Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inxpxrn Structured version   Visualization version   GIF version

Theorem inxpxrn 38388
Description: Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020.)
Assertion
Ref Expression
inxpxrn ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))

Proof of Theorem inxpxrn
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrnrel 38362 . 2 Rel ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))
2 relinxp 5780 . 2 Rel ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))
3 brxrn2 38364 . . . . . 6 (𝑢 ∈ V → (𝑢(𝑅𝑆)𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
43elv 3455 . . . . 5 (𝑢(𝑅𝑆)𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))
54anbi2i 623 . . . 4 ((𝑢𝐴𝑢(𝑅𝑆)𝑥) ↔ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
65anbi2i 623 . . 3 ((𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
7 xrninxp2 38386 . . . 4 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
87brabidgaw 38354 . . 3 (𝑢((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))𝑥 ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
9 brxrn2 38364 . . . . 5 (𝑢 ∈ V → (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
109elv 3455 . . . 4 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧))
11 3anass 1094 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
12112exbii 1849 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)))
13 brinxp2 5719 . . . . . . . . . . . 12 (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦))
14 brinxp2 5719 . . . . . . . . . . . 12 (𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧 ↔ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧))
1513, 14anbi12i 628 . . . . . . . . . . 11 ((𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ (((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦) ∧ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧)))
16 anan 38224 . . . . . . . . . . 11 ((((𝑢𝐴𝑦𝐵) ∧ 𝑢𝑅𝑦) ∧ ((𝑢𝐴𝑧𝐶) ∧ 𝑢𝑆𝑧)) ↔ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
1715, 16bitri 275 . . . . . . . . . 10 ((𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧) ↔ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
1817anbi2i 623 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
19 anass 468 . . . . . . . . 9 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
20 eqelb 38230 . . . . . . . . . . 11 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶)))
21 opelxp 5677 . . . . . . . . . . . 12 (⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶) ↔ (𝑦𝐵𝑧𝐶))
2221anbi2i 623 . . . . . . . . . . 11 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)))
2320, 22bitr2i 276 . . . . . . . . . 10 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)))
2423anbi1i 624 . . . . . . . . 9 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
2518, 19, 243bitr2i 299 . . . . . . . 8 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
26 ancom 460 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩))
2726anbi1i 624 . . . . . . . 8 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑥 ∈ (𝐵 × 𝐶)) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ ((𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
28 anass 468 . . . . . . . 8 (((𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑥 = ⟨𝑦, 𝑧⟩) ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
2925, 27, 283bitri 297 . . . . . . 7 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))))
30 an12 645 . . . . . . . . 9 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
31 3anass 1094 . . . . . . . . . 10 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))
3231anbi2i 623 . . . . . . . . 9 ((𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))))
3330, 32bitr4i 278 . . . . . . . 8 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
3433anbi2i 623 . . . . . . 7 ((𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢𝐴 ∧ (𝑢𝑅𝑦𝑢𝑆𝑧)))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
3529, 34bitri 275 . . . . . 6 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
36352exbii 1849 . . . . 5 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ ∃𝑦𝑧(𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
37 19.42vv 1957 . . . . 5 (∃𝑦𝑧(𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ ∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
38 19.42vv 1957 . . . . . 6 (∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)) ↔ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧)))
3938anbi2i 623 . . . . 5 ((𝑥 ∈ (𝐵 × 𝐶) ∧ ∃𝑦𝑧(𝑢𝐴 ∧ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
4036, 37, 393bitri 297 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑢(𝑅 ∩ (𝐴 × 𝐵))𝑦𝑢(𝑆 ∩ (𝐴 × 𝐶))𝑧)) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
4110, 12, 403bitri 297 . . 3 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥 ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴 ∧ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑢𝑅𝑦𝑢𝑆𝑧))))
426, 8, 413bitr4ri 304 . 2 (𝑢((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶)))𝑥𝑢((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))𝑥)
431, 2, 42eqbrriv 5757 1 ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cin 3916  cop 4598   class class class wbr 5110   × cxp 5639  cxrn 38175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-2nd 7972  df-xrn 38360
This theorem is referenced by:  xrnres4  38398  xrnresex  38399
  Copyright terms: Public domain W3C validator