![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
2 | an12 644 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
3 | 2 | bianass 641 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
4 | 1, 3 | bitri 275 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: an42 656 an4s 659 anandi 675 anandir 676 an6 1445 reeanlem 3234 reu2 3747 rmo4 3752 rmo3f 3756 rmo3 3911 2reu1 3919 2reu4lem 4545 disjiun 5154 inxp 5856 inxpOLD 5857 xp11 6206 dfpo2 6327 fununi 6653 fun 6783 resoprab2 7569 sorpsscmpl 7769 xporderlem 8168 poxp 8169 poseq 8199 fprlem1 8341 frrlem15 9826 dfac5lem1 10192 zorn2lem6 10570 cju 12289 ixxin 13424 elfzo2 13719 xpcogend 15023 summo 15765 prodmo 15984 dfiso2 17833 issubmd 18841 gsumval3eu 19946 dvdsrtr 20394 isirred2 20447 domnmuln0 20731 isdomn3 20737 abvn0b 20859 lspsolvlem 21167 unocv 21721 pf1ind 22380 ordtrest2lem 23232 lmmo 23409 ptbasin 23606 txbasval 23635 txcnp 23649 txlm 23677 tx1stc 23679 tx2ndc 23680 isfild 23887 txflf 24035 isclmp 25149 mbfi1flimlem 25777 iblcnlem1 25843 iblre 25849 iblcn 25854 logfaclbnd 27284 axcontlem4 29000 axcontlem7 29003 ocsh 31315 pjhthmo 31334 5oalem6 31691 cvnbtwn4 32321 superpos 32386 cdj3i 32473 13an22anass 32493 smatrcl 33742 ordtrest2NEWlem 33868 cusgr3cyclex 35104 lineext 36040 outsideoftr 36093 hilbert1.2 36119 lineintmo 36121 neibastop1 36325 bj-inrab 36893 isbasisrelowllem1 37321 isbasisrelowllem2 37322 ptrest 37579 poimirlem26 37606 ismblfin 37621 unirep 37674 inixp 37688 ablo4pnp 37840 keridl 37992 ispridlc 38030 anan 38183 disjecxrn 38345 coss1cnvres 38373 br1cosscnvxrn 38430 dfeldisj3 38675 antisymrelres 38719 prtlem70 38813 lcvbr3 38979 cvrnbtwn4 39235 linepsubN 39709 pmapsub 39725 pmapjoin 39809 ltrnu 40078 diblsmopel 41128 pell1234qrmulcl 42811 ifpan23 43422 ifpidg 43453 ifpbibib 43472 uneqsn 43987 isthincd2 48705 |
Copyright terms: Public domain | W3C validator |