Proof of Theorem or3or
Step | Hyp | Ref
| Expression |
1 | | excxor 1509 |
. . 3
⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) |
2 | 1 | orbi2i 909 |
. 2
⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)) ↔ ((𝜑 ∧ 𝜓) ∨ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓)))) |
3 | | orc 863 |
. . . 4
⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
4 | | exmid 891 |
. . . . 5
⊢ (𝜓 ∨ ¬ 𝜓) |
5 | | pm3.2 469 |
. . . . . 6
⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
6 | | biimp 214 |
. . . . . . . . . 10
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
7 | | iman 401 |
. . . . . . . . . 10
⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
8 | 6, 7 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ↔ 𝜓) → ¬ (𝜑 ∧ ¬ 𝜓)) |
9 | 8 | con2i 139 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ↔ 𝜓)) |
10 | 9 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝜓 → ¬ (𝜑 ↔ 𝜓))) |
11 | | df-xor 1504 |
. . . . . . . 8
⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
12 | 11 | bicomi 223 |
. . . . . . 7
⊢ (¬
(𝜑 ↔ 𝜓) ↔ (𝜑 ⊻ 𝜓)) |
13 | 10, 12 | syl6ib 250 |
. . . . . 6
⊢ (𝜑 → (¬ 𝜓 → (𝜑 ⊻ 𝜓))) |
14 | 5, 13 | orim12d 961 |
. . . . 5
⊢ (𝜑 → ((𝜓 ∨ ¬ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)))) |
15 | 4, 14 | mpi 20 |
. . . 4
⊢ (𝜑 → ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓))) |
16 | 3, 15 | 2thd 264 |
. . 3
⊢ (𝜑 → ((𝜑 ∨ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)))) |
17 | | bicom 221 |
. . . . . . 7
⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
18 | | bibif 371 |
. . . . . . 7
⊢ (¬
𝜑 → ((𝜓 ↔ 𝜑) ↔ ¬ 𝜓)) |
19 | 17, 18 | syl5bb 282 |
. . . . . 6
⊢ (¬
𝜑 → ((𝜑 ↔ 𝜓) ↔ ¬ 𝜓)) |
20 | 19 | con2bid 354 |
. . . . 5
⊢ (¬
𝜑 → (𝜓 ↔ ¬ (𝜑 ↔ 𝜓))) |
21 | 20, 12 | bitrdi 286 |
. . . 4
⊢ (¬
𝜑 → (𝜓 ↔ (𝜑 ⊻ 𝜓))) |
22 | | biorf 933 |
. . . 4
⊢ (¬
𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
23 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
24 | | biorf 933 |
. . . . 5
⊢ (¬
(𝜑 ∧ 𝜓) → ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)))) |
25 | 23, 24 | nsyl5 159 |
. . . 4
⊢ (¬
𝜑 → ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)))) |
26 | 21, 22, 25 | 3bitr3d 308 |
. . 3
⊢ (¬
𝜑 → ((𝜑 ∨ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)))) |
27 | 16, 26 | pm2.61i 182 |
. 2
⊢ ((𝜑 ∨ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓))) |
28 | | 3orass 1088 |
. 2
⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓)) ↔ ((𝜑 ∧ 𝜓) ∨ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓)))) |
29 | 2, 27, 28 | 3bitr4i 302 |
1
⊢ ((𝜑 ∨ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) |