| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
| 2 | an12 645 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
| 3 | 2 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42 657 an4s 660 anandi 676 anandir 677 an6 1447 reeanlem 3204 reu2 3680 rmo4 3685 rmo3f 3689 rmo3 3836 2reu1 3844 2reu4lem 4473 disjiun 5083 inxp 5777 inxpOLD 5778 xp11 6130 dfpo2 6251 fununi 6564 fun 6693 resoprab2 7474 sorpsscmpl 7676 xporderlem 8066 poxp 8067 poseq 8097 fprlem1 8239 frrlem15 9661 dfac5lem1 10025 zorn2lem6 10403 cju 12132 ixxin 13269 elfzo2 13569 xpcogend 14888 summo 15631 prodmo 15850 dfiso2 17687 issubmd 18722 gsumval3eu 19824 dvdsrtr 20295 isirred2 20348 domnmuln0 20633 isdomn3 20639 abvn0b 20760 lspsolvlem 21088 unocv 21626 pf1ind 22290 ordtrest2lem 23138 lmmo 23315 ptbasin 23512 txbasval 23541 txcnp 23555 txlm 23583 tx1stc 23585 tx2ndc 23586 isfild 23793 txflf 23941 isclmp 25044 mbfi1flimlem 25670 iblcnlem1 25736 iblre 25742 iblcn 25747 logfaclbnd 27180 axcontlem4 28966 axcontlem7 28969 ocsh 31284 pjhthmo 31303 5oalem6 31660 cvnbtwn4 32290 superpos 32355 cdj3i 32442 13an22anass 32464 smatrcl 33881 ordtrest2NEWlem 34007 cusgr3cyclex 35252 lineext 36192 outsideoftr 36245 hilbert1.2 36271 lineintmo 36273 neibastop1 36475 bj-inrab 37044 isbasisrelowllem1 37472 isbasisrelowllem2 37473 ptrest 37732 poimirlem26 37759 ismblfin 37774 unirep 37827 inixp 37841 ablo4pnp 37993 keridl 38145 ispridlc 38183 anan 38343 disjecxrn 38509 coss1cnvres 38592 br1cosscnvxrn 38649 dfeldisj3 38890 antisymrelres 38934 prtlem70 39029 lcvbr3 39195 cvrnbtwn4 39451 linepsubN 39924 pmapsub 39940 pmapjoin 40024 ltrnu 40293 diblsmopel 41343 pell1234qrmulcl 43012 ifpan23 43617 ifpidg 43648 ifpbibib 43667 uneqsn 44182 isthincd2 49598 |
| Copyright terms: Public domain | W3C validator |