| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
| 2 | an12 645 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
| 3 | 2 | bianass 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42 657 an4s 660 anandi 676 anandir 677 an6 1447 reeanlem 3203 reu2 3679 rmo4 3684 rmo3f 3688 rmo3 3835 2reu1 3843 2reu4lem 4467 disjiun 5074 inxp 5766 inxpOLD 5767 xp11 6117 dfpo2 6238 fununi 6551 fun 6680 resoprab2 7460 sorpsscmpl 7662 xporderlem 8052 poxp 8053 poseq 8083 fprlem1 8225 frrlem15 9645 dfac5lem1 10009 zorn2lem6 10387 cju 12116 ixxin 13257 elfzo2 13557 xpcogend 14876 summo 15619 prodmo 15838 dfiso2 17674 issubmd 18709 gsumval3eu 19811 dvdsrtr 20281 isirred2 20334 domnmuln0 20619 isdomn3 20625 abvn0b 20746 lspsolvlem 21074 unocv 21612 pf1ind 22265 ordtrest2lem 23113 lmmo 23290 ptbasin 23487 txbasval 23516 txcnp 23530 txlm 23558 tx1stc 23560 tx2ndc 23561 isfild 23768 txflf 23916 isclmp 25019 mbfi1flimlem 25645 iblcnlem1 25711 iblre 25717 iblcn 25722 logfaclbnd 27155 axcontlem4 28940 axcontlem7 28943 ocsh 31255 pjhthmo 31274 5oalem6 31631 cvnbtwn4 32261 superpos 32326 cdj3i 32413 13an22anass 32435 smatrcl 33801 ordtrest2NEWlem 33927 cusgr3cyclex 35172 lineext 36110 outsideoftr 36163 hilbert1.2 36189 lineintmo 36191 neibastop1 36393 bj-inrab 36961 isbasisrelowllem1 37389 isbasisrelowllem2 37390 ptrest 37659 poimirlem26 37686 ismblfin 37701 unirep 37754 inixp 37768 ablo4pnp 37920 keridl 38072 ispridlc 38110 anan 38263 disjecxrn 38421 coss1cnvres 38454 br1cosscnvxrn 38511 dfeldisj3 38757 antisymrelres 38801 prtlem70 38896 lcvbr3 39062 cvrnbtwn4 39318 linepsubN 39791 pmapsub 39807 pmapjoin 39891 ltrnu 40160 diblsmopel 41210 pell1234qrmulcl 42888 ifpan23 43493 ifpidg 43524 ifpbibib 43543 uneqsn 44058 isthincd2 49469 |
| Copyright terms: Public domain | W3C validator |