| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-cc | Structured version Visualization version GIF version | ||
| Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10390, but is weak enough that it can be proven using DC (see axcc 10371). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| ax-cc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . . 4 setvar 𝑥 | |
| 2 | 1 | cv 1539 | . . 3 class 𝑥 |
| 3 | com 7806 | . . 3 class ω | |
| 4 | cen 8876 | . . 3 class ≈ | |
| 5 | 2, 3, 4 | wbr 5095 | . 2 wff 𝑥 ≈ ω |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | c0 4286 | . . . . . 6 class ∅ | |
| 9 | 7, 8 | wne 2925 | . . . . 5 wff 𝑧 ≠ ∅ |
| 10 | vf | . . . . . . . 8 setvar 𝑓 | |
| 11 | 10 | cv 1539 | . . . . . . 7 class 𝑓 |
| 12 | 7, 11 | cfv 6486 | . . . . . 6 class (𝑓‘𝑧) |
| 13 | 12, 7 | wcel 2109 | . . . . 5 wff (𝑓‘𝑧) ∈ 𝑧 |
| 14 | 9, 13 | wi 4 | . . . 4 wff (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 15 | 14, 6, 2 | wral 3044 | . . 3 wff ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 16 | 15, 10 | wex 1779 | . 2 wff ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 17 | 5, 16 | wi 4 | 1 wff (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: axcc2lem 10349 axccdom 45200 axccd 45207 |
| Copyright terms: Public domain | W3C validator |