![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | pm4.71i 558 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
3 | 2 | biancomi 461 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: anabs7 660 biadaniALT 817 orabs 995 prlem2 1052 dfeumo 2529 dfeu 2587 2moswapv 2623 2moswap 2638 exsnrex 4683 eliunxp 5836 asymref 6116 imaindm 6297 dffun9 6576 funcnv 6616 funcnv3 6617 f1ompt 7111 eufnfv 7232 dff1o6 7275 dfom2 7859 elxp4 7915 elxp5 7916 abexex 7960 dfoprab4 8043 tpostpos 8233 brwitnlem 8509 erovlem 8809 elixp2 8897 xpsnen 9057 elom3 9645 ttrclse 9724 cardval2 9988 isinfcard 10089 infmap2 10215 elznn0nn 12576 zrevaddcl 12611 qrevaddcl 12959 hash2prb 14437 cotr2g 14927 climreu 15504 isprm3 16624 hashbc0 16942 imasleval 17491 xpscf 17515 isssc 17771 issubmndb 18722 isgim 19176 eldprd 19915 brric2 20397 islmim 20817 tgval2 22679 eltg2b 22682 snfil 23588 isms2 24176 setsms 24208 elii1 24678 phtpcer 24741 elovolm 25224 ellimc2 25626 limcun 25644 1cubr 26583 fsumvma2 26953 dchrelbas3 26977 2lgslem1b 27131 dmscut 27549 madeval2 27585 made0 27605 nbgrel 28864 rusgrnumwwlks 29495 isgrpo 30017 mdsl2i 31842 cvmdi 31844 rabfmpunirn 32145 zarcls 33152 eulerpartlemn 33678 bnj580 34222 bnj1049 34283 snmlval 34620 satf0suclem 34664 fmlasuc0 34673 elmthm 34865 brtxp2 35157 brpprod3a 35162 bj-elid6 36354 ismgmOLD 37021 brres2 37439 brxrn2 37548 redundpim3 37803 prtlem100 38032 islln2 38685 islpln2 38710 islvol2 38754 prjspeclsp 41656 onsucrn 42323 dflim5 42381 en2pr 42600 pren2 42606 elmapintrab 42629 clcnvlem 42676 sprvalpw 46446 sprvalpwn0 46449 prprvalpw 46481 eliunxp2 47097 elbigo 47324 |
Copyright terms: Public domain | W3C validator |