| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | pm4.71i 559 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabs7 664 biadaniALT 820 orabs 1000 prlem2 1055 dfeumo 2536 dfeu 2594 2moswapv 2628 2moswap 2643 exsnrex 4656 eliunxp 5817 asymref 6105 imaindm 6288 dffun9 6565 funcnv 6605 funcnv3 6606 f1ompt 7101 eufnfv 7221 dff1o6 7268 dfom2 7863 elxp4 7918 elxp5 7919 abexex 7970 dfoprab4 8054 tpostpos 8245 brwitnlem 8519 erovlem 8827 elixp2 8915 xpsnen 9069 elom3 9662 ttrclse 9741 cardval2 10005 isinfcard 10106 infmap2 10231 elznn0nn 12602 zrevaddcl 12637 qrevaddcl 12987 hash2prb 14490 hash3tpb 14513 cotr2g 14995 climreu 15572 isprm3 16702 hashbc0 17025 imasleval 17555 xpscf 17579 isssc 17833 issubmndb 18783 isgim 19245 eldprd 19987 brric2 20466 islmim 21020 tgval2 22894 eltg2b 22897 snfil 23802 isms2 24389 setsms 24419 elii1 24882 phtpcer 24945 elovolm 25428 ellimc2 25830 limcun 25848 1cubr 26804 fsumvma2 27177 dchrelbas3 27201 2lgslem1b 27355 dmscut 27775 madeval2 27813 made0 27837 nbgrel 29319 rusgrnumwwlks 29956 isgrpo 30478 mdsl2i 32303 cvmdi 32305 rabfmpunirn 32631 zarcls 33905 eulerpartlemn 34413 bnj580 34944 bnj1049 35005 snmlval 35353 satf0suclem 35397 fmlasuc0 35406 elmthm 35598 brtxp2 35899 brpprod3a 35904 bj-elid6 37188 ismgmOLD 37874 brres2 38286 brxrn2 38393 redundpim3 38648 prtlem100 38877 islln2 39530 islpln2 39555 islvol2 39599 prjspeclsp 42635 onsucrn 43295 dflim5 43353 en2pr 43571 pren2 43577 elmapintrab 43600 clcnvlem 43647 sprvalpw 47494 sprvalpwn0 47497 prprvalpw 47529 clnbgrel 47842 eliunxp2 48309 elbigo 48531 |
| Copyright terms: Public domain | W3C validator |