| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
| 2 | an12 645 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
| 3 | 2 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42 657 an4s 660 anandi 676 anandir 677 an6 1447 reeanlem 3206 reu2 3693 rmo4 3698 rmo3f 3702 rmo3 3849 2reu1 3857 2reu4lem 4481 disjiun 5090 inxp 5785 inxpOLD 5786 xp11 6136 dfpo2 6257 fununi 6575 fun 6704 resoprab2 7488 sorpsscmpl 7690 xporderlem 8083 poxp 8084 poseq 8114 fprlem1 8256 frrlem15 9686 dfac5lem1 10052 zorn2lem6 10430 cju 12158 ixxin 13299 elfzo2 13599 xpcogend 14916 summo 15659 prodmo 15878 dfiso2 17710 issubmd 18709 gsumval3eu 19810 dvdsrtr 20253 isirred2 20306 domnmuln0 20594 isdomn3 20600 abvn0b 20721 lspsolvlem 21028 unocv 21565 pf1ind 22218 ordtrest2lem 23066 lmmo 23243 ptbasin 23440 txbasval 23469 txcnp 23483 txlm 23511 tx1stc 23513 tx2ndc 23514 isfild 23721 txflf 23869 isclmp 24973 mbfi1flimlem 25599 iblcnlem1 25665 iblre 25671 iblcn 25676 logfaclbnd 27109 axcontlem4 28870 axcontlem7 28873 ocsh 31185 pjhthmo 31204 5oalem6 31561 cvnbtwn4 32191 superpos 32256 cdj3i 32343 13an22anass 32366 smatrcl 33759 ordtrest2NEWlem 33885 cusgr3cyclex 35096 lineext 36037 outsideoftr 36090 hilbert1.2 36116 lineintmo 36118 neibastop1 36320 bj-inrab 36888 isbasisrelowllem1 37316 isbasisrelowllem2 37317 ptrest 37586 poimirlem26 37613 ismblfin 37628 unirep 37681 inixp 37695 ablo4pnp 37847 keridl 37999 ispridlc 38037 anan 38190 disjecxrn 38348 coss1cnvres 38381 br1cosscnvxrn 38438 dfeldisj3 38684 antisymrelres 38728 prtlem70 38823 lcvbr3 38989 cvrnbtwn4 39245 linepsubN 39719 pmapsub 39735 pmapjoin 39819 ltrnu 40088 diblsmopel 41138 pell1234qrmulcl 42816 ifpan23 43422 ifpidg 43453 ifpbibib 43472 uneqsn 43987 isthincd2 49399 |
| Copyright terms: Public domain | W3C validator |