Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpxrn Structured version   Visualization version   GIF version

Theorem inxpxrn 36857
Description: Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020.)
Assertion
Ref Expression
inxpxrn ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))

Proof of Theorem inxpxrn
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrnrel 36835 . 2 Rel ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))
2 relinxp 5770 . 2 Rel ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))
3 brxrn2 36837 . . . . . 6 (𝑢 ∈ V → (𝑢(𝑅𝑆)𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
43elv 3451 . . . . 5 (𝑢(𝑅𝑆)𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))
54anbi2i 623 . . . 4 ((𝑢𝐴𝑢(𝑅𝑆)𝑥) ↔ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
65anbi2i 623 . . 3 ((𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
7 xrninxp2 36855 . . . 4 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
87brabidgaw 36826 . . 3 (𝑢((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))𝑥 ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
9 brxrn2 36837 . . . . 5 (𝑢 ∈ V → (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
109elv 3451 . . . 4 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧))
11 3anass 1095 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
12112exbii 1851 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
13 brinxp2 5709 . . . . . . . . . . . 12 (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦))
14 brinxp2 5709 . . . . . . . . . . . 12 (𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧 ↔ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧))
1513, 14anbi12i 627 . . . . . . . . . . 11 ((𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ (((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦) ∧ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧)))
16 anan 36684 . . . . . . . . . . 11 ((((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦) ∧ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧)) ↔ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
1715, 16bitri 274 . . . . . . . . . 10 ((𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
1817anbi2i 623 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
19 anass 469 . . . . . . . . 9 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
20 eqelb 36692 . . . . . . . . . . 11 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶)))
21 opelxp 5669 . . . . . . . . . . . 12 (⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶) ↔ (𝑦𝐵𝑧𝐶))
2221anbi2i 623 . . . . . . . . . . 11 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)))
2320, 22bitr2i 275 . . . . . . . . . 10 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)))
2423anbi1i 624 . . . . . . . . 9 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
2518, 19, 243bitr2i 298 . . . . . . . 8 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
26 ancom 461 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩))
2726anbi1i 624 . . . . . . . 8 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ ((𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
28 anass 469 . . . . . . . 8 (((𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
2925, 27, 283bitri 296 . . . . . . 7 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
30 an12 643 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
31 3anass 1095 . . . . . . . . . 10 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))
3231anbi2i 623 . . . . . . . . 9 ((𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
3330, 32bitr4i 277 . . . . . . . 8 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
3433anbi2i 623 . . . . . . 7 ((𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
3529, 34bitri 274 . . . . . 6 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
36352exbii 1851 . . . . 5 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ ∃𝑦𝑧(𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
37 19.42vv 1961 . . . . 5 (∃𝑦𝑧(𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ ∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
38 19.42vv 1961 . . . . . 6 (∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)) ↔ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
3938anbi2i 623 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐶) ∧ ∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
4036, 37, 393bitri 296 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
4110, 12, 403bitri 296 . . 3 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
426, 8, 413bitr4ri 303 . 2 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥𝑢((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))𝑥)
431, 2, 42eqbrriv 5747 1 ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  Vcvv 3445  cin 3909  cop 4592   class class class wbr 5105   × cxp 5631  cxrn 36633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fo 6502  df-fv 6504  df-1st 7921  df-2nd 7922  df-xrn 36833
This theorem is referenced by:  xrnres4  36867  xrnresex  36868
  Copyright terms: Public domain W3C validator