Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | pm4.71i 560 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
3 | 2 | biancomi 463 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anabs7 661 biadaniALT 818 orabs 996 prlem2 1053 dfeumo 2537 dfeu 2595 2moswapv 2631 2moswap 2646 exsnrex 4616 eliunxp 5746 asymref 6021 dffun9 6463 funcnv 6503 funcnv3 6504 f1ompt 6985 eufnfv 7105 dff1o6 7147 dfom2 7714 elxp4 7769 elxp5 7770 abexex 7814 dfoprab4 7895 tpostpos 8062 brwitnlem 8337 erovlem 8602 elixp2 8689 xpsnen 8842 elom3 9406 ttrclse 9485 cardval2 9749 isinfcard 9848 infmap2 9974 elznn0nn 12333 zrevaddcl 12365 qrevaddcl 12711 hash2prb 14186 cotr2g 14687 climreu 15265 isprm3 16388 hashbc0 16706 imasleval 17252 xpscf 17276 isssc 17532 issubmndb 18444 isgim 18878 eldprd 19607 brric2 19989 islmim 20324 tgval2 22106 eltg2b 22109 snfil 23015 isms2 23603 setsms 23635 elii1 24098 phtpcer 24158 elovolm 24639 ellimc2 25041 limcun 25059 1cubr 25992 fsumvma2 26362 dchrelbas3 26386 2lgslem1b 26540 nbgrel 27707 rusgrnumwwlks 28339 isgrpo 28859 mdsl2i 30684 cvmdi 30686 rabfmpunirn 30990 zarcls 31824 eulerpartlemn 32348 bnj580 32893 bnj1049 32954 snmlval 33293 satf0suclem 33337 fmlasuc0 33346 elmthm 33538 imaindm 33753 dmscut 34005 madeval2 34037 made0 34057 brtxp2 34183 brpprod3a 34188 bj-elid6 35341 ismgmOLD 36008 brres2 36407 brxrn2 36505 redundpim3 36743 prtlem100 36873 islln2 37525 islpln2 37550 islvol2 37594 prjspeclsp 40451 en2pr 41154 pren2 41160 elmapintrab 41184 clcnvlem 41231 sprvalpw 44932 sprvalpwn0 44935 prprvalpw 44967 eliunxp2 45669 elbigo 45897 |
Copyright terms: Public domain | W3C validator |