| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-cc | Structured version Visualization version GIF version | ||
| Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10437, but is weak enough that it can be proven using DC (see axcc 10418). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| ax-cc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . . 4 setvar 𝑥 | |
| 2 | 1 | cv 1539 | . . 3 class 𝑥 |
| 3 | com 7845 | . . 3 class ω | |
| 4 | cen 8918 | . . 3 class ≈ | |
| 5 | 2, 3, 4 | wbr 5110 | . 2 wff 𝑥 ≈ ω |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | c0 4299 | . . . . . 6 class ∅ | |
| 9 | 7, 8 | wne 2926 | . . . . 5 wff 𝑧 ≠ ∅ |
| 10 | vf | . . . . . . . 8 setvar 𝑓 | |
| 11 | 10 | cv 1539 | . . . . . . 7 class 𝑓 |
| 12 | 7, 11 | cfv 6514 | . . . . . 6 class (𝑓‘𝑧) |
| 13 | 12, 7 | wcel 2109 | . . . . 5 wff (𝑓‘𝑧) ∈ 𝑧 |
| 14 | 9, 13 | wi 4 | . . . 4 wff (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 15 | 14, 6, 2 | wral 3045 | . . 3 wff ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 16 | 15, 10 | wex 1779 | . 2 wff ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
| 17 | 5, 16 | wi 4 | 1 wff (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: axcc2lem 10396 axccdom 45223 axccd 45230 |
| Copyright terms: Public domain | W3C validator |