| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
| 2 | an12 645 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
| 3 | 2 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42 657 an4s 660 anandi 676 anandir 677 an6 1447 reeanlem 3212 reu2 3708 rmo4 3713 rmo3f 3717 rmo3 3864 2reu1 3872 2reu4lem 4497 disjiun 5107 inxp 5811 inxpOLD 5812 xp11 6164 dfpo2 6285 fununi 6611 fun 6740 resoprab2 7526 sorpsscmpl 7728 xporderlem 8126 poxp 8127 poseq 8157 fprlem1 8299 frrlem15 9771 dfac5lem1 10137 zorn2lem6 10515 cju 12236 ixxin 13379 elfzo2 13679 xpcogend 14993 summo 15733 prodmo 15952 dfiso2 17785 issubmd 18784 gsumval3eu 19885 dvdsrtr 20328 isirred2 20381 domnmuln0 20669 isdomn3 20675 abvn0b 20796 lspsolvlem 21103 unocv 21640 pf1ind 22293 ordtrest2lem 23141 lmmo 23318 ptbasin 23515 txbasval 23544 txcnp 23558 txlm 23586 tx1stc 23588 tx2ndc 23589 isfild 23796 txflf 23944 isclmp 25048 mbfi1flimlem 25675 iblcnlem1 25741 iblre 25747 iblcn 25752 logfaclbnd 27185 axcontlem4 28946 axcontlem7 28949 ocsh 31264 pjhthmo 31283 5oalem6 31640 cvnbtwn4 32270 superpos 32335 cdj3i 32422 13an22anass 32445 smatrcl 33827 ordtrest2NEWlem 33953 cusgr3cyclex 35158 lineext 36094 outsideoftr 36147 hilbert1.2 36173 lineintmo 36175 neibastop1 36377 bj-inrab 36945 isbasisrelowllem1 37373 isbasisrelowllem2 37374 ptrest 37643 poimirlem26 37670 ismblfin 37685 unirep 37738 inixp 37752 ablo4pnp 37904 keridl 38056 ispridlc 38094 anan 38247 disjecxrn 38407 coss1cnvres 38435 br1cosscnvxrn 38492 dfeldisj3 38737 antisymrelres 38781 prtlem70 38875 lcvbr3 39041 cvrnbtwn4 39297 linepsubN 39771 pmapsub 39787 pmapjoin 39871 ltrnu 40140 diblsmopel 41190 pell1234qrmulcl 42878 ifpan23 43484 ifpidg 43515 ifpbibib 43534 uneqsn 44049 isthincd2 49323 |
| Copyright terms: Public domain | W3C validator |