Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > andi3or | Structured version Visualization version GIF version |
Description: Distribute over triple disjunction. (Contributed by RP, 5-Jul-2021.) |
Ref | Expression |
---|---|
andi3or | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒 ∨ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1005 | . . 3 ⊢ ((𝜑 ∧ ((𝜓 ∨ 𝜒) ∨ 𝜃)) ↔ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ∨ (𝜑 ∧ 𝜃))) | |
2 | andi 1005 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
3 | 2 | orbi1i 911 | . . 3 ⊢ (((𝜑 ∧ (𝜓 ∨ 𝜒)) ∨ (𝜑 ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) ∨ (𝜑 ∧ 𝜃))) |
4 | 1, 3 | bitri 274 | . 2 ⊢ ((𝜑 ∧ ((𝜓 ∨ 𝜒) ∨ 𝜃)) ↔ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) ∨ (𝜑 ∧ 𝜃))) |
5 | df-3or 1087 | . . 3 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜃) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃)) | |
6 | 5 | anbi2i 623 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒 ∨ 𝜃)) ↔ (𝜑 ∧ ((𝜓 ∨ 𝜒) ∨ 𝜃))) |
7 | df-3or 1087 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃)) ↔ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) ∨ (𝜑 ∧ 𝜃))) | |
8 | 4, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒 ∨ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ∨ (𝜑 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 844 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 |
This theorem is referenced by: uneqsn 41633 |
Copyright terms: Public domain | W3C validator |