Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin) |
2 | | simpr 488 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
3 | | axccdom.2 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ≠ ∅) |
4 | 3 | adantlr 714 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ Fin) ∧ 𝑧 ∈ 𝑋) → 𝑧 ≠ ∅) |
5 | 1, 2, 4 | choicefi 42199 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |
6 | | axccdom.1 |
. . . . . 6
⊢ (𝜑 → 𝑋 ≼ ω) |
7 | 6 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≼ ω) |
8 | | isfinite2 8809 |
. . . . . . 7
⊢ (𝑋 ≺ ω → 𝑋 ∈ Fin) |
9 | 8 | con3i 157 |
. . . . . 6
⊢ (¬
𝑋 ∈ Fin → ¬
𝑋 ≺
ω) |
10 | 9 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ¬ 𝑋 ≺ ω) |
11 | 7, 10 | jca 515 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → (𝑋 ≼ ω ∧ ¬ 𝑋 ≺
ω)) |
12 | | bren2 8558 |
. . . 4
⊢ (𝑋 ≈ ω ↔ (𝑋 ≼ ω ∧ ¬
𝑋 ≺
ω)) |
13 | 11, 12 | sylibr 237 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → 𝑋 ≈ ω) |
14 | | ctex 8542 |
. . . . . . 7
⊢ (𝑋 ≼ ω → 𝑋 ∈ V) |
15 | 6, 14 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ V) |
16 | 15 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → 𝑋 ∈ V) |
17 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → 𝑋 ≈ ω) |
18 | | breq1 5035 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥 ≈ ω ↔ 𝑋 ≈ ω)) |
19 | | raleq 3323 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧))) |
20 | 19 | exbidv 1922 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) ↔ ∃𝑔∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧))) |
21 | 18, 20 | imbi12d 348 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝑥 ≈ ω → ∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ↔ (𝑋 ≈ ω → ∃𝑔∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)))) |
22 | | ax-cc 9895 |
. . . . . 6
⊢ (𝑥 ≈ ω →
∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
23 | 21, 22 | vtoclg 3485 |
. . . . 5
⊢ (𝑋 ∈ V → (𝑋 ≈ ω →
∃𝑔∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧))) |
24 | 16, 17, 23 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → ∃𝑔∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
25 | 15 | mptexd 6978 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) ∈ V) |
26 | 25 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) ∈ V) |
27 | | fvex 6671 |
. . . . . . . . . . . 12
⊢ (𝑔‘𝑧) ∈ V |
28 | 27 | rgenw 3082 |
. . . . . . . . . . 11
⊢
∀𝑧 ∈
𝑋 (𝑔‘𝑧) ∈ V |
29 | | eqid 2758 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) |
30 | 29 | fnmpt 6471 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑋 (𝑔‘𝑧) ∈ V → (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋) |
31 | 28, 30 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋 |
32 | 31 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋) |
33 | | nfv 1915 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧𝜑 |
34 | | nfra1 3147 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) |
35 | 33, 34 | nfan 1900 |
. . . . . . . . . 10
⊢
Ⅎ𝑧(𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
36 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑋 → 𝑧 ∈ 𝑋) |
37 | 27 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑋 → (𝑔‘𝑧) ∈ V) |
38 | 29 | fvmpt2 6770 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑔‘𝑧) ∈ V) → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) = (𝑔‘𝑧)) |
39 | 36, 37, 38 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑋 → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) = (𝑔‘𝑧)) |
40 | 39 | adantl 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ∧ 𝑧 ∈ 𝑋) → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) = (𝑔‘𝑧)) |
41 | | rspa 3135 |
. . . . . . . . . . . . . 14
⊢
((∀𝑧 ∈
𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) ∧ 𝑧 ∈ 𝑋) → (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
42 | 41 | adantll 713 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ∧ 𝑧 ∈ 𝑋) → (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
43 | 3 | adantlr 714 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ∧ 𝑧 ∈ 𝑋) → 𝑧 ≠ ∅) |
44 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) → (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
45 | 42, 43, 44 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ∧ 𝑧 ∈ 𝑋) → (𝑔‘𝑧) ∈ 𝑧) |
46 | 40, 45 | eqeltrd 2852 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) ∧ 𝑧 ∈ 𝑋) → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧) |
47 | 46 | ex 416 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → (𝑧 ∈ 𝑋 → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧)) |
48 | 35, 47 | ralrimi 3144 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → ∀𝑧 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧) |
49 | 32, 48 | jca 515 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧)) |
50 | | fneq1 6425 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) → (𝑓 Fn 𝑋 ↔ (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋)) |
51 | | nfcv 2919 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧𝑓 |
52 | | nfmpt1 5130 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧(𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) |
53 | 51, 52 | nfeq 2932 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧 𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) |
54 | | fveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) → (𝑓‘𝑧) = ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧)) |
55 | 54 | eleq1d 2836 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) → ((𝑓‘𝑧) ∈ 𝑧 ↔ ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧)) |
56 | 53, 55 | ralbid 3159 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) → (∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧 ↔ ∀𝑧 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧)) |
57 | 50, 56 | anbi12d 633 |
. . . . . . . . 9
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) → ((𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧) ↔ ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧))) |
58 | 57 | spcegv 3515 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) ∈ V → (((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧)) Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑧 ∈ 𝑋 ↦ (𝑔‘𝑧))‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧))) |
59 | 26, 49, 58 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |
60 | 59 | adantlr 714 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ≈ ω) ∧ ∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |
61 | 60 | ex 416 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → (∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧))) |
62 | 61 | exlimdv 1934 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → (∃𝑔∀𝑧 ∈ 𝑋 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧))) |
63 | 24, 62 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≈ ω) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |
64 | 13, 63 | syldan 594 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ Fin) → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |
65 | 5, 64 | pm2.61dan 812 |
1
⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) |