| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
| 2 | an12 645 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
| 3 | 2 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42 657 an4s 660 anandi 676 anandir 677 an6 1447 reeanlem 3208 reu2 3696 rmo4 3701 rmo3f 3705 rmo3 3852 2reu1 3860 2reu4lem 4485 disjiun 5095 inxp 5795 inxpOLD 5796 xp11 6148 dfpo2 6269 fununi 6591 fun 6722 resoprab2 7508 sorpsscmpl 7710 xporderlem 8106 poxp 8107 poseq 8137 fprlem1 8279 frrlem15 9710 dfac5lem1 10076 zorn2lem6 10454 cju 12182 ixxin 13323 elfzo2 13623 xpcogend 14940 summo 15683 prodmo 15902 dfiso2 17734 issubmd 18733 gsumval3eu 19834 dvdsrtr 20277 isirred2 20330 domnmuln0 20618 isdomn3 20624 abvn0b 20745 lspsolvlem 21052 unocv 21589 pf1ind 22242 ordtrest2lem 23090 lmmo 23267 ptbasin 23464 txbasval 23493 txcnp 23507 txlm 23535 tx1stc 23537 tx2ndc 23538 isfild 23745 txflf 23893 isclmp 24997 mbfi1flimlem 25623 iblcnlem1 25689 iblre 25695 iblcn 25700 logfaclbnd 27133 axcontlem4 28894 axcontlem7 28897 ocsh 31212 pjhthmo 31231 5oalem6 31588 cvnbtwn4 32218 superpos 32283 cdj3i 32370 13an22anass 32393 smatrcl 33786 ordtrest2NEWlem 33912 cusgr3cyclex 35123 lineext 36064 outsideoftr 36117 hilbert1.2 36143 lineintmo 36145 neibastop1 36347 bj-inrab 36915 isbasisrelowllem1 37343 isbasisrelowllem2 37344 ptrest 37613 poimirlem26 37640 ismblfin 37655 unirep 37708 inixp 37722 ablo4pnp 37874 keridl 38026 ispridlc 38064 anan 38217 disjecxrn 38375 coss1cnvres 38408 br1cosscnvxrn 38465 dfeldisj3 38711 antisymrelres 38755 prtlem70 38850 lcvbr3 39016 cvrnbtwn4 39272 linepsubN 39746 pmapsub 39762 pmapjoin 39846 ltrnu 40115 diblsmopel 41165 pell1234qrmulcl 42843 ifpan23 43449 ifpidg 43480 ifpbibib 43499 uneqsn 44014 isthincd2 49426 |
| Copyright terms: Public domain | W3C validator |