Proof of Theorem uneqsn
| Step | Hyp | Ref
| Expression |
| 1 | | eqss 3979 |
. . . 4
⊢ ((𝐴 ∪ 𝐵) = {𝐶} ↔ ((𝐴 ∪ 𝐵) ⊆ {𝐶} ∧ {𝐶} ⊆ (𝐴 ∪ 𝐵))) |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝐶 ∈ V → ((𝐴 ∪ 𝐵) = {𝐶} ↔ ((𝐴 ∪ 𝐵) ⊆ {𝐶} ∧ {𝐶} ⊆ (𝐴 ∪ 𝐵)))) |
| 3 | | unss 4170 |
. . . . . 6
⊢ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ↔ (𝐴 ∪ 𝐵) ⊆ {𝐶}) |
| 4 | 3 | bicomi 224 |
. . . . 5
⊢ ((𝐴 ∪ 𝐵) ⊆ {𝐶} ↔ (𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶})) |
| 5 | 4 | a1i 11 |
. . . 4
⊢ (𝐶 ∈ V → ((𝐴 ∪ 𝐵) ⊆ {𝐶} ↔ (𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}))) |
| 6 | | elun 4133 |
. . . . . 6
⊢ (𝐶 ∈ (𝐴 ∪ 𝐵) ↔ (𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵)) |
| 7 | | snssg 4764 |
. . . . . . 7
⊢ (𝐶 ∈ V → (𝐶 ∈ 𝐴 ↔ {𝐶} ⊆ 𝐴)) |
| 8 | | snssg 4764 |
. . . . . . 7
⊢ (𝐶 ∈ V → (𝐶 ∈ 𝐵 ↔ {𝐶} ⊆ 𝐵)) |
| 9 | 7, 8 | orbi12d 918 |
. . . . . 6
⊢ (𝐶 ∈ V → ((𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵) ↔ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵))) |
| 10 | 6, 9 | bitr2id 284 |
. . . . 5
⊢ (𝐶 ∈ V → (({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵) ↔ 𝐶 ∈ (𝐴 ∪ 𝐵))) |
| 11 | | snssg 4764 |
. . . . 5
⊢ (𝐶 ∈ V → (𝐶 ∈ (𝐴 ∪ 𝐵) ↔ {𝐶} ⊆ (𝐴 ∪ 𝐵))) |
| 12 | 10, 11 | bitr2d 280 |
. . . 4
⊢ (𝐶 ∈ V → ({𝐶} ⊆ (𝐴 ∪ 𝐵) ↔ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵))) |
| 13 | 5, 12 | anbi12d 632 |
. . 3
⊢ (𝐶 ∈ V → (((𝐴 ∪ 𝐵) ⊆ {𝐶} ∧ {𝐶} ⊆ (𝐴 ∪ 𝐵)) ↔ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵)))) |
| 14 | | or3or 44014 |
. . . . . 6
⊢ (({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵) ↔ (({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵) ∨ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵))) |
| 15 | 14 | anbi2i 623 |
. . . . 5
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵)) ↔ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵) ∨ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)))) |
| 16 | | andi3or 44015 |
. . . . 5
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵) ∨ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵))) ↔ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)))) |
| 17 | 15, 16 | bitri 275 |
. . . 4
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵)) ↔ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)))) |
| 18 | | an4 656 |
. . . . . . 7
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ↔ ((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵))) |
| 19 | | eqss 3979 |
. . . . . . . . 9
⊢ (𝐴 = {𝐶} ↔ (𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴)) |
| 20 | | eqss 3979 |
. . . . . . . . 9
⊢ (𝐵 = {𝐶} ↔ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵)) |
| 21 | 19, 20 | anbi12i 628 |
. . . . . . . 8
⊢ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ↔ ((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵))) |
| 22 | 21 | bicomi 224 |
. . . . . . 7
⊢ (((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = {𝐶} ∧ 𝐵 = {𝐶})) |
| 23 | 18, 22 | bitri 275 |
. . . . . 6
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = {𝐶} ∧ 𝐵 = {𝐶})) |
| 24 | 23 | a1i 11 |
. . . . 5
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = {𝐶} ∧ 𝐵 = {𝐶}))) |
| 25 | | an4 656 |
. . . . . 6
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵)) ↔ ((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵))) |
| 26 | 19 | bicomi 224 |
. . . . . . . 8
⊢ ((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ↔ 𝐴 = {𝐶}) |
| 27 | 26 | a1i 11 |
. . . . . . 7
⊢ (𝐶 ∈ V → ((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ↔ 𝐴 = {𝐶})) |
| 28 | | sssn 4807 |
. . . . . . . . . 10
⊢ (𝐵 ⊆ {𝐶} ↔ (𝐵 = ∅ ∨ 𝐵 = {𝐶})) |
