Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccdom Structured version   Visualization version   GIF version

Theorem axccdom 43433
Description: Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccdom.1 (𝜑𝑋 ≼ ω)
axccdom.2 ((𝜑𝑧𝑋) → 𝑧 ≠ ∅)
Assertion
Ref Expression
axccdom (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
Distinct variable groups:   𝑓,𝑋,𝑧   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem axccdom
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . 3 ((𝜑𝑋 ∈ Fin) → 𝑋 ∈ Fin)
2 simpr 485 . . 3 (((𝜑𝑋 ∈ Fin) ∧ 𝑧𝑋) → 𝑧𝑋)
3 axccdom.2 . . . 4 ((𝜑𝑧𝑋) → 𝑧 ≠ ∅)
43adantlr 713 . . 3 (((𝜑𝑋 ∈ Fin) ∧ 𝑧𝑋) → 𝑧 ≠ ∅)
51, 2, 4choicefi 43411 . 2 ((𝜑𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6 axccdom.1 . . . . . 6 (𝜑𝑋 ≼ ω)
76adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≼ ω)
8 isfinite2 9245 . . . . . . 7 (𝑋 ≺ ω → 𝑋 ∈ Fin)
98con3i 154 . . . . . 6 𝑋 ∈ Fin → ¬ 𝑋 ≺ ω)
109adantl 482 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ¬ 𝑋 ≺ ω)
117, 10jca 512 . . . 4 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → (𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω))
12 bren2 8923 . . . 4 (𝑋 ≈ ω ↔ (𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω))
1311, 12sylibr 233 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≈ ω)
14 ctex 8903 . . . . . . 7 (𝑋 ≼ ω → 𝑋 ∈ V)
156, 14syl 17 . . . . . 6 (𝜑𝑋 ∈ V)
1615adantr 481 . . . . 5 ((𝜑𝑋 ≈ ω) → 𝑋 ∈ V)
17 simpr 485 . . . . 5 ((𝜑𝑋 ≈ ω) → 𝑋 ≈ ω)
18 breq1 5108 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ≈ ω ↔ 𝑋 ≈ ω))
19 raleq 3309 . . . . . . . 8 (𝑥 = 𝑋 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2019exbidv 1924 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2118, 20imbi12d 344 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ↔ (𝑋 ≈ ω → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))))
22 ax-cc 10371 . . . . . 6 (𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
2321, 22vtoclg 3525 . . . . 5 (𝑋 ∈ V → (𝑋 ≈ ω → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2416, 17, 23sylc 65 . . . 4 ((𝜑𝑋 ≈ ω) → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
2515mptexd 7174 . . . . . . . . 9 (𝜑 → (𝑧𝑋 ↦ (𝑔𝑧)) ∈ V)
2625adantr 481 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 ↦ (𝑔𝑧)) ∈ V)
27 fvex 6855 . . . . . . . . . . . 12 (𝑔𝑧) ∈ V
2827rgenw 3068 . . . . . . . . . . 11 𝑧𝑋 (𝑔𝑧) ∈ V
29 eqid 2736 . . . . . . . . . . . 12 (𝑧𝑋 ↦ (𝑔𝑧)) = (𝑧𝑋 ↦ (𝑔𝑧))
3029fnmpt 6641 . . . . . . . . . . 11 (∀𝑧𝑋 (𝑔𝑧) ∈ V → (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋)
3128, 30ax-mp 5 . . . . . . . . . 10 (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋
3231a1i 11 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋)
33 nfv 1917 . . . . . . . . . . 11 𝑧𝜑
34 nfra1 3267 . . . . . . . . . . 11 𝑧𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)
3533, 34nfan 1902 . . . . . . . . . 10 𝑧(𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
36 id 22 . . . . . . . . . . . . . 14 (𝑧𝑋𝑧𝑋)
3727a1i 11 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝑔𝑧) ∈ V)
3829fvmpt2 6959 . . . . . . . . . . . . . 14 ((𝑧𝑋 ∧ (𝑔𝑧) ∈ V) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
3936, 37, 38syl2anc 584 . . . . . . . . . . . . 13 (𝑧𝑋 → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
4039adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
41 rspa 3231 . . . . . . . . . . . . . 14 ((∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ∧ 𝑧𝑋) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
4241adantll 712 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
433adantlr 713 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → 𝑧 ≠ ∅)
44 id 22 . . . . . . . . . . . . 13 ((𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
4542, 43, 44sylc 65 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → (𝑔𝑧) ∈ 𝑧)
4640, 45eqeltrd 2838 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)
4746ex 413 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
4835, 47ralrimi 3240 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)
4932, 48jca 512 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
50 fneq1 6593 . . . . . . . . . 10 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (𝑓 Fn 𝑋 ↔ (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋))
51 nfcv 2907 . . . . . . . . . . . 12 𝑧𝑓
52 nfmpt1 5213 . . . . . . . . . . . 12 𝑧(𝑧𝑋 ↦ (𝑔𝑧))
5351, 52nfeq 2920 . . . . . . . . . . 11 𝑧 𝑓 = (𝑧𝑋 ↦ (𝑔𝑧))
54 fveq1 6841 . . . . . . . . . . . 12 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (𝑓𝑧) = ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧))
5554eleq1d 2822 . . . . . . . . . . 11 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
5653, 55ralbid 3256 . . . . . . . . . 10 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧 ↔ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
5750, 56anbi12d 631 . . . . . . . . 9 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → ((𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧) ↔ ((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)))
5857spcegv 3556 . . . . . . . 8 ((𝑧𝑋 ↦ (𝑔𝑧)) ∈ V → (((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
5926, 49, 58sylc 65 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6059adantlr 713 . . . . . 6 (((𝜑𝑋 ≈ ω) ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6160ex 413 . . . . 5 ((𝜑𝑋 ≈ ω) → (∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
6261exlimdv 1936 . . . 4 ((𝜑𝑋 ≈ ω) → (∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
6324, 62mpd 15 . . 3 ((𝜑𝑋 ≈ ω) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6413, 63syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
655, 64pm2.61dan 811 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  Vcvv 3445  c0 4282   class class class wbr 5105  cmpt 5188   Fn wfn 6491  cfv 6496  ωcom 7802  cen 8880  cdom 8881  csdm 8882  Fincfn 8883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cc 10371
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887
This theorem is referenced by:  subsaliuncl  44589
  Copyright terms: Public domain W3C validator