![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71r 556 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | mpbi 222 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: anabs7 656 biadaniALT 858 biadan2OLD 860 orabs 1028 prlem2 1084 dfeu 2666 2moswap 2726 exsnrex 4440 eliunxp 5491 asymref 5753 dffun9 6151 funcnv 6190 funcnv3 6191 f1ompt 6629 eufnfv 6746 dff1o6 6785 dfom2 7327 elxp4 7371 elxp5 7372 abexex 7410 dfoprab4 7486 tpostpos 7636 brwitnlem 7853 erovlem 8108 elixp2 8178 xpsnen 8312 elom3 8821 cardval2 9129 isinfcard 9227 infmap2 9354 elznn0nn 11717 zrevaddcl 11749 qrevaddcl 12092 hash2prb 13542 cotr2g 14093 climreu 14663 isprm3 15767 hashbc0 16079 imasleval 16553 isssc 16831 isgim 18054 eldprd 18756 brric2 19100 islmim 19420 tgval2 21130 eltg2b 21133 snfil 22037 isms2 22624 setsms 22654 elii1 23103 phtpcer 23163 elovolm 23640 ellimc2 24039 limcun 24057 1cubr 24981 fsumvma2 25351 dchrelbas3 25375 2lgslem1b 25529 nbgrel 26636 rusgrnumwwlks 27302 rusgrnumwwlksOLD 27303 isgrpo 27906 mdsl2i 29735 cvmdi 29737 rabfmpunirn 30001 eulerpartlemn 30987 bnj580 31528 bnj1049 31587 snmlval 31858 elmthm 32018 imaindm 32219 dmscut 32456 madeval2 32474 brtxp2 32526 brpprod3a 32531 ismgmOLD 34190 brres2 34585 brxrn2 34684 redpim3 34918 prtlem100 34933 islln2 35585 islpln2 35610 islvol2 35654 elmapintrab 38722 clcnvlem 38770 sprvalpw 42576 sprvalpwn0 42579 eliunxp2 42958 elbigo 43191 |
Copyright terms: Public domain | W3C validator |