![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-cc | Structured version Visualization version GIF version |
Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10472, but is weak enough that it can be proven using DC (see axcc 10453). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.) |
Ref | Expression |
---|---|
ax-cc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . 4 setvar 𝑥 | |
2 | 1 | cv 1541 | . . 3 class 𝑥 |
3 | com 7855 | . . 3 class ω | |
4 | cen 8936 | . . 3 class ≈ | |
5 | 2, 3, 4 | wbr 5149 | . 2 wff 𝑥 ≈ ω |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1541 | . . . . . 6 class 𝑧 |
8 | c0 4323 | . . . . . 6 class ∅ | |
9 | 7, 8 | wne 2941 | . . . . 5 wff 𝑧 ≠ ∅ |
10 | vf | . . . . . . . 8 setvar 𝑓 | |
11 | 10 | cv 1541 | . . . . . . 7 class 𝑓 |
12 | 7, 11 | cfv 6544 | . . . . . 6 class (𝑓‘𝑧) |
13 | 12, 7 | wcel 2107 | . . . . 5 wff (𝑓‘𝑧) ∈ 𝑧 |
14 | 9, 13 | wi 4 | . . . 4 wff (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
15 | 14, 6, 2 | wral 3062 | . . 3 wff ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
16 | 15, 10 | wex 1782 | . 2 wff ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
17 | 5, 16 | wi 4 | 1 wff (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff setvar class |
This axiom is referenced by: axcc2lem 10431 axccdom 43921 axccd 43928 |
Copyright terms: Public domain | W3C validator |