| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | pm4.71i 559 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| 3 | 2 | biancomi 462 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabs7 664 biadaniALT 820 orabs 1000 prlem2 1055 dfeumo 2530 dfeu 2588 2moswapv 2622 2moswap 2637 exsnrex 4640 eliunxp 5791 asymref 6077 imaindm 6260 dffun9 6529 funcnv 6569 funcnv3 6570 f1ompt 7065 eufnfv 7185 dff1o6 7232 dfom2 7824 elxp4 7878 elxp5 7879 abexex 7929 dfoprab4 8013 tpostpos 8202 brwitnlem 8448 erovlem 8763 elixp2 8851 xpsnen 9002 elom3 9577 ttrclse 9656 cardval2 9920 isinfcard 10021 infmap2 10146 elznn0nn 12519 zrevaddcl 12554 qrevaddcl 12906 hash2prb 14413 hash3tpb 14436 cotr2g 14918 climreu 15498 isprm3 16629 hashbc0 16952 imasleval 17480 xpscf 17504 isssc 17762 issubmndb 18714 isgim 19176 eldprd 19920 brric2 20426 islmim 21001 tgval2 22876 eltg2b 22879 snfil 23784 isms2 24371 setsms 24401 elii1 24864 phtpcer 24927 elovolm 25409 ellimc2 25811 limcun 25829 1cubr 26785 fsumvma2 27158 dchrelbas3 27182 2lgslem1b 27336 dmscut 27757 madeval2 27798 made0 27822 nbgrel 29320 rusgrnumwwlks 29954 isgrpo 30476 mdsl2i 32301 cvmdi 32303 rabfmpunirn 32627 zarcls 33857 eulerpartlemn 34365 bnj580 34896 bnj1049 34957 snmlval 35311 satf0suclem 35355 fmlasuc0 35364 elmthm 35556 brtxp2 35862 brpprod3a 35867 bj-elid6 37151 ismgmOLD 37837 brres2 38250 brxrn2 38350 redundpim3 38614 prtlem100 38845 islln2 39498 islpln2 39523 islvol2 39567 prjspeclsp 42593 onsucrn 43253 dflim5 43311 en2pr 43529 pren2 43535 elmapintrab 43558 clcnvlem 43605 sprvalpw 47474 sprvalpwn0 47477 prprvalpw 47509 clnbgrel 47822 eliunxp2 48315 elbigo 48533 |
| Copyright terms: Public domain | W3C validator |