| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > andi | Structured version Visualization version GIF version | ||
| Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| andi | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 2 | olc 868 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | jaodan 959 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| 4 | orc 867 | . . . 4 ⊢ (𝜓 → (𝜓 ∨ 𝜒)) | |
| 5 | 4 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 6 | olc 868 | . . . 4 ⊢ (𝜒 → (𝜓 ∨ 𝜒)) | |
| 7 | 6 | anim2i 617 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 8 | 5, 7 | jaoi 857 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∨ 𝜒))) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: andir 1010 anddi 1012 cadan 1609 indi 4250 unrab 4281 uniun 4897 unopab 5190 xpundi 5710 difxp 6140 coundir 6224 imadif 6603 unpreima 7038 soseq 8141 tpostpos 8228 elznn0nn 12550 faclbnd4lem4 14268 opsrtoslem1 21969 mbfmax 25557 fta1glem2 26081 ofmulrt 26196 lgsquadlem3 27300 nogesgn1o 27592 nosep1o 27600 noinfbnd2lem1 27649 difrab2 32434 ordtconnlem1 33921 ballotlemodife 34496 subfacp1lem6 35179 satf0op 35371 lineunray 36142 wl-ifpimpr 37461 wl-df2-3mintru2 37480 poimirlem30 37651 itg2addnclem2 37673 sticksstones22 42163 lzunuz 42763 diophun 42768 rmydioph 43010 fzunt 43451 fzuntd 43452 fzunt1d 43453 fzuntgd 43454 rp-isfinite6 43514 relexpxpmin 43713 andi3or 44020 clsk1indlem3 44039 simpcntrab 46875 zeoALTV 47675 |
| Copyright terms: Public domain | W3C validator |