![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > andi | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
Ref | Expression |
---|---|
andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 867 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
2 | olc 868 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | jaodan 959 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
4 | orc 867 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
5 | 4 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
6 | olc 868 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
7 | 6 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
8 | 5, 7 | jaoi 857 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
9 | 3, 8 | impbii 209 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
This theorem is referenced by: andir 1010 anddi 1012 cadan 1606 indi 4290 unrab 4321 uniun 4935 unopab 5230 xpundi 5757 difxp 6186 coundir 6270 imadif 6652 unpreima 7083 soseq 8183 tpostpos 8270 elznn0nn 12625 faclbnd4lem4 14332 opsrtoslem1 22097 mbfmax 25698 fta1glem2 26223 ofmulrt 26338 lgsquadlem3 27441 nogesgn1o 27733 nosep1o 27741 noinfbnd2lem1 27790 difrab2 32526 ordtconnlem1 33885 ballotlemodife 34479 subfacp1lem6 35170 satf0op 35362 lineunray 36129 wl-ifpimpr 37449 wl-df2-3mintru2 37468 poimirlem30 37637 itg2addnclem2 37659 sticksstones22 42150 lzunuz 42756 diophun 42761 rmydioph 43003 fzunt 43445 fzuntd 43446 fzunt1d 43447 fzuntgd 43448 rp-isfinite6 43508 relexpxpmin 43707 andi3or 44014 clsk1indlem3 44033 simpcntrab 46826 zeoALTV 47595 |
Copyright terms: Public domain | W3C validator |