| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > andi | Structured version Visualization version GIF version | ||
| Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 2 | olc 868 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | jaodan 959 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| 4 | orc 867 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
| 5 | 4 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 6 | olc 868 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
| 7 | 6 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 8 | 5, 7 | jaoi 857 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: andir 1010 anddi 1012 cadan 1610 indi 4234 unrab 4265 uniun 4882 unopab 5171 xpundi 5685 difxp 6111 coundir 6195 imadif 6565 unpreima 6996 soseq 8089 tpostpos 8176 elznn0nn 12479 faclbnd4lem4 14200 opsrtoslem1 21988 mbfmax 25575 fta1glem2 26099 ofmulrt 26214 lgsquadlem3 27318 nogesgn1o 27610 nosep1o 27618 noinfbnd2lem1 27667 difrab2 32472 ordtconnlem1 33932 ballotlemodife 34506 subfacp1lem6 35217 satf0op 35409 lineunray 36180 wl-ifpimpr 37499 wl-df2-3mintru2 37518 poimirlem30 37689 itg2addnclem2 37711 sticksstones22 42200 lzunuz 42800 diophun 42805 rmydioph 43046 fzunt 43487 fzuntd 43488 fzunt1d 43489 fzuntgd 43490 rp-isfinite6 43550 relexpxpmin 43749 andi3or 44056 clsk1indlem3 44075 simpcntrab 46907 zeoALTV 47700 |
| Copyright terms: Public domain | W3C validator |