| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | pm4.71i 559 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabs7 664 biadaniALT 820 orabs 1000 prlem2 1055 dfeumo 2530 dfeu 2588 2moswapv 2622 2moswap 2637 exsnrex 4644 eliunxp 5801 asymref 6089 imaindm 6272 dffun9 6545 funcnv 6585 funcnv3 6586 f1ompt 7083 eufnfv 7203 dff1o6 7250 dfom2 7844 elxp4 7898 elxp5 7899 abexex 7950 dfoprab4 8034 tpostpos 8225 brwitnlem 8471 erovlem 8786 elixp2 8874 xpsnen 9025 elom3 9601 ttrclse 9680 cardval2 9944 isinfcard 10045 infmap2 10170 elznn0nn 12543 zrevaddcl 12578 qrevaddcl 12930 hash2prb 14437 hash3tpb 14460 cotr2g 14942 climreu 15522 isprm3 16653 hashbc0 16976 imasleval 17504 xpscf 17528 isssc 17782 issubmndb 18732 isgim 19194 eldprd 19936 brric2 20415 islmim 20969 tgval2 22843 eltg2b 22846 snfil 23751 isms2 24338 setsms 24368 elii1 24831 phtpcer 24894 elovolm 25376 ellimc2 25778 limcun 25796 1cubr 26752 fsumvma2 27125 dchrelbas3 27149 2lgslem1b 27303 dmscut 27723 madeval2 27761 made0 27785 nbgrel 29267 rusgrnumwwlks 29904 isgrpo 30426 mdsl2i 32251 cvmdi 32253 rabfmpunirn 32577 zarcls 33864 eulerpartlemn 34372 bnj580 34903 bnj1049 34964 snmlval 35318 satf0suclem 35362 fmlasuc0 35371 elmthm 35563 brtxp2 35869 brpprod3a 35874 bj-elid6 37158 ismgmOLD 37844 brres2 38257 brxrn2 38357 redundpim3 38621 prtlem100 38852 islln2 39505 islpln2 39530 islvol2 39574 prjspeclsp 42600 onsucrn 43260 dflim5 43318 en2pr 43536 pren2 43542 elmapintrab 43565 clcnvlem 43612 sprvalpw 47481 sprvalpwn0 47484 prprvalpw 47516 clnbgrel 47829 eliunxp2 48322 elbigo 48540 |
| Copyright terms: Public domain | W3C validator |