| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
| 2 | an12 645 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
| 3 | 2 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42 657 an4s 660 anandi 676 anandir 677 an6 1447 reeanlem 3200 reu2 3687 rmo4 3692 rmo3f 3696 rmo3 3843 2reu1 3851 2reu4lem 4475 disjiun 5083 inxp 5778 inxpOLD 5779 xp11 6128 dfpo2 6248 fununi 6561 fun 6690 resoprab2 7472 sorpsscmpl 7674 xporderlem 8067 poxp 8068 poseq 8098 fprlem1 8240 frrlem15 9672 dfac5lem1 10036 zorn2lem6 10414 cju 12143 ixxin 13284 elfzo2 13584 xpcogend 14900 summo 15643 prodmo 15862 dfiso2 17698 issubmd 18699 gsumval3eu 19802 dvdsrtr 20272 isirred2 20325 domnmuln0 20613 isdomn3 20619 abvn0b 20740 lspsolvlem 21068 unocv 21606 pf1ind 22259 ordtrest2lem 23107 lmmo 23284 ptbasin 23481 txbasval 23510 txcnp 23524 txlm 23552 tx1stc 23554 tx2ndc 23555 isfild 23762 txflf 23910 isclmp 25014 mbfi1flimlem 25640 iblcnlem1 25706 iblre 25712 iblcn 25717 logfaclbnd 27150 axcontlem4 28931 axcontlem7 28934 ocsh 31246 pjhthmo 31265 5oalem6 31622 cvnbtwn4 32252 superpos 32317 cdj3i 32404 13an22anass 32427 smatrcl 33782 ordtrest2NEWlem 33908 cusgr3cyclex 35128 lineext 36069 outsideoftr 36122 hilbert1.2 36148 lineintmo 36150 neibastop1 36352 bj-inrab 36920 isbasisrelowllem1 37348 isbasisrelowllem2 37349 ptrest 37618 poimirlem26 37645 ismblfin 37660 unirep 37713 inixp 37727 ablo4pnp 37879 keridl 38031 ispridlc 38069 anan 38222 disjecxrn 38380 coss1cnvres 38413 br1cosscnvxrn 38470 dfeldisj3 38716 antisymrelres 38760 prtlem70 38855 lcvbr3 39021 cvrnbtwn4 39277 linepsubN 39751 pmapsub 39767 pmapjoin 39851 ltrnu 40120 diblsmopel 41170 pell1234qrmulcl 42848 ifpan23 43453 ifpidg 43484 ifpbibib 43503 uneqsn 44018 isthincd2 49442 |
| Copyright terms: Public domain | W3C validator |