| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-cc | Structured version Visualization version GIF version | ||
| Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10517, but is weak enough that it can be proven using DC (see axcc 10498). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| ax-cc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . . 4 setvar 𝑥 | |
| 2 | 1 | cv 1539 | . . 3 class 𝑥 |
| 3 | com 7887 | . . 3 class ω | |
| 4 | cen 8982 | . . 3 class ≈ | |
| 5 | 2, 3, 4 | wbr 5143 | . 2 wff 𝑥 ≈ ω |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | c0 4333 | . . . . . 6 class ∅ | |
| 9 | 7, 8 | wne 2940 | . . . . 5 wff 𝑧 ≠ ∅ |
| 10 | vf | . . . . . . . 8 setvar 𝑓 | |
| 11 | 10 | cv 1539 | . . . . . . 7 class 𝑓 |
| 12 | 7, 11 | cfv 6561 | . . . . . 6 class (𝑓‘𝑧) |
| 13 | 12, 7 | wcel 2108 | . . . . 5 wff (𝑓‘𝑧) ∈ 𝑧 |
| 14 | 9, 13 | wi 4 | . . . 4 wff (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 15 | 14, 6, 2 | wral 3061 | . . 3 wff ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 16 | 15, 10 | wex 1779 | . 2 wff ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 17 | 5, 16 | wi 4 | 1 wff (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: axcc2lem 10476 axccdom 45227 axccd 45234 |
| Copyright terms: Public domain | W3C validator |