Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccdom Structured version   Visualization version   GIF version

Theorem axccdom 45246
Description: Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccdom.1 (𝜑𝑋 ≼ ω)
axccdom.2 ((𝜑𝑧𝑋) → 𝑧 ≠ ∅)
Assertion
Ref Expression
axccdom (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
Distinct variable groups:   𝑓,𝑋,𝑧   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem axccdom
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝑋 ∈ Fin) → 𝑋 ∈ Fin)
2 simpr 484 . . 3 (((𝜑𝑋 ∈ Fin) ∧ 𝑧𝑋) → 𝑧𝑋)
3 axccdom.2 . . . 4 ((𝜑𝑧𝑋) → 𝑧 ≠ ∅)
43adantlr 715 . . 3 (((𝜑𝑋 ∈ Fin) ∧ 𝑧𝑋) → 𝑧 ≠ ∅)
51, 2, 4choicefi 45224 . 2 ((𝜑𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6 axccdom.1 . . . . . 6 (𝜑𝑋 ≼ ω)
76adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≼ ω)
8 isfinite2 9306 . . . . . . 7 (𝑋 ≺ ω → 𝑋 ∈ Fin)
98con3i 154 . . . . . 6 𝑋 ∈ Fin → ¬ 𝑋 ≺ ω)
109adantl 481 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ¬ 𝑋 ≺ ω)
117, 10jca 511 . . . 4 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → (𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω))
12 bren2 8997 . . . 4 (𝑋 ≈ ω ↔ (𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω))
1311, 12sylibr 234 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≈ ω)
14 ctex 8978 . . . . . . 7 (𝑋 ≼ ω → 𝑋 ∈ V)
156, 14syl 17 . . . . . 6 (𝜑𝑋 ∈ V)
1615adantr 480 . . . . 5 ((𝜑𝑋 ≈ ω) → 𝑋 ∈ V)
17 simpr 484 . . . . 5 ((𝜑𝑋 ≈ ω) → 𝑋 ≈ ω)
18 breq1 5122 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ≈ ω ↔ 𝑋 ≈ ω))
19 raleq 3302 . . . . . . . 8 (𝑥 = 𝑋 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2019exbidv 1921 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2118, 20imbi12d 344 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ↔ (𝑋 ≈ ω → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))))
22 ax-cc 10449 . . . . . 6 (𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
2321, 22vtoclg 3533 . . . . 5 (𝑋 ∈ V → (𝑋 ≈ ω → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2416, 17, 23sylc 65 . . . 4 ((𝜑𝑋 ≈ ω) → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
2515mptexd 7216 . . . . . . . . 9 (𝜑 → (𝑧𝑋 ↦ (𝑔𝑧)) ∈ V)
2625adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 ↦ (𝑔𝑧)) ∈ V)
27 fvex 6889 . . . . . . . . . . . 12 (𝑔𝑧) ∈ V
2827rgenw 3055 . . . . . . . . . . 11 𝑧𝑋 (𝑔𝑧) ∈ V
29 eqid 2735 . . . . . . . . . . . 12 (𝑧𝑋 ↦ (𝑔𝑧)) = (𝑧𝑋 ↦ (𝑔𝑧))
3029fnmpt 6678 . . . . . . . . . . 11 (∀𝑧𝑋 (𝑔𝑧) ∈ V → (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋)
3128, 30ax-mp 5 . . . . . . . . . 10 (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋
3231a1i 11 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋)
33 nfv 1914 . . . . . . . . . . 11 𝑧𝜑
34 nfra1 3266 . . . . . . . . . . 11 𝑧𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)
3533, 34nfan 1899 . . . . . . . . . 10 𝑧(𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
36 id 22 . . . . . . . . . . . . . 14 (𝑧𝑋𝑧𝑋)
3727a1i 11 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝑔𝑧) ∈ V)
3829fvmpt2 6997 . . . . . . . . . . . . . 14 ((𝑧𝑋 ∧ (𝑔𝑧) ∈ V) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
3936, 37, 38syl2anc 584 . . . . . . . . . . . . 13 (𝑧𝑋 → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
4039adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
41 rspa 3231 . . . . . . . . . . . . . 14 ((∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ∧ 𝑧𝑋) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
4241adantll 714 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
433adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → 𝑧 ≠ ∅)
44 id 22 . . . . . . . . . . . . 13 ((𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
4542, 43, 44sylc 65 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → (𝑔𝑧) ∈ 𝑧)
4640, 45eqeltrd 2834 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)
4746ex 412 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
4835, 47ralrimi 3240 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)
4932, 48jca 511 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
50 fneq1 6629 . . . . . . . . . 10 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (𝑓 Fn 𝑋 ↔ (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋))
51 nfcv 2898 . . . . . . . . . . . 12 𝑧𝑓
52 nfmpt1 5220 . . . . . . . . . . . 12 𝑧(𝑧𝑋 ↦ (𝑔𝑧))
5351, 52nfeq 2912 . . . . . . . . . . 11 𝑧 𝑓 = (𝑧𝑋 ↦ (𝑔𝑧))
54 fveq1 6875 . . . . . . . . . . . 12 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (𝑓𝑧) = ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧))
5554eleq1d 2819 . . . . . . . . . . 11 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
5653, 55ralbid 3255 . . . . . . . . . 10 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧 ↔ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
5750, 56anbi12d 632 . . . . . . . . 9 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → ((𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧) ↔ ((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)))
5857spcegv 3576 . . . . . . . 8 ((𝑧𝑋 ↦ (𝑔𝑧)) ∈ V → (((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
5926, 49, 58sylc 65 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6059adantlr 715 . . . . . 6 (((𝜑𝑋 ≈ ω) ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6160ex 412 . . . . 5 ((𝜑𝑋 ≈ ω) → (∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
6261exlimdv 1933 . . . 4 ((𝜑𝑋 ≈ ω) → (∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
6324, 62mpd 15 . . 3 ((𝜑𝑋 ≈ ω) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6413, 63syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
655, 64pm2.61dan 812 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  Vcvv 3459  c0 4308   class class class wbr 5119  cmpt 5201   Fn wfn 6526  cfv 6531  ωcom 7861  cen 8956  cdom 8957  csdm 8958  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cc 10449
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963
This theorem is referenced by:  subsaliuncl  46387
  Copyright terms: Public domain W3C validator