| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
| 2 | an12 645 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
| 3 | 2 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42 657 an4s 660 anandi 676 anandir 677 an6 1447 reeanlem 3209 reu2 3699 rmo4 3704 rmo3f 3708 rmo3 3855 2reu1 3863 2reu4lem 4488 disjiun 5098 inxp 5798 inxpOLD 5799 xp11 6151 dfpo2 6272 fununi 6594 fun 6725 resoprab2 7511 sorpsscmpl 7713 xporderlem 8109 poxp 8110 poseq 8140 fprlem1 8282 frrlem15 9717 dfac5lem1 10083 zorn2lem6 10461 cju 12189 ixxin 13330 elfzo2 13630 xpcogend 14947 summo 15690 prodmo 15909 dfiso2 17741 issubmd 18740 gsumval3eu 19841 dvdsrtr 20284 isirred2 20337 domnmuln0 20625 isdomn3 20631 abvn0b 20752 lspsolvlem 21059 unocv 21596 pf1ind 22249 ordtrest2lem 23097 lmmo 23274 ptbasin 23471 txbasval 23500 txcnp 23514 txlm 23542 tx1stc 23544 tx2ndc 23545 isfild 23752 txflf 23900 isclmp 25004 mbfi1flimlem 25630 iblcnlem1 25696 iblre 25702 iblcn 25707 logfaclbnd 27140 axcontlem4 28901 axcontlem7 28904 ocsh 31219 pjhthmo 31238 5oalem6 31595 cvnbtwn4 32225 superpos 32290 cdj3i 32377 13an22anass 32400 smatrcl 33793 ordtrest2NEWlem 33919 cusgr3cyclex 35130 lineext 36071 outsideoftr 36124 hilbert1.2 36150 lineintmo 36152 neibastop1 36354 bj-inrab 36922 isbasisrelowllem1 37350 isbasisrelowllem2 37351 ptrest 37620 poimirlem26 37647 ismblfin 37662 unirep 37715 inixp 37729 ablo4pnp 37881 keridl 38033 ispridlc 38071 anan 38224 disjecxrn 38382 coss1cnvres 38415 br1cosscnvxrn 38472 dfeldisj3 38718 antisymrelres 38762 prtlem70 38857 lcvbr3 39023 cvrnbtwn4 39279 linepsubN 39753 pmapsub 39769 pmapjoin 39853 ltrnu 40122 diblsmopel 41172 pell1234qrmulcl 42850 ifpan23 43456 ifpidg 43487 ifpbibib 43506 uneqsn 44021 isthincd2 49430 |
| Copyright terms: Public domain | W3C validator |