Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el3v23 Structured version   Visualization version   GIF version

Theorem el3v23 38170
Description: New way (elv 3469, and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 11-Jul-2021.)
Hypothesis
Ref Expression
el3v23.1 ((𝜑𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜃)
Assertion
Ref Expression
el3v23 (𝜑𝜃)

Proof of Theorem el3v23
StepHypRef Expression
1 el3v23.1 . . 3 ((𝜑𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝜃)
21el3v3 3473 . 2 ((𝜑𝑦 ∈ V) → 𝜃)
32elvd 3470 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2107  Vcvv 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466
This theorem is referenced by:  brxrn2  38317
  Copyright terms: Public domain W3C validator