2 24481 setsms 24513 elii1 24983 phtpcer 25046 elovolm 25529 ellimc2 25932 limcun 25950 1cubr 26903 fsumvma2 27276 dchrelbas3 27300 2lgslem1b 27454 dmscut 27874 madeval2 27910 made0 27930 nbgrel 29375 rusgrnumwwlks 30007 isgrpo 30529 mdsl2i 32354 cvmdi 32356 rabfmpunirn 32671 zarcls 33820 eulerpartlemn 34346 bnj580 34889 bnj1049 34950 snmlval 35299 satf0suclem 35343 fmlasuc0 35352 elmthm 35544 brtxp2 35845 brpprod3a 35850 bj-elid6 37136 ismgmOLD 37810 brres2 38224 brxrn2 38331 redundpim3 38586 prtlem100 38815 islln2 39468 islpln2 39493 islvol2 39537 prjspeclsp 42567 onsucrn 43233 dflim5 43291 en2pr 43509 pren2 43515 elmapintrab 43538 clcnvlem 43585 sprvalpw 47354 sprvalpwn0 47357 prprvalpw 47389 clnbgrel 47701 eliunxp2 48058 elbigo 48285 |
Copyright terms: Public domain | W3C validator |