Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpxrn Structured version   Visualization version   GIF version

Theorem inxpxrn 36521
Description: Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020.)
Assertion
Ref Expression
inxpxrn ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))

Proof of Theorem inxpxrn
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrnrel 36503 . 2 Rel ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))
2 relinxp 5724 . 2 Rel ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))
3 brxrn2 36505 . . . . . 6 (𝑢 ∈ V → (𝑢(𝑅𝑆)𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
43elv 3438 . . . . 5 (𝑢(𝑅𝑆)𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))
54anbi2i 623 . . . 4 ((𝑢𝐴𝑢(𝑅𝑆)𝑥) ↔ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
65anbi2i 623 . . 3 ((𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
7 xrninxp2 36519 . . . 4 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
87brabidgaw 36495 . . 3 (𝑢((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))𝑥 ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
9 brxrn2 36505 . . . . 5 (𝑢 ∈ V → (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
109elv 3438 . . . 4 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧))
11 3anass 1094 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
12112exbii 1851 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
13 brinxp2 5664 . . . . . . . . . . . 12 (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦))
14 brinxp2 5664 . . . . . . . . . . . 12 (𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧 ↔ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧))
1513, 14anbi12i 627 . . . . . . . . . . 11 ((𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ (((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦) ∧ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧)))
16 anan 36379 . . . . . . . . . . 11 ((((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦) ∧ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧)) ↔ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
1715, 16bitri 274 . . . . . . . . . 10 ((𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
1817anbi2i 623 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
19 anass 469 . . . . . . . . 9 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
20 eqelb 36382 . . . . . . . . . . 11 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶)))
21 opelxp 5625 . . . . . . . . . . . 12 (⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶) ↔ (𝑦𝐵𝑧𝐶))
2221anbi2i 623 . . . . . . . . . . 11 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)))
2320, 22bitr2i 275 . . . . . . . . . 10 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)))
2423anbi1i 624 . . . . . . . . 9 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
2518, 19, 243bitr2i 299 . . . . . . . 8 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
26 ancom 461 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩))
2726anbi1i 624 . . . . . . . 8 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ ((𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
28 anass 469 . . . . . . . 8 (((𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
2925, 27, 283bitri 297 . . . . . . 7 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
30 an12 642 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
31 3anass 1094 . . . . . . . . . 10 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))
3231anbi2i 623 . . . . . . . . 9 ((𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
3330, 32bitr4i 277 . . . . . . . 8 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
3433anbi2i 623 . . . . . . 7 ((𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
3529, 34bitri 274 . . . . . 6 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
36352exbii 1851 . . . . 5 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ ∃𝑦𝑧(𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
37 19.42vv 1961 . . . . 5 (∃𝑦𝑧(𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ ∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
38 19.42vv 1961 . . . . . 6 (∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)) ↔ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
3938anbi2i 623 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐶) ∧ ∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
4036, 37, 393bitri 297 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
4110, 12, 403bitri 297 . . 3 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
426, 8, 413bitr4ri 304 . 2 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥𝑢((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))𝑥)
431, 2, 42eqbrriv 5701 1 ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cin 3886  cop 4567   class class class wbr 5074   × cxp 5587  cxrn 36332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-2nd 7832  df-xrn 36501
This theorem is referenced by:  xrnres4  36531  xrnresex  36532
  Copyright terms: Public domain W3C validator