![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 469 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
2 | an12 643 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
3 | 2 | bianass 640 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
4 | 1, 3 | bitri 274 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: an42 655 an4s 658 anandi 674 anandir 675 an6 1445 an33reanOLD 1484 reeanlem 3225 reu2 3720 rmo4 3725 rmo3f 3729 rmo3 3882 2reu1 3890 2reu4lem 4524 disjiun 5134 inxp 5830 xp11 6171 dfpo2 6292 fununi 6620 fun 6750 resoprab2 7523 sorpsscmpl 7720 xporderlem 8109 poxp 8110 poseq 8140 fprlem1 8281 frrlem15 9748 dfac5lem1 10114 zorn2lem6 10492 cju 12204 ixxin 13337 elfzo2 13631 xpcogend 14917 summo 15659 prodmo 15876 dfiso2 17715 issubmd 18683 gsumval3eu 19766 dvdsrtr 20174 isirred2 20227 lspsolvlem 20747 domnmuln0 20906 abvn0b 20912 unocv 21224 pf1ind 21865 ordtrest2lem 22698 lmmo 22875 ptbasin 23072 txbasval 23101 txcnp 23115 txlm 23143 tx1stc 23145 tx2ndc 23146 isfild 23353 txflf 23501 isclmp 24604 mbfi1flimlem 25231 iblcnlem1 25296 iblre 25302 iblcn 25307 logfaclbnd 26714 axcontlem4 28214 axcontlem7 28217 ocsh 30523 pjhthmo 30542 5oalem6 30899 cvnbtwn4 31529 superpos 31594 cdj3i 31681 13an22anass 31693 smatrcl 32764 ordtrest2NEWlem 32890 cusgr3cyclex 34115 lineext 35036 outsideoftr 35089 hilbert1.2 35115 lineintmo 35117 neibastop1 35232 bj-inrab 35795 isbasisrelowllem1 36224 isbasisrelowllem2 36225 ptrest 36475 poimirlem26 36502 ismblfin 36517 unirep 36570 inixp 36584 ablo4pnp 36736 keridl 36888 ispridlc 36926 anan 37081 disjecxrn 37247 coss1cnvres 37275 br1cosscnvxrn 37332 dfeldisj3 37577 antisymrelres 37621 prtlem70 37715 lcvbr3 37881 cvrnbtwn4 38137 linepsubN 38611 pmapsub 38627 pmapjoin 38711 ltrnu 38980 diblsmopel 40030 pell1234qrmulcl 41578 isdomn3 41931 ifpan23 42196 ifpidg 42227 ifpbibib 42246 uneqsn 42761 isthincd2 47611 |
Copyright terms: Public domain | W3C validator |