Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 469 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
2 | an12 642 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
3 | 2 | bianass 639 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
4 | 1, 3 | bitri 274 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: an42 654 an4s 657 anandi 673 anandir 674 an6 1444 an33reanOLD 1483 reeanlem 3292 reu2 3660 rmo4 3665 rmo3f 3669 rmo3 3822 2reu1 3830 2reu4lem 4456 disjiun 5061 inxp 5741 xp11 6078 dfpo2 6199 fununi 6509 fun 6636 resoprab2 7393 sorpsscmpl 7587 xporderlem 7968 poxp 7969 fprlem1 8116 frrlem15 9515 dfac5lem1 9879 zorn2lem6 10257 cju 11969 ixxin 13096 elfzo2 13390 xpcogend 14685 summo 15429 prodmo 15646 dfiso2 17484 issubmd 18445 gsumval3eu 19505 dvdsrtr 19894 isirred2 19943 lspsolvlem 20404 domnmuln0 20569 abvn0b 20573 unocv 20885 pf1ind 21521 ordtrest2lem 22354 lmmo 22531 ptbasin 22728 txbasval 22757 txcnp 22771 txlm 22799 tx1stc 22801 tx2ndc 22802 isfild 23009 txflf 23157 isclmp 24260 mbfi1flimlem 24887 iblcnlem1 24952 iblre 24958 iblcn 24963 logfaclbnd 26370 axcontlem4 27335 axcontlem7 27338 ocsh 29645 pjhthmo 29664 5oalem6 30021 cvnbtwn4 30651 superpos 30716 cdj3i 30803 smatrcl 31746 ordtrest2NEWlem 31872 cusgr3cyclex 33098 poseq 33802 lineext 34378 outsideoftr 34431 hilbert1.2 34457 lineintmo 34459 neibastop1 34548 bj-inrab 35115 isbasisrelowllem1 35526 isbasisrelowllem2 35527 ptrest 35776 poimirlem26 35803 ismblfin 35818 unirep 35871 inixp 35886 ablo4pnp 36038 keridl 36190 ispridlc 36228 anan 36379 br1cosscnvxrn 36592 dfeldisj3 36830 prtlem70 36871 lcvbr3 37037 cvrnbtwn4 37293 linepsubN 37766 pmapsub 37782 pmapjoin 37866 ltrnu 38135 diblsmopel 39185 pell1234qrmulcl 40677 isdomn3 41029 ifpan23 41067 ifpidg 41098 ifpbibib 41117 uneqsn 41633 isthincd2 46319 |
Copyright terms: Public domain | W3C validator |