Proof of Theorem or3or
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | excxor 1515 | . . 3
⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) | 
| 2 | 1 | orbi2i 912 | . 2
⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)) ↔ ((𝜑 ∧ 𝜓) ∨ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓)))) | 
| 3 |  | orc 867 | . . . 4
⊢ (𝜑 → (𝜑 ∨ 𝜓)) | 
| 4 |  | exmid 894 | . . . . 5
⊢ (𝜓 ∨ ¬ 𝜓) | 
| 5 |  | pm3.2 469 | . . . . . 6
⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | 
| 6 |  | biimp 215 | . . . . . . . . . 10
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | 
| 7 |  | iman 401 | . . . . . . . . . 10
⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | 
| 8 | 6, 7 | sylib 218 | . . . . . . . . 9
⊢ ((𝜑 ↔ 𝜓) → ¬ (𝜑 ∧ ¬ 𝜓)) | 
| 9 | 8 | con2i 139 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ↔ 𝜓)) | 
| 10 | 9 | ex 412 | . . . . . . 7
⊢ (𝜑 → (¬ 𝜓 → ¬ (𝜑 ↔ 𝜓))) | 
| 11 |  | df-xor 1511 | . . . . . . . 8
⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | 
| 12 | 11 | bicomi 224 | . . . . . . 7
⊢ (¬
(𝜑 ↔ 𝜓) ↔ (𝜑 ⊻ 𝜓)) | 
| 13 | 10, 12 | imbitrdi 251 | . . . . . 6
⊢ (𝜑 → (¬ 𝜓 → (𝜑 ⊻ 𝜓))) | 
| 14 | 5, 13 | orim12d 966 | . . . . 5
⊢ (𝜑 → ((𝜓 ∨ ¬ 𝜓) → ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)))) | 
| 15 | 4, 14 | mpi 20 | . . . 4
⊢ (𝜑 → ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓))) | 
| 16 | 3, 15 | 2thd 265 | . . 3
⊢ (𝜑 → ((𝜑 ∨ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)))) | 
| 17 |  | bicom 222 | . . . . . . 7
⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) | 
| 18 |  | bibif 371 | . . . . . . 7
⊢ (¬
𝜑 → ((𝜓 ↔ 𝜑) ↔ ¬ 𝜓)) | 
| 19 | 17, 18 | bitrid 283 | . . . . . 6
⊢ (¬
𝜑 → ((𝜑 ↔ 𝜓) ↔ ¬ 𝜓)) | 
| 20 | 19 | con2bid 354 | . . . . 5
⊢ (¬
𝜑 → (𝜓 ↔ ¬ (𝜑 ↔ 𝜓))) | 
| 21 | 20, 12 | bitrdi 287 | . . . 4
⊢ (¬
𝜑 → (𝜓 ↔ (𝜑 ⊻ 𝜓))) | 
| 22 |  | biorf 936 | . . . 4
⊢ (¬
𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | 
| 23 |  | simpl 482 | . . . . 5
⊢ ((𝜑 ∧ 𝜓) → 𝜑) | 
| 24 |  | biorf 936 | . . . . 5
⊢ (¬
(𝜑 ∧ 𝜓) → ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)))) | 
| 25 | 23, 24 | nsyl5 159 | . . . 4
⊢ (¬
𝜑 → ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)))) | 
| 26 | 21, 22, 25 | 3bitr3d 309 | . . 3
⊢ (¬
𝜑 → ((𝜑 ∨ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓)))) | 
| 27 | 16, 26 | pm2.61i 182 | . 2
⊢ ((𝜑 ∨ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ⊻ 𝜓))) | 
| 28 |  | 3orass 1089 | . 2
⊢ (((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓)) ↔ ((𝜑 ∧ 𝜓) ∨ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓)))) | 
| 29 | 2, 27, 28 | 3bitr4i 303 | 1
⊢ ((𝜑 ∨ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑 ∧ 𝜓))) |