Proof of Theorem uneqsn
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqss 3999 | . . . 4
⊢ ((𝐴 ∪ 𝐵) = {𝐶} ↔ ((𝐴 ∪ 𝐵) ⊆ {𝐶} ∧ {𝐶} ⊆ (𝐴 ∪ 𝐵))) | 
| 2 | 1 | a1i 11 | . . 3
⊢ (𝐶 ∈ V → ((𝐴 ∪ 𝐵) = {𝐶} ↔ ((𝐴 ∪ 𝐵) ⊆ {𝐶} ∧ {𝐶} ⊆ (𝐴 ∪ 𝐵)))) | 
| 3 |  | unss 4190 | . . . . . 6
⊢ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ↔ (𝐴 ∪ 𝐵) ⊆ {𝐶}) | 
| 4 | 3 | bicomi 224 | . . . . 5
⊢ ((𝐴 ∪ 𝐵) ⊆ {𝐶} ↔ (𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶})) | 
| 5 | 4 | a1i 11 | . . . 4
⊢ (𝐶 ∈ V → ((𝐴 ∪ 𝐵) ⊆ {𝐶} ↔ (𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}))) | 
| 6 |  | elun 4153 | . . . . . 6
⊢ (𝐶 ∈ (𝐴 ∪ 𝐵) ↔ (𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵)) | 
| 7 |  | snssg 4783 | . . . . . . 7
⊢ (𝐶 ∈ V → (𝐶 ∈ 𝐴 ↔ {𝐶} ⊆ 𝐴)) | 
| 8 |  | snssg 4783 | . . . . . . 7
⊢ (𝐶 ∈ V → (𝐶 ∈ 𝐵 ↔ {𝐶} ⊆ 𝐵)) | 
| 9 | 7, 8 | orbi12d 919 | . . . . . 6
⊢ (𝐶 ∈ V → ((𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵) ↔ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵))) | 
| 10 | 6, 9 | bitr2id 284 | . . . . 5
⊢ (𝐶 ∈ V → (({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵) ↔ 𝐶 ∈ (𝐴 ∪ 𝐵))) | 
| 11 |  | snssg 4783 | . . . . 5
⊢ (𝐶 ∈ V → (𝐶 ∈ (𝐴 ∪ 𝐵) ↔ {𝐶} ⊆ (𝐴 ∪ 𝐵))) | 
| 12 | 10, 11 | bitr2d 280 | . . . 4
⊢ (𝐶 ∈ V → ({𝐶} ⊆ (𝐴 ∪ 𝐵) ↔ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵))) | 
| 13 | 5, 12 | anbi12d 632 | . . 3
⊢ (𝐶 ∈ V → (((𝐴 ∪ 𝐵) ⊆ {𝐶} ∧ {𝐶} ⊆ (𝐴 ∪ 𝐵)) ↔ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵)))) | 
| 14 |  | or3or 44036 | . . . . . 6
⊢ (({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵) ↔ (({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵) ∨ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵))) | 
| 15 | 14 | anbi2i 623 | . . . . 5
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵)) ↔ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵) ∨ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)))) | 
| 16 |  | andi3or 44037 | . . . . 5
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵) ∨ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵))) ↔ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)))) | 
| 17 | 15, 16 | bitri 275 | . . . 4
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵)) ↔ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)))) | 
| 18 |  | an4 656 | . . . . . . 7
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ↔ ((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵))) | 
| 19 |  | eqss 3999 | . . . . . . . . 9
⊢ (𝐴 = {𝐶} ↔ (𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴)) | 
| 20 |  | eqss 3999 | . . . . . . . . 9
⊢ (𝐵 = {𝐶} ↔ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵)) | 
| 21 | 19, 20 | anbi12i 628 | . . . . . . . 8
⊢ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ↔ ((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵))) | 
