Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-cc | Structured version Visualization version GIF version |
Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10226, but is weak enough that it can be proven using DC (see axcc 10207). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.) |
Ref | Expression |
---|---|
ax-cc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . 4 setvar 𝑥 | |
2 | 1 | cv 1541 | . . 3 class 𝑥 |
3 | com 7701 | . . 3 class ω | |
4 | cen 8705 | . . 3 class ≈ | |
5 | 2, 3, 4 | wbr 5079 | . 2 wff 𝑥 ≈ ω |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1541 | . . . . . 6 class 𝑧 |
8 | c0 4262 | . . . . . 6 class ∅ | |
9 | 7, 8 | wne 2945 | . . . . 5 wff 𝑧 ≠ ∅ |
10 | vf | . . . . . . . 8 setvar 𝑓 | |
11 | 10 | cv 1541 | . . . . . . 7 class 𝑓 |
12 | 7, 11 | cfv 6431 | . . . . . 6 class (𝑓‘𝑧) |
13 | 12, 7 | wcel 2110 | . . . . 5 wff (𝑓‘𝑧) ∈ 𝑧 |
14 | 9, 13 | wi 4 | . . . 4 wff (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
15 | 14, 6, 2 | wral 3066 | . . 3 wff ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
16 | 15, 10 | wex 1786 | . 2 wff ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
17 | 5, 16 | wi 4 | 1 wff (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff setvar class |
This axiom is referenced by: axcc2lem 10185 axccdom 42724 axccd 42730 |
Copyright terms: Public domain | W3C validator |