Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccdom Structured version   Visualization version   GIF version

Theorem axccdom 41853
Description: Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccdom.1 (𝜑𝑋 ≼ ω)
axccdom.2 ((𝜑𝑧𝑋) → 𝑧 ≠ ∅)
Assertion
Ref Expression
axccdom (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
Distinct variable groups:   𝑓,𝑋,𝑧   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem axccdom
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . 3 ((𝜑𝑋 ∈ Fin) → 𝑋 ∈ Fin)
2 simpr 488 . . 3 (((𝜑𝑋 ∈ Fin) ∧ 𝑧𝑋) → 𝑧𝑋)
3 axccdom.2 . . . 4 ((𝜑𝑧𝑋) → 𝑧 ≠ ∅)
43adantlr 714 . . 3 (((𝜑𝑋 ∈ Fin) ∧ 𝑧𝑋) → 𝑧 ≠ ∅)
51, 2, 4choicefi 41829 . 2 ((𝜑𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6 axccdom.1 . . . . . 6 (𝜑𝑋 ≼ ω)
76adantr 484 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≼ ω)
8 isfinite2 8760 . . . . . . 7 (𝑋 ≺ ω → 𝑋 ∈ Fin)
98con3i 157 . . . . . 6 𝑋 ∈ Fin → ¬ 𝑋 ≺ ω)
109adantl 485 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ¬ 𝑋 ≺ ω)
117, 10jca 515 . . . 4 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → (𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω))
12 bren2 8523 . . . 4 (𝑋 ≈ ω ↔ (𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω))
1311, 12sylibr 237 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≈ ω)
14 ctex 8507 . . . . . . 7 (𝑋 ≼ ω → 𝑋 ∈ V)
156, 14syl 17 . . . . . 6 (𝜑𝑋 ∈ V)
1615adantr 484 . . . . 5 ((𝜑𝑋 ≈ ω) → 𝑋 ∈ V)
17 simpr 488 . . . . 5 ((𝜑𝑋 ≈ ω) → 𝑋 ≈ ω)
18 breq1 5033 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ≈ ω ↔ 𝑋 ≈ ω))
19 raleq 3358 . . . . . . . 8 (𝑥 = 𝑋 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2019exbidv 1922 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2118, 20imbi12d 348 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ↔ (𝑋 ≈ ω → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))))
22 ax-cc 9846 . . . . . 6 (𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
2321, 22vtoclg 3515 . . . . 5 (𝑋 ∈ V → (𝑋 ≈ ω → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2416, 17, 23sylc 65 . . . 4 ((𝜑𝑋 ≈ ω) → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
2515mptexd 6964 . . . . . . . . 9 (𝜑 → (𝑧𝑋 ↦ (𝑔𝑧)) ∈ V)
2625adantr 484 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 ↦ (𝑔𝑧)) ∈ V)
27 fvex 6658 . . . . . . . . . . . 12 (𝑔𝑧) ∈ V
2827rgenw 3118 . . . . . . . . . . 11 𝑧𝑋 (𝑔𝑧) ∈ V
29 eqid 2798 . . . . . . . . . . . 12 (𝑧𝑋 ↦ (𝑔𝑧)) = (𝑧𝑋 ↦ (𝑔𝑧))
3029fnmpt 6460 . . . . . . . . . . 11 (∀𝑧𝑋 (𝑔𝑧) ∈ V → (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋)
3128, 30ax-mp 5 . . . . . . . . . 10 (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋
3231a1i 11 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋)
33 nfv 1915 . . . . . . . . . . 11 𝑧𝜑
34 nfra1 3183 . . . . . . . . . . 11 𝑧𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)
3533, 34nfan 1900 . . . . . . . . . 10 𝑧(𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
36 id 22 . . . . . . . . . . . . . 14 (𝑧𝑋𝑧𝑋)
3727a1i 11 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝑔𝑧) ∈ V)
3829fvmpt2 6756 . . . . . . . . . . . . . 14 ((𝑧𝑋 ∧ (𝑔𝑧) ∈ V) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
3936, 37, 38syl2anc 587 . . . . . . . . . . . . 13 (𝑧𝑋 → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
4039adantl 485 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
41 rspa 3171 . . . . . . . . . . . . . 14 ((∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ∧ 𝑧𝑋) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
4241adantll 713 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
433adantlr 714 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → 𝑧 ≠ ∅)
44 id 22 . . . . . . . . . . . . 13 ((𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
4542, 43, 44sylc 65 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → (𝑔𝑧) ∈ 𝑧)
4640, 45eqeltrd 2890 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)
4746ex 416 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
4835, 47ralrimi 3180 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)
4932, 48jca 515 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
50 fneq1 6414 . . . . . . . . . 10 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (𝑓 Fn 𝑋 ↔ (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋))
51 nfcv 2955 . . . . . . . . . . . 12 𝑧𝑓
52 nfmpt1 5128 . . . . . . . . . . . 12 𝑧(𝑧𝑋 ↦ (𝑔𝑧))
5351, 52nfeq 2968 . . . . . . . . . . 11 𝑧 𝑓 = (𝑧𝑋 ↦ (𝑔𝑧))
54 fveq1 6644 . . . . . . . . . . . 12 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (𝑓𝑧) = ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧))
5554eleq1d 2874 . . . . . . . . . . 11 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
5653, 55ralbid 3195 . . . . . . . . . 10 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧 ↔ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
5750, 56anbi12d 633 . . . . . . . . 9 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → ((𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧) ↔ ((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)))
5857spcegv 3545 . . . . . . . 8 ((𝑧𝑋 ↦ (𝑔𝑧)) ∈ V → (((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
5926, 49, 58sylc 65 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6059adantlr 714 . . . . . 6 (((𝜑𝑋 ≈ ω) ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6160ex 416 . . . . 5 ((𝜑𝑋 ≈ ω) → (∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
6261exlimdv 1934 . . . 4 ((𝜑𝑋 ≈ ω) → (∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
6324, 62mpd 15 . . 3 ((𝜑𝑋 ≈ ω) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6413, 63syldan 594 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
655, 64pm2.61dan 812 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  Vcvv 3441  c0 4243   class class class wbr 5030  cmpt 5110   Fn wfn 6319  cfv 6324  ωcom 7560  cen 8489  cdom 8490  csdm 8491  Fincfn 8492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cc 9846
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496
This theorem is referenced by:  subsaliuncl  42998
  Copyright terms: Public domain W3C validator