| 22 | 21 | bicomi 224 | . . . . . . 7
⊢ (((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = {𝐶} ∧ 𝐵 = {𝐶})) | 
| 23 | 18, 22 | bitri 275 | . . . . . 6
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = {𝐶} ∧ 𝐵 = {𝐶})) | 
| 24 | 23 | a1i 11 | . . . . 5
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = {𝐶} ∧ 𝐵 = {𝐶}))) | 
| 25 |  | an4 656 | . . . . . 6
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵)) ↔ ((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵))) | 
| 26 | 19 | bicomi 224 | . . . . . . . 8
⊢ ((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ↔ 𝐴 = {𝐶}) | 
| 27 | 26 | a1i 11 | . . . . . . 7
⊢ (𝐶 ∈ V → ((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ↔ 𝐴 = {𝐶})) | 
| 28 |  | sssn 4826 | . . . . . . . . . 10
⊢ (𝐵 ⊆ {𝐶} ↔ (𝐵 = ∅ ∨ 𝐵 = {𝐶})) | 
| 29 | 28 | a1i 11 | . . . . . . . . 9
⊢ (𝐶 ∈ V → (𝐵 ⊆ {𝐶} ↔ (𝐵 = ∅ ∨ 𝐵 = {𝐶}))) | 
| 30 | 29 | anbi1d 631 | . . . . . . . 8
⊢ (𝐶 ∈ V → ((𝐵 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵) ↔ ((𝐵 = ∅ ∨ 𝐵 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐵))) | 
| 31 |  | andir 1011 | . . . . . . . . 9
⊢ (((𝐵 = ∅ ∨ 𝐵 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐵) ↔ ((𝐵 = ∅ ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (𝐵 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵))) | 
| 32 |  | n0i 4340 | . . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝐵 → ¬ 𝐵 = ∅) | 
| 33 | 8, 32 | biimtrrdi 254 | . . . . . . . . . . . 12
⊢ (𝐶 ∈ V → ({𝐶} ⊆ 𝐵 → ¬ 𝐵 = ∅)) | 
| 34 | 33 | con2d 134 | . . . . . . . . . . 11
⊢ (𝐶 ∈ V → (𝐵 = ∅ → ¬ {𝐶} ⊆ 𝐵)) | 
| 35 | 34 | pm4.71d 561 | . . . . . . . . . 10
⊢ (𝐶 ∈ V → (𝐵 = ∅ ↔ (𝐵 = ∅ ∧ ¬ {𝐶} ⊆ 𝐵))) | 
| 36 |  | eqimss2 4043 | . . . . . . . . . . . 12
⊢ (𝐵 = {𝐶} → {𝐶} ⊆ 𝐵) | 
| 37 |  | iman 401 | . . . . . . . . . . . 12
⊢ ((𝐵 = {𝐶} → {𝐶} ⊆ 𝐵) ↔ ¬ (𝐵 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵)) | 
| 38 | 36, 37 | mpbi 230 | . . . . . . . . . . 11
⊢  ¬
(𝐵 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵) | 
| 39 | 38 | biorfri 940 | . . . . . . . . . 10
⊢ ((𝐵 = ∅ ∧ ¬ {𝐶} ⊆ 𝐵) ↔ ((𝐵 = ∅ ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (𝐵 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵))) | 
| 40 | 35, 39 | bitr2di 288 | . . . . . . . . 9
⊢ (𝐶 ∈ V → (((𝐵 = ∅ ∧ ¬ {𝐶} ⊆ 𝐵) ∨ (𝐵 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵)) ↔ 𝐵 = ∅)) | 
| 41 | 31, 40 | bitrid 283 | . . . . . . . 8
⊢ (𝐶 ∈ V → (((𝐵 = ∅ ∨ 𝐵 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐵) ↔ 𝐵 = ∅)) | 
| 42 | 30, 41 | bitrd 279 | . . . . . . 7
⊢ (𝐶 ∈ V → ((𝐵 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵) ↔ 𝐵 = ∅)) | 
| 43 | 27, 42 | anbi12d 632 | . . . . . 6
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = {𝐶} ∧ 𝐵 = ∅))) | 
