MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-cc Structured version   Visualization version   GIF version

Axiom ax-cc 10430
Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10472, but is weak enough that it can be proven using DC (see axcc 10453). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.)
Assertion
Ref Expression
ax-cc (𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
Distinct variable group:   𝑥,𝑓,𝑧

Detailed syntax breakdown of Axiom ax-cc
StepHypRef Expression
1 vx . . . 4 setvar 𝑥
21cv 1541 . . 3 class 𝑥
3 com 7855 . . 3 class ω
4 cen 8936 . . 3 class
52, 3, 4wbr 5149 . 2 wff 𝑥 ≈ ω
6 vz . . . . . . 7 setvar 𝑧
76cv 1541 . . . . . 6 class 𝑧
8 c0 4323 . . . . . 6 class
97, 8wne 2941 . . . . 5 wff 𝑧 ≠ ∅
10 vf . . . . . . . 8 setvar 𝑓
1110cv 1541 . . . . . . 7 class 𝑓
127, 11cfv 6544 . . . . . 6 class (𝑓𝑧)
1312, 7wcel 2107 . . . . 5 wff (𝑓𝑧) ∈ 𝑧
149, 13wi 4 . . . 4 wff (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
1514, 6, 2wral 3062 . . 3 wff 𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
1615, 10wex 1782 . 2 wff 𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
175, 16wi 4 1 wff (𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
Colors of variables: wff setvar class
This axiom is referenced by:  axcc2lem  10431  axccdom  43921  axccd  43928
  Copyright terms: Public domain W3C validator