Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
2 | an12 641 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
3 | 2 | bianass 638 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
4 | 1, 3 | bitri 274 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: an42 653 an4s 656 anandi 672 anandir 673 an6 1443 an33reanOLD 1482 reeanlem 3290 reu2 3655 rmo4 3660 rmo3f 3664 rmo3 3818 2reu1 3826 2reu4lem 4453 disjiun 5057 inxp 5730 xp11 6067 dfpo2 6188 fununi 6493 fun 6620 resoprab2 7371 sorpsscmpl 7565 xporderlem 7939 poxp 7940 fprlem1 8087 frrlem15 9446 dfac5lem1 9810 zorn2lem6 10188 cju 11899 ixxin 13025 elfzo2 13319 xpcogend 14613 summo 15357 prodmo 15574 dfiso2 17401 issubmd 18360 gsumval3eu 19420 dvdsrtr 19809 isirred2 19858 lspsolvlem 20319 domnmuln0 20482 abvn0b 20486 unocv 20797 pf1ind 21431 ordtrest2lem 22262 lmmo 22439 ptbasin 22636 txbasval 22665 txcnp 22679 txlm 22707 tx1stc 22709 tx2ndc 22710 isfild 22917 txflf 23065 isclmp 24166 mbfi1flimlem 24792 iblcnlem1 24857 iblre 24863 iblcn 24868 logfaclbnd 26275 axcontlem4 27238 axcontlem7 27241 ocsh 29546 pjhthmo 29565 5oalem6 29922 cvnbtwn4 30552 superpos 30617 cdj3i 30704 smatrcl 31648 ordtrest2NEWlem 31774 cusgr3cyclex 32998 poseq 33729 lineext 34305 outsideoftr 34358 hilbert1.2 34384 lineintmo 34386 neibastop1 34475 bj-inrab 35042 isbasisrelowllem1 35453 isbasisrelowllem2 35454 ptrest 35703 poimirlem26 35730 ismblfin 35745 unirep 35798 inixp 35813 ablo4pnp 35965 keridl 36117 ispridlc 36155 anan 36306 br1cosscnvxrn 36519 dfeldisj3 36757 prtlem70 36798 lcvbr3 36964 cvrnbtwn4 37220 linepsubN 37693 pmapsub 37709 pmapjoin 37793 ltrnu 38062 diblsmopel 39112 pell1234qrmulcl 40593 isdomn3 40945 ifpan23 40965 ifpidg 40996 ifpbibib 41015 uneqsn 41522 isthincd2 46207 |
Copyright terms: Public domain | W3C validator |