| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > el3v23 | Structured version Visualization version GIF version | ||
| Description: New way (elv 3441, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 11-Jul-2021.) |
| Ref | Expression |
|---|---|
| el3v23.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜃) |
| Ref | Expression |
|---|---|
| el3v23 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | el3v23.1 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜃) | |
| 2 | 1 | el3v3 3445 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ V) → 𝜃) |
| 3 | 2 | elvd 3442 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 |
| This theorem is referenced by: brxrn2 38403 |
| Copyright terms: Public domain | W3C validator |