Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > andi | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
Ref | Expression |
---|---|
andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 864 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
2 | olc 865 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | jaodan 955 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
4 | orc 864 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
5 | 4 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
6 | olc 865 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
7 | 6 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
8 | 5, 7 | jaoi 854 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
9 | 3, 8 | impbii 208 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: andir 1006 anddi 1008 cadan 1611 indi 4207 indifdirOLD 4219 unrab 4239 uniprOLD 4858 uniun 4864 unopab 5156 xpundi 5655 difxp 6067 coundir 6152 imadif 6518 unpreima 6940 tpostpos 8062 elznn0nn 12333 faclbnd4lem4 14010 opsrtoslem1 21262 mbfmax 24813 fta1glem2 25331 ofmulrt 25442 lgsquadlem3 26530 difrab2 30845 ordtconnlem1 31874 ballotlemodife 32464 subfacp1lem6 33147 satf0op 33339 soseq 33803 nogesgn1o 33876 nosep1o 33884 noinfbnd2lem1 33933 lineunray 34449 wl-ifpimpr 35637 wl-df2-3mintru2 35656 poimirlem30 35807 itg2addnclem2 35829 sticksstones22 40124 lzunuz 40590 diophun 40595 rmydioph 40836 fzunt 41062 fzuntd 41063 fzunt1d 41064 fzuntgd 41065 rp-isfinite6 41125 relexpxpmin 41325 andi3or 41632 clsk1indlem3 41653 simpcntrab 44386 zeoALTV 45122 |
Copyright terms: Public domain | W3C validator |