| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | pm4.71i 559 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabs7 664 biadaniALT 820 orabs 1000 prlem2 1055 dfeumo 2532 dfeu 2590 2moswapv 2624 2moswap 2639 exsnrex 4630 eliunxp 5776 asymref 6062 imaindm 6246 dffun9 6510 funcnv 6550 funcnv3 6551 f1ompt 7044 eufnfv 7163 dff1o6 7209 dfom2 7798 elxp4 7852 elxp5 7853 abexex 7903 dfoprab4 7987 tpostpos 8176 brwitnlem 8422 erovlem 8737 elixp2 8825 xpsnen 8974 elom3 9538 ttrclse 9617 cardval2 9884 isinfcard 9983 infmap2 10108 elznn0nn 12482 zrevaddcl 12517 qrevaddcl 12869 hash2prb 14379 hash3tpb 14402 cotr2g 14883 climreu 15463 isprm3 16594 hashbc0 16917 imasleval 17445 xpscf 17469 isssc 17727 issubmndb 18713 isgim 19174 eldprd 19918 brric2 20421 islmim 20996 tgval2 22871 eltg2b 22874 snfil 23779 isms2 24365 setsms 24395 elii1 24858 phtpcer 24921 elovolm 25403 ellimc2 25805 limcun 25823 1cubr 26779 fsumvma2 27152 dchrelbas3 27176 2lgslem1b 27330 dmscut 27752 madeval2 27794 made0 27818 nbgrel 29318 rusgrnumwwlks 29955 isgrpo 30477 mdsl2i 32302 cvmdi 32304 rabfmpunirn 32635 zarcls 33887 eulerpartlemn 34394 bnj580 34925 bnj1049 34986 snmlval 35375 satf0suclem 35419 fmlasuc0 35428 elmthm 35620 brtxp2 35923 brpprod3a 35928 bj-elid6 37214 ismgmOLD 37900 brres2 38315 brxrn2 38418 dfsuccl4 38497 redundpim3 38736 prtlem100 38968 islln2 39620 islpln2 39645 islvol2 39689 prjspeclsp 42715 onsucrn 43374 dflim5 43432 en2pr 43650 pren2 43656 elmapintrab 43679 clcnvlem 43726 sprvalpw 47590 sprvalpwn0 47593 prprvalpw 47625 clnbgrel 47938 eliunxp2 48444 elbigo 48662 |
| Copyright terms: Public domain | W3C validator |