| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > andi | Structured version Visualization version GIF version | ||
| Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 2 | olc 868 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | jaodan 959 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| 4 | orc 867 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
| 5 | 4 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 6 | olc 868 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
| 7 | 6 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 8 | 5, 7 | jaoi 857 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: andir 1010 anddi 1012 cadan 1610 indi 4233 unrab 4264 uniun 4881 unopab 5173 xpundi 5688 difxp 6116 coundir 6200 imadif 6570 unpreima 7002 soseq 8095 tpostpos 8182 elznn0nn 12489 faclbnd4lem4 14205 opsrtoslem1 21991 mbfmax 25578 fta1glem2 26102 ofmulrt 26217 lgsquadlem3 27321 nogesgn1o 27613 nosep1o 27621 noinfbnd2lem1 27670 difrab2 32479 ordtconnlem1 33958 ballotlemodife 34532 subfacp1lem6 35250 satf0op 35442 lineunray 36212 wl-ifpimpr 37531 wl-df2-3mintru2 37550 poimirlem30 37710 itg2addnclem2 37732 sticksstones22 42281 lzunuz 42885 diophun 42890 rmydioph 43131 fzunt 43572 fzuntd 43573 fzunt1d 43574 fzuntgd 43575 rp-isfinite6 43635 relexpxpmin 43834 andi3or 44141 clsk1indlem3 44160 simpcntrab 46992 zeoALTV 47794 |
| Copyright terms: Public domain | W3C validator |