Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccdom Structured version   Visualization version   GIF version

Theorem axccdom 45200
Description: Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccdom.1 (𝜑𝑋 ≼ ω)
axccdom.2 ((𝜑𝑧𝑋) → 𝑧 ≠ ∅)
Assertion
Ref Expression
axccdom (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
Distinct variable groups:   𝑓,𝑋,𝑧   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem axccdom
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝑋 ∈ Fin) → 𝑋 ∈ Fin)
2 simpr 484 . . 3 (((𝜑𝑋 ∈ Fin) ∧ 𝑧𝑋) → 𝑧𝑋)
3 axccdom.2 . . . 4 ((𝜑𝑧𝑋) → 𝑧 ≠ ∅)
43adantlr 715 . . 3 (((𝜑𝑋 ∈ Fin) ∧ 𝑧𝑋) → 𝑧 ≠ ∅)
51, 2, 4choicefi 45178 . 2 ((𝜑𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6 axccdom.1 . . . . . 6 (𝜑𝑋 ≼ ω)
76adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≼ ω)
8 isfinite2 9203 . . . . . . 7 (𝑋 ≺ ω → 𝑋 ∈ Fin)
98con3i 154 . . . . . 6 𝑋 ∈ Fin → ¬ 𝑋 ≺ ω)
109adantl 481 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ¬ 𝑋 ≺ ω)
117, 10jca 511 . . . 4 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → (𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω))
12 bren2 8915 . . . 4 (𝑋 ≈ ω ↔ (𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω))
1311, 12sylibr 234 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≈ ω)
14 ctex 8896 . . . . . . 7 (𝑋 ≼ ω → 𝑋 ∈ V)
156, 14syl 17 . . . . . 6 (𝜑𝑋 ∈ V)
1615adantr 480 . . . . 5 ((𝜑𝑋 ≈ ω) → 𝑋 ∈ V)
17 simpr 484 . . . . 5 ((𝜑𝑋 ≈ ω) → 𝑋 ≈ ω)
18 breq1 5098 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ≈ ω ↔ 𝑋 ≈ ω))
19 raleq 3287 . . . . . . . 8 (𝑥 = 𝑋 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2019exbidv 1921 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2118, 20imbi12d 344 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ↔ (𝑋 ≈ ω → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))))
22 ax-cc 10348 . . . . . 6 (𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
2321, 22vtoclg 3511 . . . . 5 (𝑋 ∈ V → (𝑋 ≈ ω → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2416, 17, 23sylc 65 . . . 4 ((𝜑𝑋 ≈ ω) → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
2515mptexd 7164 . . . . . . . . 9 (𝜑 → (𝑧𝑋 ↦ (𝑔𝑧)) ∈ V)
2625adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 ↦ (𝑔𝑧)) ∈ V)
27 fvex 6839 . . . . . . . . . . . 12 (𝑔𝑧) ∈ V
2827rgenw 3048 . . . . . . . . . . 11 𝑧𝑋 (𝑔𝑧) ∈ V
29 eqid 2729 . . . . . . . . . . . 12 (𝑧𝑋 ↦ (𝑔𝑧)) = (𝑧𝑋 ↦ (𝑔𝑧))
3029fnmpt 6626 . . . . . . . . . . 11 (∀𝑧𝑋 (𝑔𝑧) ∈ V → (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋)
3128, 30ax-mp 5 . . . . . . . . . 10 (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋
3231a1i 11 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋)
33 nfv 1914 . . . . . . . . . . 11 𝑧𝜑
34 nfra1 3253 . . . . . . . . . . 11 𝑧𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)
3533, 34nfan 1899 . . . . . . . . . 10 𝑧(𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
36 id 22 . . . . . . . . . . . . . 14 (𝑧𝑋𝑧𝑋)
3727a1i 11 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝑔𝑧) ∈ V)
3829fvmpt2 6945 . . . . . . . . . . . . . 14 ((𝑧𝑋 ∧ (𝑔𝑧) ∈ V) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
3936, 37, 38syl2anc 584 . . . . . . . . . . . . 13 (𝑧𝑋 → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
4039adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
41 rspa 3218 . . . . . . . . . . . . . 14 ((∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ∧ 𝑧𝑋) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
4241adantll 714 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
433adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → 𝑧 ≠ ∅)
44 id 22 . . . . . . . . . . . . 13 ((𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
4542, 43, 44sylc 65 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → (𝑔𝑧) ∈ 𝑧)
4640, 45eqeltrd 2828 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)
4746ex 412 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
4835, 47ralrimi 3227 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)
4932, 48jca 511 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
50 fneq1 6577 . . . . . . . . . 10 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (𝑓 Fn 𝑋 ↔ (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋))
51 nfcv 2891 . . . . . . . . . . . 12 𝑧𝑓
52 nfmpt1 5194 . . . . . . . . . . . 12 𝑧(𝑧𝑋 ↦ (𝑔𝑧))
5351, 52nfeq 2905 . . . . . . . . . . 11 𝑧 𝑓 = (𝑧𝑋 ↦ (𝑔𝑧))
54 fveq1 6825 . . . . . . . . . . . 12 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (𝑓𝑧) = ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧))
5554eleq1d 2813 . . . . . . . . . . 11 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
5653, 55ralbid 3242 . . . . . . . . . 10 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧 ↔ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
5750, 56anbi12d 632 . . . . . . . . 9 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → ((𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧) ↔ ((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)))
5857spcegv 3554 . . . . . . . 8 ((𝑧𝑋 ↦ (𝑔𝑧)) ∈ V → (((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
5926, 49, 58sylc 65 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6059adantlr 715 . . . . . 6 (((𝜑𝑋 ≈ ω) ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6160ex 412 . . . . 5 ((𝜑𝑋 ≈ ω) → (∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
6261exlimdv 1933 . . . 4 ((𝜑𝑋 ≈ ω) → (∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
6324, 62mpd 15 . . 3 ((𝜑𝑋 ≈ ω) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6413, 63syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
655, 64pm2.61dan 812 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3438  c0 4286   class class class wbr 5095  cmpt 5176   Fn wfn 6481  cfv 6486  ωcom 7806  cen 8876  cdom 8877  csdm 8878  Fincfn 8879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cc 10348
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883
This theorem is referenced by:  subsaliuncl  46340
  Copyright terms: Public domain W3C validator