MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-cc Structured version   Visualization version   GIF version

Axiom ax-cc 10323
Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10365, but is weak enough that it can be proven using DC (see axcc 10346). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.)
Assertion
Ref Expression
ax-cc (𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
Distinct variable group:   𝑥,𝑓,𝑧

Detailed syntax breakdown of Axiom ax-cc
StepHypRef Expression
1 vx . . . 4 setvar 𝑥
21cv 1540 . . 3 class 𝑥
3 com 7796 . . 3 class ω
4 cen 8866 . . 3 class
52, 3, 4wbr 5091 . 2 wff 𝑥 ≈ ω
6 vz . . . . . . 7 setvar 𝑧
76cv 1540 . . . . . 6 class 𝑧
8 c0 4283 . . . . . 6 class
97, 8wne 2928 . . . . 5 wff 𝑧 ≠ ∅
10 vf . . . . . . . 8 setvar 𝑓
1110cv 1540 . . . . . . 7 class 𝑓
127, 11cfv 6481 . . . . . 6 class (𝑓𝑧)
1312, 7wcel 2111 . . . . 5 wff (𝑓𝑧) ∈ 𝑧
149, 13wi 4 . . . 4 wff (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
1514, 6, 2wral 3047 . . 3 wff 𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
1615, 10wex 1780 . 2 wff 𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
175, 16wi 4 1 wff (𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
Colors of variables: wff setvar class
This axiom is referenced by:  axcc2lem  10324  axccdom  45258  axccd  45265
  Copyright terms: Public domain W3C validator