![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > andi | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
Ref | Expression |
---|---|
andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 865 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
2 | olc 866 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | jaodan 956 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
4 | orc 865 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
5 | 4 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
6 | olc 866 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
7 | 6 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
8 | 5, 7 | jaoi 855 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
9 | 3, 8 | impbii 208 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 |
This theorem is referenced by: andir 1007 anddi 1009 cadan 1610 indi 4272 indifdirOLD 4284 unrab 4304 uniprOLD 4926 uniun 4933 unopab 5229 xpundi 5742 difxp 6160 coundir 6244 imadif 6629 unpreima 7061 soseq 8141 tpostpos 8227 elznn0nn 12568 faclbnd4lem4 14252 opsrtoslem1 21607 mbfmax 25157 fta1glem2 25675 ofmulrt 25786 lgsquadlem3 26874 nogesgn1o 27165 nosep1o 27173 noinfbnd2lem1 27222 difrab2 31725 ordtconnlem1 32892 ballotlemodife 33484 subfacp1lem6 34164 satf0op 34356 lineunray 35107 wl-ifpimpr 36335 wl-df2-3mintru2 36354 poimirlem30 36506 itg2addnclem2 36528 sticksstones22 40972 lzunuz 41491 diophun 41496 rmydioph 41738 fzunt 42191 fzuntd 42192 fzunt1d 42193 fzuntgd 42194 rp-isfinite6 42254 relexpxpmin 42453 andi3or 42760 clsk1indlem3 42779 simpcntrab 45572 zeoALTV 46324 |
Copyright terms: Public domain | W3C validator |