![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-cc | Structured version Visualization version GIF version |
Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10514, but is weak enough that it can be proven using DC (see axcc 10495). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.) |
Ref | Expression |
---|---|
ax-cc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . 4 setvar 𝑥 | |
2 | 1 | cv 1535 | . . 3 class 𝑥 |
3 | com 7886 | . . 3 class ω | |
4 | cen 8980 | . . 3 class ≈ | |
5 | 2, 3, 4 | wbr 5147 | . 2 wff 𝑥 ≈ ω |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1535 | . . . . . 6 class 𝑧 |
8 | c0 4338 | . . . . . 6 class ∅ | |
9 | 7, 8 | wne 2937 | . . . . 5 wff 𝑧 ≠ ∅ |
10 | vf | . . . . . . . 8 setvar 𝑓 | |
11 | 10 | cv 1535 | . . . . . . 7 class 𝑓 |
12 | 7, 11 | cfv 6562 | . . . . . 6 class (𝑓‘𝑧) |
13 | 12, 7 | wcel 2105 | . . . . 5 wff (𝑓‘𝑧) ∈ 𝑧 |
14 | 9, 13 | wi 4 | . . . 4 wff (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
15 | 14, 6, 2 | wral 3058 | . . 3 wff ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
16 | 15, 10 | wex 1775 | . 2 wff ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
17 | 5, 16 | wi 4 | 1 wff (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff setvar class |
This axiom is referenced by: axcc2lem 10473 axccdom 45164 axccd 45171 |
Copyright terms: Public domain | W3C validator |