MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  andi Structured version   Visualization version   GIF version

Theorem andi 1007
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
Assertion
Ref Expression
andi ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))

Proof of Theorem andi
StepHypRef Expression
1 orc 866 . . 3 ((𝜑𝜓) → ((𝜑𝜓) ∨ (𝜑𝜒)))
2 olc 867 . . 3 ((𝜑𝜒) → ((𝜑𝜓) ∨ (𝜑𝜒)))
31, 2jaodan 957 . 2 ((𝜑 ∧ (𝜓𝜒)) → ((𝜑𝜓) ∨ (𝜑𝜒)))
4 orc 866 . . . 4 (𝜓 → (𝜓𝜒))
54anim2i 618 . . 3 ((𝜑𝜓) → (𝜑 ∧ (𝜓𝜒)))
6 olc 867 . . . 4 (𝜒 → (𝜓𝜒))
76anim2i 618 . . 3 ((𝜑𝜒) → (𝜑 ∧ (𝜓𝜒)))
85, 7jaoi 856 . 2 (((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 ∧ (𝜓𝜒)))
93, 8impbii 208 1 ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847
This theorem is referenced by:  andir  1008  anddi  1010  cadan  1611  indi  4274  indifdirOLD  4286  unrab  4306  uniprOLD  4928  uniun  4935  unopab  5231  xpundi  5745  difxp  6164  coundir  6248  imadif  6633  unpreima  7065  soseq  8145  tpostpos  8231  elznn0nn  12572  faclbnd4lem4  14256  opsrtoslem1  21616  mbfmax  25166  fta1glem2  25684  ofmulrt  25795  lgsquadlem3  26885  nogesgn1o  27176  nosep1o  27184  noinfbnd2lem1  27233  difrab2  31738  ordtconnlem1  32904  ballotlemodife  33496  subfacp1lem6  34176  satf0op  34368  lineunray  35119  wl-ifpimpr  36347  wl-df2-3mintru2  36366  poimirlem30  36518  itg2addnclem2  36540  sticksstones22  40984  lzunuz  41506  diophun  41511  rmydioph  41753  fzunt  42206  fzuntd  42207  fzunt1d  42208  fzuntgd  42209  rp-isfinite6  42269  relexpxpmin  42468  andi3or  42775  clsk1indlem3  42794  simpcntrab  45586  zeoALTV  46338
  Copyright terms: Public domain W3C validator