![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > andi | Structured version Visualization version GIF version |
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
Ref | Expression |
---|---|
andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 866 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
2 | olc 867 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | jaodan 957 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
4 | orc 866 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
5 | 4 | anim2i 618 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
6 | olc 867 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
7 | 6 | anim2i 618 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
8 | 5, 7 | jaoi 856 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
9 | 3, 8 | impbii 208 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 |
This theorem is referenced by: andir 1008 anddi 1010 cadan 1611 indi 4274 indifdirOLD 4286 unrab 4306 uniprOLD 4928 uniun 4935 unopab 5231 xpundi 5745 difxp 6164 coundir 6248 imadif 6633 unpreima 7065 soseq 8145 tpostpos 8231 elznn0nn 12572 faclbnd4lem4 14256 opsrtoslem1 21616 mbfmax 25166 fta1glem2 25684 ofmulrt 25795 lgsquadlem3 26885 nogesgn1o 27176 nosep1o 27184 noinfbnd2lem1 27233 difrab2 31738 ordtconnlem1 32904 ballotlemodife 33496 subfacp1lem6 34176 satf0op 34368 lineunray 35119 wl-ifpimpr 36347 wl-df2-3mintru2 36366 poimirlem30 36518 itg2addnclem2 36540 sticksstones22 40984 lzunuz 41506 diophun 41511 rmydioph 41753 fzunt 42206 fzuntd 42207 fzunt1d 42208 fzuntgd 42209 rp-isfinite6 42269 relexpxpmin 42468 andi3or 42775 clsk1indlem3 42794 simpcntrab 45586 zeoALTV 46338 |
Copyright terms: Public domain | W3C validator |