![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > andi | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
Ref | Expression |
---|---|
andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 866 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
2 | olc 867 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | jaodan 958 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
4 | orc 866 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
5 | 4 | anim2i 616 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
6 | olc 867 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
7 | 6 | anim2i 616 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
8 | 5, 7 | jaoi 856 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
9 | 3, 8 | impbii 209 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 |
This theorem is referenced by: andir 1009 anddi 1011 cadan 1606 indi 4303 unrab 4334 uniun 4954 unopab 5248 xpundi 5768 difxp 6195 coundir 6279 imadif 6662 unpreima 7096 soseq 8200 tpostpos 8287 elznn0nn 12653 faclbnd4lem4 14345 opsrtoslem1 22102 mbfmax 25703 fta1glem2 26228 ofmulrt 26341 lgsquadlem3 27444 nogesgn1o 27736 nosep1o 27744 noinfbnd2lem1 27793 difrab2 32526 ordtconnlem1 33870 ballotlemodife 34462 subfacp1lem6 35153 satf0op 35345 lineunray 36111 wl-ifpimpr 37432 wl-df2-3mintru2 37451 poimirlem30 37610 itg2addnclem2 37632 sticksstones22 42125 lzunuz 42724 diophun 42729 rmydioph 42971 fzunt 43417 fzuntd 43418 fzunt1d 43419 fzuntgd 43420 rp-isfinite6 43480 relexpxpmin 43679 andi3or 43986 clsk1indlem3 44005 simpcntrab 46791 zeoALTV 47544 |
Copyright terms: Public domain | W3C validator |