![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 470 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
2 | an12 644 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
3 | 2 | bianass 641 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
4 | 1, 3 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: an42 656 an4s 659 anandi 675 anandir 676 an6 1446 an33reanOLD 1485 reeanlem 3226 reu2 3722 rmo4 3727 rmo3f 3731 rmo3 3884 2reu1 3892 2reu4lem 4526 disjiun 5136 inxp 5833 xp11 6175 dfpo2 6296 fununi 6624 fun 6754 resoprab2 7527 sorpsscmpl 7724 xporderlem 8113 poxp 8114 poseq 8144 fprlem1 8285 frrlem15 9752 dfac5lem1 10118 zorn2lem6 10496 cju 12208 ixxin 13341 elfzo2 13635 xpcogend 14921 summo 15663 prodmo 15880 dfiso2 17719 issubmd 18687 gsumval3eu 19772 dvdsrtr 20182 isirred2 20235 lspsolvlem 20755 domnmuln0 20914 abvn0b 20920 unocv 21233 pf1ind 21874 ordtrest2lem 22707 lmmo 22884 ptbasin 23081 txbasval 23110 txcnp 23124 txlm 23152 tx1stc 23154 tx2ndc 23155 isfild 23362 txflf 23510 isclmp 24613 mbfi1flimlem 25240 iblcnlem1 25305 iblre 25311 iblcn 25316 logfaclbnd 26725 axcontlem4 28225 axcontlem7 28228 ocsh 30536 pjhthmo 30555 5oalem6 30912 cvnbtwn4 31542 superpos 31607 cdj3i 31694 13an22anass 31706 smatrcl 32776 ordtrest2NEWlem 32902 cusgr3cyclex 34127 lineext 35048 outsideoftr 35101 hilbert1.2 35127 lineintmo 35129 neibastop1 35244 bj-inrab 35807 isbasisrelowllem1 36236 isbasisrelowllem2 36237 ptrest 36487 poimirlem26 36514 ismblfin 36529 unirep 36582 inixp 36596 ablo4pnp 36748 keridl 36900 ispridlc 36938 anan 37093 disjecxrn 37259 coss1cnvres 37287 br1cosscnvxrn 37344 dfeldisj3 37589 antisymrelres 37633 prtlem70 37727 lcvbr3 37893 cvrnbtwn4 38149 linepsubN 38623 pmapsub 38639 pmapjoin 38723 ltrnu 38992 diblsmopel 40042 pell1234qrmulcl 41593 isdomn3 41946 ifpan23 42211 ifpidg 42242 ifpbibib 42261 uneqsn 42776 isthincd2 47658 |
Copyright terms: Public domain | W3C validator |