| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin) |
| 2 | | simpr 484 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
| 3 | | axccdom.2 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ≠ ∅) |
| 4 | 3 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝑋) → 𝑧 ≠ ∅) |
| 5 | 1, 2, 4 | choicefi 45205 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |
| 6 | | axccdom.1 |
. . . . . 6
⊢ (𝜑 → 𝑋 ≼ ω) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≼ ω) |
| 8 | | isfinite2 9334 |
. . . . . . 7
⊢ (𝑋 ≺ ω → 𝑋 ∈ Fin) |
| 9 | 8 | con3i 154 |
. . . . . 6
⊢ (¬
𝑋 ∈ Fin → ¬
𝑋 ≺
ω) |
| 10 | 9 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ¬ 𝑋 ≺ ω) |
| 11 | 7, 10 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → (𝑋 ≼ ω ∧ ¬ 𝑋 ≺
ω)) |
| 12 | | bren2 9023 |
. . . 4
⊢ (𝑋 ≈ ω ↔ (𝑋 ≼ ω ∧ ¬
𝑋 ≺
ω)) |
| 13 | 11, 12 | sylibr 234 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≈ ω) |
| 14 | | ctex 9004 |
. . . . . . 7
⊢ (𝑋 ≼ ω → 𝑋 ∈ V) |
| 15 | 6, 14 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ V) |
| 16 | 15 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → 𝑋 ∈ V) |
| 17 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → 𝑋 ≈ ω) |
| 18 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥 ≈ ω ↔ 𝑋 ≈ ω)) |
| 19 | | raleq 3323 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧))) |
| 20 | 19 | exbidv 1921 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) ↔ ∃𝑔∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧))) |
| 21 | 18, 20 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝑥 ≈ ω → ∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ↔ (𝑋 ≈ ω → ∃𝑔∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)))) |
| 22 | | ax-cc 10475 |
. . . . . 6
⊢ (𝑥 ≈ ω →
∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
| 23 | 21, 22 | vtoclg 3554 |
. . . . 5
⊢ (𝑋 ∈ V → (𝑋 ≈ ω →
∃𝑔∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧))) |
| 24 | 16, 17, 23 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → ∃𝑔∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
| 25 | 15 | mptexd 7244 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) ∈ V) |
| 26 | 25 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) ∈ V) |
| 27 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ (𝑔‘𝑧) ∈ V |
| 28 | 27 | rgenw 3065 |
. . . . . . . . . . 11
⊢
∀𝑧 ∈
𝑋 (𝑔‘𝑧) ∈ V |
| 29 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) |
| 30 | 29 | fnmpt 6708 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑋 (𝑔‘𝑧) ∈ V → (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋) |
| 31 | 28, 30 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋 |
| 32 | 31 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋) |
| 33 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧𝜑 |
| 34 | | nfra1 3284 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) |
| 35 | 33, 34 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑧(𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
| 36 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑋 → 𝑧 ∈ 𝑋) |
| 37 | 27 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑋 → (𝑔‘𝑧) ∈ V) |
| 38 | 29 | fvmpt2 7027 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑔‘𝑧) ∈ V) → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) = (𝑔‘𝑧)) |
| 39 | 36, 37, 38 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑋 → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) = (𝑔‘𝑧)) |
| 40 | 39 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ∧ 𝑧 ∈ 𝑋) → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) = (𝑔‘𝑧)) |
| 41 | | rspa 3248 |
. . . . . . . . . . . . . 14
⊢
((∀𝑧 ∈
𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) ∧ 𝑧 ∈ 𝑋) → (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
| 42 | 41 | adantll 714 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ∧ 𝑧 ∈ 𝑋) → (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
| 43 | 3 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ∧ 𝑧 ∈ 𝑋) → 𝑧 ≠ ∅) |
| 44 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
| 45 | 42, 43, 44 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ∧ 𝑧 ∈ 𝑋) → (𝑔‘𝑧) ∈ 𝑧) |
| 46 | 40, 45 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ∧ 𝑧 ∈ 𝑋) → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧) |
| 47 | 46 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → (𝑧 ∈ 𝑋 → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧)) |
| 48 | 35, 47 | ralrimi 3257 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → ∀𝑧 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧) |
| 49 | 32, 48 | jca 511 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧)) |
| 50 | | fneq1 6659 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) → (𝑓 Fn 𝑋 ↔ (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋)) |
| 51 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧𝑓 |
| 52 | | nfmpt1 5250 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧(𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) |
| 53 | 51, 52 | nfeq 2919 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧 𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) |
| 54 | | fveq1 6905 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) → (𝑓‘𝑧) = ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧)) |
| 55 | 54 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) → ((𝑓‘𝑧) ∈ 𝑧 ↔ ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧)) |
| 56 | 53, 55 | ralbid 3273 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) → (∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧 ↔ ∀𝑧 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧)) |
| 57 | 50, 56 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) → ((𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧) ↔ ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧))) |
| 58 | 57 | spcegv 3597 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) ∈ V → (((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧))) |
| 59 | 26, 49, 58 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |
| 60 | 59 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ≈ ω) ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |
| 61 | 60 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → (∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧))) |
| 62 | 61 | exlimdv 1933 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → (∃𝑔∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧))) |
| 63 | 24, 62 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |
| 64 | 13, 63 | syldan 591 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |
| 65 | 5, 64 | pm2.61dan 813 |
1
⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |