| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | pm4.71i 559 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabs7 664 biadaniALT 820 orabs 1000 prlem2 1055 dfeumo 2530 dfeu 2588 2moswapv 2622 2moswap 2637 exsnrex 4632 eliunxp 5780 asymref 6065 imaindm 6247 dffun9 6511 funcnv 6551 funcnv3 6552 f1ompt 7045 eufnfv 7165 dff1o6 7212 dfom2 7801 elxp4 7855 elxp5 7856 abexex 7906 dfoprab4 7990 tpostpos 8179 brwitnlem 8425 erovlem 8740 elixp2 8828 xpsnen 8978 elom3 9544 ttrclse 9623 cardval2 9887 isinfcard 9986 infmap2 10111 elznn0nn 12485 zrevaddcl 12520 qrevaddcl 12872 hash2prb 14379 hash3tpb 14402 cotr2g 14883 climreu 15463 isprm3 16594 hashbc0 16917 imasleval 17445 xpscf 17469 isssc 17727 issubmndb 18679 isgim 19141 eldprd 19885 brric2 20391 islmim 20966 tgval2 22841 eltg2b 22844 snfil 23749 isms2 24336 setsms 24366 elii1 24829 phtpcer 24892 elovolm 25374 ellimc2 25776 limcun 25794 1cubr 26750 fsumvma2 27123 dchrelbas3 27147 2lgslem1b 27301 dmscut 27722 madeval2 27763 made0 27787 nbgrel 29285 rusgrnumwwlks 29919 isgrpo 30441 mdsl2i 32266 cvmdi 32268 rabfmpunirn 32596 zarcls 33841 eulerpartlemn 34349 bnj580 34880 bnj1049 34941 snmlval 35304 satf0suclem 35348 fmlasuc0 35357 elmthm 35549 brtxp2 35855 brpprod3a 35860 bj-elid6 37144 ismgmOLD 37830 brres2 38243 brxrn2 38343 redundpim3 38607 prtlem100 38838 islln2 39490 islpln2 39515 islvol2 39559 prjspeclsp 42585 onsucrn 43244 dflim5 43302 en2pr 43520 pren2 43526 elmapintrab 43549 clcnvlem 43596 sprvalpw 47464 sprvalpwn0 47467 prprvalpw 47499 clnbgrel 47812 eliunxp2 48318 elbigo 48536 |
| Copyright terms: Public domain | W3C validator |