| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-cc | Structured version Visualization version GIF version | ||
| Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10375, but is weak enough that it can be proven using DC (see axcc 10356). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| ax-cc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . . 4 setvar 𝑥 | |
| 2 | 1 | cv 1540 | . . 3 class 𝑥 |
| 3 | com 7802 | . . 3 class ω | |
| 4 | cen 8872 | . . 3 class ≈ | |
| 5 | 2, 3, 4 | wbr 5093 | . 2 wff 𝑥 ≈ ω |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1540 | . . . . . 6 class 𝑧 |
| 8 | c0 4282 | . . . . . 6 class ∅ | |
| 9 | 7, 8 | wne 2929 | . . . . 5 wff 𝑧 ≠ ∅ |
| 10 | vf | . . . . . . . 8 setvar 𝑓 | |
| 11 | 10 | cv 1540 | . . . . . . 7 class 𝑓 |
| 12 | 7, 11 | cfv 6486 | . . . . . 6 class (𝑓‘𝑧) |
| 13 | 12, 7 | wcel 2113 | . . . . 5 wff (𝑓‘𝑧) ∈ 𝑧 |
| 14 | 9, 13 | wi 4 | . . . 4 wff (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 15 | 14, 6, 2 | wral 3048 | . . 3 wff ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 16 | 15, 10 | wex 1780 | . 2 wff ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 17 | 5, 16 | wi 4 | 1 wff (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: axcc2lem 10334 axccdom 45343 axccd 45350 |
| Copyright terms: Public domain | W3C validator |