Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpxrn Structured version   Visualization version   GIF version

Theorem inxpxrn 35803
Description: Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020.)
Assertion
Ref Expression
inxpxrn ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))

Proof of Theorem inxpxrn
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrnrel 35785 . 2 Rel ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))
2 relinxp 5651 . 2 Rel ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))
3 brxrn2 35787 . . . . . 6 (𝑢 ∈ V → (𝑢(𝑅𝑆)𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
43elv 3446 . . . . 5 (𝑢(𝑅𝑆)𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))
54anbi2i 625 . . . 4 ((𝑢𝐴𝑢(𝑅𝑆)𝑥) ↔ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
65anbi2i 625 . . 3 ((𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
7 xrninxp2 35801 . . . 4 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
87brabidgaw 35777 . . 3 (𝑢((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))𝑥 ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
9 brxrn2 35787 . . . . 5 (𝑢 ∈ V → (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
109elv 3446 . . . 4 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧))
11 3anass 1092 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
12112exbii 1850 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
13 brinxp2 5593 . . . . . . . . . . . 12 (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦))
14 brinxp2 5593 . . . . . . . . . . . 12 (𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧 ↔ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧))
1513, 14anbi12i 629 . . . . . . . . . . 11 ((𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ (((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦) ∧ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧)))
16 anan 35659 . . . . . . . . . . 11 ((((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦) ∧ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧)) ↔ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
1715, 16bitri 278 . . . . . . . . . 10 ((𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
1817anbi2i 625 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
19 anass 472 . . . . . . . . 9 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
20 eqelb 35662 . . . . . . . . . . 11 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶)))
21 opelxp 5555 . . . . . . . . . . . 12 (⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶) ↔ (𝑦𝐵𝑧𝐶))
2221anbi2i 625 . . . . . . . . . . 11 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)))
2320, 22bitr2i 279 . . . . . . . . . 10 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)))
2423anbi1i 626 . . . . . . . . 9 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
2518, 19, 243bitr2i 302 . . . . . . . 8 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
26 ancom 464 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩))
2726anbi1i 626 . . . . . . . 8 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ ((𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
28 anass 472 . . . . . . . 8 (((𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
2925, 27, 283bitri 300 . . . . . . 7 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
30 an12 644 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
31 3anass 1092 . . . . . . . . . 10 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))
3231anbi2i 625 . . . . . . . . 9 ((𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
3330, 32bitr4i 281 . . . . . . . 8 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
3433anbi2i 625 . . . . . . 7 ((𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
3529, 34bitri 278 . . . . . 6 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
36352exbii 1850 . . . . 5 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ ∃𝑦𝑧(𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
37 19.42vv 1958 . . . . 5 (∃𝑦𝑧(𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ ∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
38 19.42vv 1958 . . . . . 6 (∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)) ↔ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
3938anbi2i 625 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐶) ∧ ∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
4036, 37, 393bitri 300 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
4110, 12, 403bitri 300 . . 3 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
426, 8, 413bitr4ri 307 . 2 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥𝑢((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))𝑥)
431, 2, 42eqbrriv 5628 1 ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  cin 3880  cop 4531   class class class wbr 5030   × cxp 5517  cxrn 35612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332  df-1st 7671  df-2nd 7672  df-xrn 35783
This theorem is referenced by:  xrnres4  35813  xrnresex  35814
  Copyright terms: Public domain W3C validator