Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 472 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
2 | an12 644 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
3 | 2 | bianass 641 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
4 | 1, 3 | bitri 278 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: an42 656 an4s 659 anandi 675 anandir 676 an6 1442 an33reanOLD 1481 reeanlem 3283 reu2 3639 rmo4 3644 rmo3f 3648 rmo3 3795 2reu1 3803 2reu4lem 4418 disjiun 5019 inxp 5672 xp11 6004 fununi 6410 fun 6525 resoprab2 7265 sorpsscmpl 7458 xporderlem 7826 poxp 7827 dfac5lem1 9583 zorn2lem6 9961 cju 11670 ixxin 12796 elfzo2 13090 xpcogend 14381 summo 15122 prodmo 15338 dfiso2 17101 issubmd 18037 gsumval3eu 19092 dvdsrtr 19473 isirred2 19522 lspsolvlem 19982 domnmuln0 20139 abvn0b 20143 unocv 20445 pf1ind 21074 ordtrest2lem 21903 lmmo 22080 ptbasin 22277 txbasval 22306 txcnp 22320 txlm 22348 tx1stc 22350 tx2ndc 22351 isfild 22558 txflf 22706 isclmp 23798 mbfi1flimlem 24422 iblcnlem1 24487 iblre 24493 iblcn 24498 logfaclbnd 25905 axcontlem4 26860 axcontlem7 26863 ocsh 29165 pjhthmo 29184 5oalem6 29541 cvnbtwn4 30171 superpos 30236 cdj3i 30323 smatrcl 31267 ordtrest2NEWlem 31393 cusgr3cyclex 32614 dfpo2 33238 poseq 33356 fprlem1 33398 frrlem15 33403 lineext 33927 outsideoftr 33980 hilbert1.2 34006 lineintmo 34008 neibastop1 34097 bj-inrab 34650 isbasisrelowllem1 35052 isbasisrelowllem2 35053 ptrest 35336 poimirlem26 35363 ismblfin 35378 unirep 35431 inixp 35446 ablo4pnp 35598 keridl 35750 ispridlc 35788 anan 35939 br1cosscnvxrn 36154 dfeldisj3 36392 prtlem70 36433 lcvbr3 36599 cvrnbtwn4 36855 linepsubN 37328 pmapsub 37344 pmapjoin 37428 ltrnu 37697 diblsmopel 38747 pell1234qrmulcl 40169 isdomn3 40521 ifpan23 40541 ifpidg 40572 ifpbibib 40591 uneqsn 41099 |
Copyright terms: Public domain | W3C validator |