Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > andi | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
Ref | Expression |
---|---|
andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 863 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
2 | olc 864 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | jaodan 954 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
4 | orc 863 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
5 | 4 | anim2i 616 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
6 | olc 864 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
7 | 6 | anim2i 616 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
8 | 5, 7 | jaoi 853 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
9 | 3, 8 | impbii 208 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: andir 1005 anddi 1007 cadan 1612 indi 4204 indifdirOLD 4216 unrab 4236 uniprOLD 4855 uniun 4861 unopab 5152 xpundi 5646 difxp 6056 coundir 6141 imadif 6502 unpreima 6922 tpostpos 8033 elznn0nn 12263 faclbnd4lem4 13938 opsrtoslem1 21172 mbfmax 24718 fta1glem2 25236 ofmulrt 25347 lgsquadlem3 26435 difrab2 30746 ordtconnlem1 31776 ballotlemodife 32364 subfacp1lem6 33047 satf0op 33239 soseq 33730 nogesgn1o 33803 nosep1o 33811 noinfbnd2lem1 33860 lineunray 34376 wl-ifpimpr 35564 wl-df2-3mintru2 35583 poimirlem30 35734 itg2addnclem2 35756 sticksstones22 40052 lzunuz 40506 diophun 40511 rmydioph 40752 rp-isfinite6 41023 relexpxpmin 41214 andi3or 41521 clsk1indlem3 41542 simpcntrab 44273 zeoALTV 45010 |
Copyright terms: Public domain | W3C validator |