| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-cc | Structured version Visualization version GIF version | ||
| Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10365, but is weak enough that it can be proven using DC (see axcc 10346). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| ax-cc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . . 4 setvar 𝑥 | |
| 2 | 1 | cv 1540 | . . 3 class 𝑥 |
| 3 | com 7796 | . . 3 class ω | |
| 4 | cen 8866 | . . 3 class ≈ | |
| 5 | 2, 3, 4 | wbr 5091 | . 2 wff 𝑥 ≈ ω |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1540 | . . . . . 6 class 𝑧 |
| 8 | c0 4283 | . . . . . 6 class ∅ | |
| 9 | 7, 8 | wne 2928 | . . . . 5 wff 𝑧 ≠ ∅ |
| 10 | vf | . . . . . . . 8 setvar 𝑓 | |
| 11 | 10 | cv 1540 | . . . . . . 7 class 𝑓 |
| 12 | 7, 11 | cfv 6481 | . . . . . 6 class (𝑓‘𝑧) |
| 13 | 12, 7 | wcel 2111 | . . . . 5 wff (𝑓‘𝑧) ∈ 𝑧 |
| 14 | 9, 13 | wi 4 | . . . 4 wff (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 15 | 14, 6, 2 | wral 3047 | . . 3 wff ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 16 | 15, 10 | wex 1780 | . 2 wff ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 17 | 5, 16 | wi 4 | 1 wff (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: axcc2lem 10324 axccdom 45258 axccd 45265 |
| Copyright terms: Public domain | W3C validator |