Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axccdom Structured version   Visualization version   GIF version

Theorem axccdom 44219
Description: Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
axccdom.1 (𝜑𝑋 ≼ ω)
axccdom.2 ((𝜑𝑧𝑋) → 𝑧 ≠ ∅)
Assertion
Ref Expression
axccdom (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
Distinct variable groups:   𝑓,𝑋,𝑧   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem axccdom
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 483 . . 3 ((𝜑𝑋 ∈ Fin) → 𝑋 ∈ Fin)
2 simpr 483 . . 3 (((𝜑𝑋 ∈ Fin) ∧ 𝑧𝑋) → 𝑧𝑋)
3 axccdom.2 . . . 4 ((𝜑𝑧𝑋) → 𝑧 ≠ ∅)
43adantlr 711 . . 3 (((𝜑𝑋 ∈ Fin) ∧ 𝑧𝑋) → 𝑧 ≠ ∅)
51, 2, 4choicefi 44197 . 2 ((𝜑𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6 axccdom.1 . . . . . 6 (𝜑𝑋 ≼ ω)
76adantr 479 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≼ ω)
8 isfinite2 9303 . . . . . . 7 (𝑋 ≺ ω → 𝑋 ∈ Fin)
98con3i 154 . . . . . 6 𝑋 ∈ Fin → ¬ 𝑋 ≺ ω)
109adantl 480 . . . . 5 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ¬ 𝑋 ≺ ω)
117, 10jca 510 . . . 4 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → (𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω))
12 bren2 8981 . . . 4 (𝑋 ≈ ω ↔ (𝑋 ≼ ω ∧ ¬ 𝑋 ≺ ω))
1311, 12sylibr 233 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≈ ω)
14 ctex 8961 . . . . . . 7 (𝑋 ≼ ω → 𝑋 ∈ V)
156, 14syl 17 . . . . . 6 (𝜑𝑋 ∈ V)
1615adantr 479 . . . . 5 ((𝜑𝑋 ≈ ω) → 𝑋 ∈ V)
17 simpr 483 . . . . 5 ((𝜑𝑋 ≈ ω) → 𝑋 ≈ ω)
18 breq1 5150 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ≈ ω ↔ 𝑋 ≈ ω))
19 raleq 3320 . . . . . . . 8 (𝑥 = 𝑋 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2019exbidv 1922 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ↔ ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2118, 20imbi12d 343 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ↔ (𝑋 ≈ ω → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))))
22 ax-cc 10432 . . . . . 6 (𝑥 ≈ ω → ∃𝑔𝑧𝑥 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
2321, 22vtoclg 3541 . . . . 5 (𝑋 ∈ V → (𝑋 ≈ ω → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)))
2416, 17, 23sylc 65 . . . 4 ((𝜑𝑋 ≈ ω) → ∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
2515mptexd 7227 . . . . . . . . 9 (𝜑 → (𝑧𝑋 ↦ (𝑔𝑧)) ∈ V)
2625adantr 479 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 ↦ (𝑔𝑧)) ∈ V)
27 fvex 6903 . . . . . . . . . . . 12 (𝑔𝑧) ∈ V
2827rgenw 3063 . . . . . . . . . . 11 𝑧𝑋 (𝑔𝑧) ∈ V
29 eqid 2730 . . . . . . . . . . . 12 (𝑧𝑋 ↦ (𝑔𝑧)) = (𝑧𝑋 ↦ (𝑔𝑧))
3029fnmpt 6689 . . . . . . . . . . 11 (∀𝑧𝑋 (𝑔𝑧) ∈ V → (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋)
3128, 30ax-mp 5 . . . . . . . . . 10 (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋
3231a1i 11 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋)
33 nfv 1915 . . . . . . . . . . 11 𝑧𝜑
34 nfra1 3279 . . . . . . . . . . 11 𝑧𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)
3533, 34nfan 1900 . . . . . . . . . 10 𝑧(𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
36 id 22 . . . . . . . . . . . . . 14 (𝑧𝑋𝑧𝑋)
3727a1i 11 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝑔𝑧) ∈ V)
3829fvmpt2 7008 . . . . . . . . . . . . . 14 ((𝑧𝑋 ∧ (𝑔𝑧) ∈ V) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
3936, 37, 38syl2anc 582 . . . . . . . . . . . . 13 (𝑧𝑋 → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
4039adantl 480 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) = (𝑔𝑧))
41 rspa 3243 . . . . . . . . . . . . . 14 ((∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) ∧ 𝑧𝑋) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
4241adantll 710 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
433adantlr 711 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → 𝑧 ≠ ∅)
44 id 22 . . . . . . . . . . . . 13 ((𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧))
4542, 43, 44sylc 65 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → (𝑔𝑧) ∈ 𝑧)
4640, 45eqeltrd 2831 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) ∧ 𝑧𝑋) → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)
4746ex 411 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → (𝑧𝑋 → ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
4835, 47ralrimi 3252 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)
4932, 48jca 510 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
50 fneq1 6639 . . . . . . . . . 10 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (𝑓 Fn 𝑋 ↔ (𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋))
51 nfcv 2901 . . . . . . . . . . . 12 𝑧𝑓
52 nfmpt1 5255 . . . . . . . . . . . 12 𝑧(𝑧𝑋 ↦ (𝑔𝑧))
5351, 52nfeq 2914 . . . . . . . . . . 11 𝑧 𝑓 = (𝑧𝑋 ↦ (𝑔𝑧))
54 fveq1 6889 . . . . . . . . . . . 12 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (𝑓𝑧) = ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧))
5554eleq1d 2816 . . . . . . . . . . 11 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
5653, 55ralbid 3268 . . . . . . . . . 10 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → (∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧 ↔ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧))
5750, 56anbi12d 629 . . . . . . . . 9 (𝑓 = (𝑧𝑋 ↦ (𝑔𝑧)) → ((𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧) ↔ ((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧)))
5857spcegv 3586 . . . . . . . 8 ((𝑧𝑋 ↦ (𝑔𝑧)) ∈ V → (((𝑧𝑋 ↦ (𝑔𝑧)) Fn 𝑋 ∧ ∀𝑧𝑋 ((𝑧𝑋 ↦ (𝑔𝑧))‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
5926, 49, 58sylc 65 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6059adantlr 711 . . . . . 6 (((𝜑𝑋 ≈ ω) ∧ ∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6160ex 411 . . . . 5 ((𝜑𝑋 ≈ ω) → (∀𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
6261exlimdv 1934 . . . 4 ((𝜑𝑋 ≈ ω) → (∃𝑔𝑧𝑋 (𝑧 ≠ ∅ → (𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧)))
6324, 62mpd 15 . . 3 ((𝜑𝑋 ≈ ω) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
6413, 63syldan 589 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
655, 64pm2.61dan 809 1 (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧𝑋 (𝑓𝑧) ∈ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1539  wex 1779  wcel 2104  wne 2938  wral 3059  Vcvv 3472  c0 4321   class class class wbr 5147  cmpt 5230   Fn wfn 6537  cfv 6542  ωcom 7857  cen 8938  cdom 8939  csdm 8940  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cc 10432
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945
This theorem is referenced by:  subsaliuncl  45372
  Copyright terms: Public domain W3C validator