| 29 | 28 | a1i 11 |
. . . . . . . . 9
⊢ (𝐶 ∈ V → (𝐵 ⊆ {𝐶} ↔ (𝐵 = ∅ ∨ 𝐵 = {𝐶}))) |
| 30 | 29 | anbi1d 631 |
. . . . . . . 8
⊢ (𝐶 ∈ V → ((𝐵 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵) ↔ ((𝐵 = ∅ ∨ 𝐵 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐵))) |
| 31 | | andir 1010 |
. . . . . . . . 9
⊢ (((𝐵 = ∅ ∨ 𝐵 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐵) ↔ ((𝐵 = ∅ ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (𝐵 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵))) |
| 32 | | n0i 4320 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝐵 → ¬ 𝐵 = ∅) |
| 33 | 8, 32 | biimtrrdi 254 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ V → ({𝐶} ⊆ 𝐵 → ¬ 𝐵 = ∅)) |
| 34 | 33 | con2d 134 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ V → (𝐵 = ∅ → ¬ {𝐶} ⊆ 𝐵)) |
| 35 | 34 | pm4.71d 561 |
. . . . . . . . . 10
⊢ (𝐶 ∈ V → (𝐵 = ∅ ↔ (𝐵 = ∅ ∧ ¬ {𝐶} ⊆ 𝐵))) |
| 36 | | eqimss2 4023 |
. . . . . . . . . . . 12
⊢ (𝐵 = {𝐶} → {𝐶} ⊆ 𝐵) |
| 37 | | iman 401 |
. . . . . . . . . . . 12
⊢ ((𝐵 = {𝐶} → {𝐶} ⊆ 𝐵) ↔ ¬ (𝐵 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵)) |
| 38 | 36, 37 | mpbi 230 |
. . . . . . . . . . 11
⊢ ¬
(𝐵 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵) |
| 39 | 38 | biorfri 939 |
. . . . . . . . . 10
⊢ ((𝐵 = ∅ ∧ ¬ {𝐶} ⊆ 𝐵) ↔ ((𝐵 = ∅ ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (𝐵 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵))) |
| 40 | 35, 39 | bitr2di 288 |
. . . . . . . . 9
⊢ (𝐶 ∈ V → (((𝐵 = ∅ ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (𝐵 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵)) ↔ 𝐵 = ∅)) |
| 41 | 31, 40 | bitrid 283 |
. . . . . . . 8
⊢ (𝐶 ∈ V → (((𝐵 = ∅ ∨ 𝐵 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐵) ↔ 𝐵 = ∅)) |
| 42 | 30, 41 | bitrd 279 |
. . . . . . 7
⊢ (𝐶 ∈ V → ((𝐵 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵) ↔ 𝐵 = ∅)) |
| 43 | 27, 42 | anbi12d 632 |
. . . . . 6
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = {𝐶} ∧ 𝐵 = ∅))) |
| 44 | 25, 43 | bitrid 283 |
. . . . 5
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = {𝐶} ∧ 𝐵 = ∅))) |
| 45 | | an4 656 |
. . . . . 6
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ↔ ((𝐴 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵))) |
| 46 | | sssn 4807 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ {𝐶} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐶})) |
| 47 | 46 | a1i 11 |
. . . . . . . . 9
⊢ (𝐶 ∈ V → (𝐴 ⊆ {𝐶} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐶}))) |
| 48 | 47 | anbi1d 631 |
. . . . . . . 8
⊢ (𝐶 ∈ V → ((𝐴 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴) ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐴))) |
| 49 | | andir 1010 |
. . . . . . . . 9
⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐴) ↔ ((𝐴 = ∅ ∧ ¬ {𝐶} ⊆ 𝐴) ∨ (𝐴 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴))) |
| 50 | | n0i 4320 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝐴 → ¬ 𝐴 = ∅) |
| 51 | 7, 50 | biimtrrdi 254 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ V → ({𝐶} ⊆ 𝐴 → ¬ 𝐴 = ∅)) |
| 52 | 51 | con2d 134 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ V → (𝐴 = ∅ → ¬ {𝐶} ⊆ 𝐴)) |
| 53 | 52 | pm4.71d 561 |
. . . . . . . . . 10
⊢ (𝐶 ∈ V → (𝐴 = ∅ ↔ (𝐴 = ∅ ∧ ¬ {𝐶} ⊆ 𝐴))) |
| 54 | | eqimss2 4023 |
. . . . . . . . . . . 12
⊢ (𝐴 = {𝐶} → {𝐶} ⊆ 𝐴) |
| 55 | | iman 401 |
. . . . . . . . . . . 12
⊢ ((𝐴 = {𝐶} → {𝐶} ⊆ 𝐴) ↔ ¬ (𝐴 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴)) |
| 56 | 54, 55 | mpbi 230 |
. . . . . . . . . . 11
⊢ ¬
(𝐴 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴) |
