| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > andi | Structured version Visualization version GIF version | ||
| Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 2 | olc 868 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | jaodan 959 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| 4 | orc 867 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
| 5 | 4 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 6 | olc 868 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
| 7 | 6 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 8 | 5, 7 | jaoi 857 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: andir 1010 anddi 1012 cadan 1609 indi 4259 unrab 4290 uniun 4906 unopab 5200 xpundi 5723 difxp 6153 coundir 6237 imadif 6620 unpreima 7053 soseq 8158 tpostpos 8245 elznn0nn 12602 faclbnd4lem4 14314 opsrtoslem1 22013 mbfmax 25602 fta1glem2 26126 ofmulrt 26241 lgsquadlem3 27345 nogesgn1o 27637 nosep1o 27645 noinfbnd2lem1 27694 difrab2 32479 ordtconnlem1 33955 ballotlemodife 34530 subfacp1lem6 35207 satf0op 35399 lineunray 36165 wl-ifpimpr 37484 wl-df2-3mintru2 37503 poimirlem30 37674 itg2addnclem2 37696 sticksstones22 42181 lzunuz 42791 diophun 42796 rmydioph 43038 fzunt 43479 fzuntd 43480 fzunt1d 43481 fzuntgd 43482 rp-isfinite6 43542 relexpxpmin 43741 andi3or 44048 clsk1indlem3 44067 simpcntrab 46899 zeoALTV 47684 |
| Copyright terms: Public domain | W3C validator |