![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
2 | an12 645 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
3 | 2 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
4 | 1, 3 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: an42 657 an4s 660 anandi 676 anandir 677 an6 1444 reeanlem 3225 reu2 3733 rmo4 3738 rmo3f 3742 rmo3 3897 2reu1 3905 2reu4lem 4527 disjiun 5135 inxp 5844 inxpOLD 5845 xp11 6196 dfpo2 6317 fununi 6642 fun 6770 resoprab2 7551 sorpsscmpl 7752 xporderlem 8150 poxp 8151 poseq 8181 fprlem1 8323 frrlem15 9794 dfac5lem1 10160 zorn2lem6 10538 cju 12259 ixxin 13400 elfzo2 13698 xpcogend 15009 summo 15749 prodmo 15968 dfiso2 17819 issubmd 18831 gsumval3eu 19936 dvdsrtr 20384 isirred2 20437 domnmuln0 20725 isdomn3 20731 abvn0b 20853 lspsolvlem 21161 unocv 21715 pf1ind 22374 ordtrest2lem 23226 lmmo 23403 ptbasin 23600 txbasval 23629 txcnp 23643 txlm 23671 tx1stc 23673 tx2ndc 23674 isfild 23881 txflf 24029 isclmp 25143 mbfi1flimlem 25771 iblcnlem1 25837 iblre 25843 iblcn 25848 logfaclbnd 27280 axcontlem4 28996 axcontlem7 28999 ocsh 31311 pjhthmo 31330 5oalem6 31687 cvnbtwn4 32317 superpos 32382 cdj3i 32469 13an22anass 32492 smatrcl 33756 ordtrest2NEWlem 33882 cusgr3cyclex 35120 lineext 36057 outsideoftr 36110 hilbert1.2 36136 lineintmo 36138 neibastop1 36341 bj-inrab 36909 isbasisrelowllem1 37337 isbasisrelowllem2 37338 ptrest 37605 poimirlem26 37632 ismblfin 37647 unirep 37700 inixp 37714 ablo4pnp 37866 keridl 38018 ispridlc 38056 anan 38209 disjecxrn 38370 coss1cnvres 38398 br1cosscnvxrn 38455 dfeldisj3 38700 antisymrelres 38744 prtlem70 38838 lcvbr3 39004 cvrnbtwn4 39260 linepsubN 39734 pmapsub 39750 pmapjoin 39834 ltrnu 40103 diblsmopel 41153 pell1234qrmulcl 42842 ifpan23 43449 ifpidg 43480 ifpbibib 43499 uneqsn 44014 isthincd2 48837 |
Copyright terms: Public domain | W3C validator |