MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-cc Structured version   Visualization version   GIF version

Axiom ax-cc 10472
Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10514, but is weak enough that it can be proven using DC (see axcc 10495). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.)
Assertion
Ref Expression
ax-cc (𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
Distinct variable group:   𝑥,𝑓,𝑧

Detailed syntax breakdown of Axiom ax-cc
StepHypRef Expression
1 vx . . . 4 setvar 𝑥
21cv 1535 . . 3 class 𝑥
3 com 7886 . . 3 class ω
4 cen 8980 . . 3 class
52, 3, 4wbr 5147 . 2 wff 𝑥 ≈ ω
6 vz . . . . . . 7 setvar 𝑧
76cv 1535 . . . . . 6 class 𝑧
8 c0 4338 . . . . . 6 class
97, 8wne 2937 . . . . 5 wff 𝑧 ≠ ∅
10 vf . . . . . . . 8 setvar 𝑓
1110cv 1535 . . . . . . 7 class 𝑓
127, 11cfv 6562 . . . . . 6 class (𝑓𝑧)
1312, 7wcel 2105 . . . . 5 wff (𝑓𝑧) ∈ 𝑧
149, 13wi 4 . . . 4 wff (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
1514, 6, 2wral 3058 . . 3 wff 𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
1615, 10wex 1775 . 2 wff 𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
175, 16wi 4 1 wff (𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
Colors of variables: wff setvar class
This axiom is referenced by:  axcc2lem  10473  axccdom  45164  axccd  45171
  Copyright terms: Public domain W3C validator