![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71ri | Structured version Visualization version GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | pm4.71i 561 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
3 | 2 | biancomi 464 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: anabs7 663 biadaniALT 820 orabs 998 prlem2 1055 dfeumo 2532 dfeu 2590 2moswapv 2626 2moswap 2641 exsnrex 4685 eliunxp 5838 asymref 6118 imaindm 6299 dffun9 6578 funcnv 6618 funcnv3 6619 f1ompt 7111 eufnfv 7231 dff1o6 7273 dfom2 7857 elxp4 7913 elxp5 7914 abexex 7958 dfoprab4 8041 tpostpos 8231 brwitnlem 8507 erovlem 8807 elixp2 8895 xpsnen 9055 elom3 9643 ttrclse 9722 cardval2 9986 isinfcard 10087 infmap2 10213 elznn0nn 12572 zrevaddcl 12607 qrevaddcl 12955 hash2prb 14433 cotr2g 14923 climreu 15500 isprm3 16620 hashbc0 16938 imasleval 17487 xpscf 17511 isssc 17767 issubmndb 18686 isgim 19136 eldprd 19874 brric2 20285 islmim 20673 tgval2 22459 eltg2b 22462 snfil 23368 isms2 23956 setsms 23988 elii1 24451 phtpcer 24511 elovolm 24992 ellimc2 25394 limcun 25412 1cubr 26347 fsumvma2 26717 dchrelbas3 26741 2lgslem1b 26895 dmscut 27312 madeval2 27348 made0 27368 nbgrel 28597 rusgrnumwwlks 29228 isgrpo 29750 mdsl2i 31575 cvmdi 31577 rabfmpunirn 31878 zarcls 32854 eulerpartlemn 33380 bnj580 33924 bnj1049 33985 snmlval 34322 satf0suclem 34366 fmlasuc0 34375 elmthm 34567 brtxp2 34853 brpprod3a 34858 bj-elid6 36051 ismgmOLD 36718 brres2 37136 brxrn2 37245 redundpim3 37500 prtlem100 37729 islln2 38382 islpln2 38407 islvol2 38451 prjspeclsp 41354 onsucrn 42021 dflim5 42079 en2pr 42298 pren2 42304 elmapintrab 42327 clcnvlem 42374 sprvalpw 46148 sprvalpwn0 46151 prprvalpw 46183 eliunxp2 47009 elbigo 47237 |
Copyright terms: Public domain | W3C validator |