| 44 | 25, 43 | bitrid 283 | . . . . 5
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = {𝐶} ∧ 𝐵 = ∅))) | 
| 45 |  | an4 656 | . . . . . 6
⊢ (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ↔ ((𝐴 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵))) | 
| 46 |  | sssn 4826 | . . . . . . . . . 10
⊢ (𝐴 ⊆ {𝐶} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐶})) | 
| 47 | 46 | a1i 11 | . . . . . . . . 9
⊢ (𝐶 ∈ V → (𝐴 ⊆ {𝐶} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐶}))) | 
| 48 | 47 | anbi1d 631 | . . . . . . . 8
⊢ (𝐶 ∈ V → ((𝐴 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴) ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐴))) | 
| 49 |  | andir 1011 | . . . . . . . . 9
⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐴) ↔ ((𝐴 = ∅ ∧ ¬ {𝐶} ⊆ 𝐴) ∨ (𝐴 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴))) | 
| 50 |  | n0i 4340 | . . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝐴 → ¬ 𝐴 = ∅) | 
| 51 | 7, 50 | biimtrrdi 254 | . . . . . . . . . . . 12
⊢ (𝐶 ∈ V → ({𝐶} ⊆ 𝐴 → ¬ 𝐴 = ∅)) | 
| 52 | 51 | con2d 134 | . . . . . . . . . . 11
⊢ (𝐶 ∈ V → (𝐴 = ∅ → ¬ {𝐶} ⊆ 𝐴)) | 
| 53 | 52 | pm4.71d 561 | . . . . . . . . . 10
⊢ (𝐶 ∈ V → (𝐴 = ∅ ↔ (𝐴 = ∅ ∧ ¬ {𝐶} ⊆ 𝐴))) | 
| 54 |  | eqimss2 4043 | . . . . . . . . . . . 12
⊢ (𝐴 = {𝐶} → {𝐶} ⊆ 𝐴) | 
| 55 |  | iman 401 | . . . . . . . . . . . 12
⊢ ((𝐴 = {𝐶} → {𝐶} ⊆ 𝐴) ↔ ¬ (𝐴 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴)) | 
| 56 | 54, 55 | mpbi 230 | . . . . . . . . . . 11
⊢  ¬
(𝐴 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴) | 
| 57 | 56 | biorfri 940 | . . . . . . . . . 10
⊢ ((𝐴 = ∅ ∧ ¬ {𝐶} ⊆ 𝐴) ↔ ((𝐴 = ∅ ∧ ¬ {𝐶} ⊆ 𝐴) ∨ (𝐴 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴))) | 
| 58 | 53, 57 | bitr2di 288 | . . . . . . . . 9
⊢ (𝐶 ∈ V → (((𝐴 = ∅ ∧ ¬ {𝐶} ⊆ 𝐴) ∨ (𝐴 = {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴)) ↔ 𝐴 = ∅)) | 
| 59 | 49, 58 | bitrid 283 | . . . . . . . 8
⊢ (𝐶 ∈ V → (((𝐴 = ∅ ∨ 𝐴 = {𝐶}) ∧ ¬ {𝐶} ⊆ 𝐴) ↔ 𝐴 = ∅)) | 
| 60 | 48, 59 | bitrd 279 | . . . . . . 7
⊢ (𝐶 ∈ V → ((𝐴 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴) ↔ 𝐴 = ∅)) | 
| 61 | 20 | bicomi 224 | . . . . . . . 8
⊢ ((𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵) ↔ 𝐵 = {𝐶}) | 
| 62 | 61 | a1i 11 | . . . . . . 7
⊢ (𝐶 ∈ V → ((𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵) ↔ 𝐵 = {𝐶})) | 
| 63 | 60, 62 | anbi12d 632 | . . . . . 6
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ ¬ {𝐶} ⊆ 𝐴) ∧ (𝐵 ⊆ {𝐶} ∧ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = ∅ ∧ 𝐵 = {𝐶}))) | 
| 64 | 45, 63 | bitrid 283 | . . . . 5
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ↔ (𝐴 = ∅ ∧ 𝐵 = {𝐶}))) | 
| 65 | 24, 44, 64 | 3orbi123d 1437 | . . . 4