| 57 | 56 | biorfri 939 |
. . . . . . . . . 10
⊢ ((𝐴 = ∅ ∧ ¬ {𝐶} ⊆ 𝐴) ↔ ((𝐴 = ∅ ∧ ¬ {𝐶} ⊆ 𝐴) ∨ (𝐴 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴))) |
| 58 | 53, 57 | bitr2di 288 |
. . . . . . . . 9
⊢ (𝐶 ∈ V → (((𝐴 = ∅ ∧ ¬ {𝐶} ⊆ 𝐴) ∨ (𝐴 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴)) ↔ 𝐴 = ∅)) |
| 59 | 49, 58 | bitrid 283 |
. . . . . . . 8
⊢ (𝐶 ∈ V → (((𝐴 = ∅ ∨ 𝐴 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐴) ↔ 𝐴 = ∅)) |
| 60 | 48, 59 | bitrd 279 |
. . . . . . 7
⊢ (𝐶 ∈ V → ((𝐴 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴) ↔ 𝐴 = ∅)) |
| 61 | 20 | bicomi 224 |
. . . . . . . 8
⊢ ((𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵) ↔ 𝐵 = {𝐶}) |
| 62 | 61 | a1i 11 |
. . . . . . 7
⊢ (𝐶 ∈ V → ((𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵) ↔ 𝐵 = {𝐶})) |
| 63 | 60, 62 | anbi12d 632 |
. . . . . 6
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = ∅ ∧ 𝐵 = {𝐶}))) |
| 64 | 45, 63 | bitrid 283 |
. . . . 5
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = ∅ ∧ 𝐵 = {𝐶}))) |
| 65 | 24, 44, 64 | 3orbi123d 1437 |
. . . 4
⊢ (𝐶 ∈ V → ((((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵))) ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) |
| 66 | 17, 65 | bitrid 283 |
. . 3
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵)) ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) |
| 67 | 2, 13, 66 | 3bitrd 305 |
. 2
⊢ (𝐶 ∈ V → ((𝐴 ∪ 𝐵) = {𝐶} ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) |
| 68 | | snprc 4698 |
. . . . 5
⊢ (¬
𝐶 ∈ V ↔ {𝐶} = ∅) |
| 69 | 68 | biimpi 216 |
. . . 4
⊢ (¬
𝐶 ∈ V → {𝐶} = ∅) |
| 70 | 69 | eqeq2d 2747 |
. . 3
⊢ (¬
𝐶 ∈ V → ((𝐴 ∪ 𝐵) = {𝐶} ↔ (𝐴 ∪ 𝐵) = ∅)) |
| 71 | | pm4.25 905 |
. . . . . 6
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ ((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| 72 | 71 | orbi1i 913 |
. . . . . 6
⊢ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| 73 | 71, 72 | bitri 275 |
. . . . 5
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| 74 | 69 | eqeq2d 2747 |
. . . . . . . 8
⊢ (¬
𝐶 ∈ V → (𝐴 = {𝐶} ↔ 𝐴 = ∅)) |
| 75 | 69 | eqeq2d 2747 |
. . . . . . . 8
⊢ (¬
𝐶 ∈ V → (𝐵 = {𝐶} ↔ 𝐵 = ∅)) |
| 76 | 74, 75 | anbi12d 632 |
. . . . . . 7
⊢ (¬
𝐶 ∈ V → ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| 77 | 74 | anbi1d 631 |
. . . . . . 7
⊢ (¬
𝐶 ∈ V → ((𝐴 = {𝐶} ∧ 𝐵 = ∅) ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| 78 | 76, 77 | orbi12d 918 |
. . . . . 6
⊢ (¬
𝐶 ∈ V → (((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅)) ↔ ((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)))) |
| 79 | 75 | anbi2d 630 |
. . . . . 6
⊢ (¬
𝐶 ∈ V → ((𝐴 = ∅ ∧ 𝐵 = {𝐶}) ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| 80 | 78, 79 | orbi12d 918 |
. . . . 5
⊢ (¬
𝐶 ∈ V → ((((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)))) |
| 81 | 73, 80 | bitr4id 290 |
. . . 4
⊢ (¬
𝐶 ∈ V → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) |
| 82 | | un00 4425 |
. . . . 5
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) |
| 83 | 82 | bicomi 224 |
. . . 4
⊢ ((𝐴 ∪ 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)) |
| 84 | | df-3or 1087 |
. . . 4
⊢ (((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})) ↔ (((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶}))) |
| 85 | 81, 83, 84 | 3bitr4g 314 |
. . 3
⊢ (¬
𝐶 ∈ V → ((𝐴 ∪ 𝐵) = ∅ ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) |
| 86 | 70, 85 | bitrd 279 |
. 2
⊢ (¬
𝐶 ∈ V → ((𝐴 ∪ 𝐵) = {𝐶} ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) |
| 87 | 67, 86 | pm2.61i 182 |
1
⊢ ((𝐴 ∪ 𝐵) = {𝐶} ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶}))) |