⊢ (𝐶 ∈ V → ((((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∧ ¬ {𝐶} ⊆ 𝐵)) ∨ ((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ (¬ {𝐶} ⊆ 𝐴 ∧ {𝐶} ⊆ 𝐵))) ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) | 
| 66 | 17, 65 | bitrid 283 | . . 3
⊢ (𝐶 ∈ V → (((𝐴 ⊆ {𝐶} ∧ 𝐵 ⊆ {𝐶}) ∧ ({𝐶} ⊆ 𝐴 ∨ {𝐶} ⊆ 𝐵)) ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) | 
| 67 | 2, 13, 66 | 3bitrd 305 | . 2
⊢ (𝐶 ∈ V → ((𝐴 ∪ 𝐵) = {𝐶} ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) | 
| 68 |  | snprc 4717 | . . . . 5
⊢ (¬
𝐶 ∈ V ↔ {𝐶} = ∅) | 
| 69 | 68 | biimpi 216 | . . . 4
⊢ (¬
𝐶 ∈ V → {𝐶} = ∅) | 
| 70 | 69 | eqeq2d 2748 | . . 3
⊢ (¬
𝐶 ∈ V → ((𝐴 ∪ 𝐵) = {𝐶} ↔ (𝐴 ∪ 𝐵) = ∅)) | 
| 71 |  | pm4.25 906 | . . . . . 6
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ ((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅))) | 
| 72 | 71 | orbi1i 914 | . . . . . 6
⊢ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅))) | 
| 73 | 71, 72 | bitri 275 | . . . . 5
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅))) | 
| 74 | 69 | eqeq2d 2748 | . . . . . . . 8
⊢ (¬
𝐶 ∈ V → (𝐴 = {𝐶} ↔ 𝐴 = ∅)) | 
| 75 | 69 | eqeq2d 2748 | . . . . . . . 8
⊢ (¬
𝐶 ∈ V → (𝐵 = {𝐶} ↔ 𝐵 = ∅)) | 
| 76 | 74, 75 | anbi12d 632 | . . . . . . 7
⊢ (¬
𝐶 ∈ V → ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) | 
| 77 | 74 | anbi1d 631 | . . . . . . 7
⊢ (¬
𝐶 ∈ V → ((𝐴 = {𝐶} ∧ 𝐵 = ∅) ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) | 
| 78 | 76, 77 | orbi12d 919 | . . . . . 6
⊢ (¬
𝐶 ∈ V → (((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅)) ↔ ((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)))) | 
| 79 | 75 | anbi2d 630 | . . . . . 6
⊢ (¬
𝐶 ∈ V → ((𝐴 = ∅ ∧ 𝐵 = {𝐶}) ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) | 
| 80 | 78, 79 | orbi12d 919 | . . . . 5
⊢ (¬
𝐶 ∈ V → ((((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})) ↔ (((𝐴 = ∅ ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = ∅)))) | 
| 81 | 73, 80 | bitr4id 290 | . . . 4
⊢ (¬
𝐶 ∈ V → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) | 
| 82 |  | un00 4445 | . . . . 5
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) | 
| 83 | 82 | bicomi 224 | . . . 4
⊢ ((𝐴 ∪ 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)) | 
| 84 |  | df-3or 1088 | . . . 4
⊢ (((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})) ↔ (((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅)) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶}))) | 
| 85 | 81, 83, 84 | 3bitr4g 314 | . . 3
⊢ (¬
𝐶 ∈ V → ((𝐴 ∪ 𝐵) = ∅ ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) | 
| 86 | 70, 85 | bitrd 279 | . 2
⊢ (¬
𝐶 ∈ V → ((𝐴 ∪ 𝐵) = {𝐶} ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))) | 
| 87 | 67, 86 | pm2.61i 182 | 1
⊢ ((𝐴 ∪ 𝐵) = {𝐶} ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶}))) |